
Generating Robust Trajectories in the Presence of
Ordinary and Linear-Self-Motion Singularities

John E. Lloyd Vincent Hayward
Computer Science Dept., University of British Columbia Center for Intelligent Machines, McGill University

Vancouver, B.C., Canada Montréal, P.Q., Canada
lloyd@cs.ubc.ca hayward@cim.mcgill.ca

Abstract
An algorithm is presented which computes feasible ma-

nipulator trajectories along fixed paths in the presence of
kinematic singularities. The resulting trajectories are close
to minimum time, given an inverse kinematic solution for
the path and bounds on joint velocities and accelerations.
The algorithm has complexity O(M logM), with respect
to the number of joint coordinatesM , and works using “co-
ordinate pivoting”, in which the path timing is generated
locally with respect to whichever joint coordinate is chang-
ing the fastest. This allows the handling of singularities, in-
cluding linear self-motions (e.g., wrist singularities), where
the path speed is zero but other joint velocities are non-zero.
Examples involving the PUMA manipulator are shown.

1 Introduction

It is very common for robotic manipulators, when follow-
ing prescribed spatial paths, to encounter kinematic singu-
larities which cause the joint velocities and accelerations to
become unacceptably large. Fixed prescribed paths are a
standard component of robot programs and are the typical
output of automatic motion planners. We describe in this
paper a robust trajectory generator which can take a kine-
matic solution for any specified path and produce an effi-
cient timing that bounds the joint velocities and accelera-
tions without deviating from the path. All types of singu-
larities are handled except those involving non-linear self-
motion (Section 3). An implementation of the algorithm is
available at

http://www.cs.ubc.ca/spider/lloyd/singtraj.html:

Traditional ways of handling singularities by working
with the manipulator Jacobian [1, 2, 3] can cause deviation
from the prescribed path and incur sluggish performance
near the singularity. However, the existence of path tim-
ings which permit motion at singularities without deviating
from the path has been shown [4, 5, 6], and some authors
have modified Jacobian-based approaches to this end [7, 8].

What the above techniques do not do is generate tra-
jectories with tight bounds on joint acceleration. Indeed,
this turns the problem into a variation of the time-optimal
path-following planning problem [9, 10]. We believe that
the algorithm described here is the first to produce near

minimum-time trajectories, given bounds on the joint ve-
locities and accelerations, for any kinematic solution con-
taining ordinary and linear-self-motion singularities. It is
an improvement on an earlier algorithm [11], which did not
handle self-motions. The present algorithm also has lower
complexity (O(M logM) vs. O(M3) with respect to the
number of robot jointsM), allows non-zero joint velocities
at singularities, appears to require fewer data points along
the path, and is simpler and more robust to program.

2 Overview

For input, the algorithm requires an inverse kinematic so-
lution of the path to be followed. If the path is described by
X(s), where s is a scalar parameter, then the algorithm must
have access to the corresponding joint coordinates ###(s) �
(#1(s); : : : ; #M(s))T at any value of s. This is straightfor-
ward when the manipulator has a closed-form kinematic so-
lution. If a closed form solution is not available, ###(s) can
still be determined using the manipulator Jacobian, with in-
verse conditioning and step-size adjustment at singularities
(see [12] for details), and presented to the algorithm in in-
terpolated form. Alternatively, it would be better to com-
bine such an iterative solution procedure with the knot se-
lection described in Section 5, though we have not yet done
this.

Given ###(s), the algorithm finds an efficient path timing
s(t) which keeps the resulting joint velocities _### and accel-
erations �### close to the following individual bounds:

j _#jj � Vj ; j�#jj � Aj : (1)

Away from singularities, each _#j and �#j can be determined
from #j(s) using the chain rule

_#j = #0j(s) _s and �#j = #0j(s) �s + #00j (s) _s
2:

The problem is that near singularities,#0j(s) and#00j (s) may
become very large, and at self-motion singularities, #j(s)
may even be discontinuous. To handle this, the algorithm
uses coordinate pivoting (Section 4), in which some other
coordinate velocity is used (locally) in place of _s to con-
trol the path timing. Whichever coordinate is locally used
to generate the timing is called the driving coordinate, and
its value is denoted by x.

As with standard minimum-time path-following proce-
dures [13, 14], the timing s(t) is actually produced implic-
itly by computing path speed as a functionof s. This is done
in two steps:

1. Knot points si are added along the path, dividing it
into a sequence of intervals [si; si+1]. These knots
are added by recursive bisection until each interval is
small enough to satisfy criteria needed for good algo-
rithm performance (Section 5).

2. Appropriate driving coordinate velocities _x are then
computed for each knot i (Section 6).

Between knots, _x is interpolated using a constant value of
�x. The resulting path-velocity profile can be integrated to
yield s(t) (see [12]).

3 Singularity Examples

Our algorithm directly handles both ordinary singularities
(i.e., those not associated with self-motion) and linear self-
motion singularities (i.e., those for which the self-motion
forms a straight line in joint space)�. The so-called “wrist”
singularity is probably the most common example of a
linear-self-motion singularity.

Both types of singularity are illustrated by the example
of Figure 1, which involves a planar 2R manipulator, cen-
tered at the origin. Figure 1.A shows all solutions of #1 for
motion along the x axis.

Ordinary singularities occur at x = �2, where the x-
axis intersects the outer workspace boundary and the two
main solution branches meet. For x < �2 and x > 2, the
target position is outside the workspace and so we define
the respective “closest possible” solutions #1(x) � � and
#1(x) � 0, each corresponding to an outstretched arm. At
x = �2, #01(x) becomes infinite, and so an x-axis motion
defined by x(s) = s; y(s) = 0, will result in infinite val-
ues for _#1 and �#1 if _s 6= 0. However, both _#1 and �#1 can
be bounded if _s is appropriately brought to 0 at the singu-
larity. Whether _#1 also needs to be brought to 0 depends
on the situation. For example, if the robot is brought to rest
at the singularity, then _#1 will have to be brought to 0 also.
On the other hand, suppose the manipulator is requested to
follow the path x(s) = s from s = 1 to the singularity at
s = 2 with the elbow up (as in Figure 1.B), and then re-
verse direction at s = 2 and go back along the x-axis with
the elbow down (as in the right side of Figure 1.C). Then
_#1 will not change sign as it passes through the singularity
and so a timing exists which bounds _#1 without bringing it
to 0. It is, however, difficult to construct this timing using
_s, which is why we employ coordinate pivoting instead.

�Self-motions are joint-space manifolds along which the manipulator
can execute a finite joint motion without incurring a change in end-effector
position.

(A)

(B)

(C)

�2 x
0 2

#1
2�

0

Figure 1: (A): Solutions of #1 (solid and dotted lines) for a planar 2R
robot, with both link lengths equal to 1, following the x axis. (B): mo-
tion corresponding to the solid line solution. (C): motion resulting from
switching solution branches (solid to dotted) using the self-motion singu-
larity at the origin.

Figure 1.A also shows a linear self-motion singularity at
x = 0, with the associated self-motion solution indicated
by a vertical dotted line along which #1 can assume any
value without changing the path position. It is possible to
use this self-motion singularity to switch solutionbranches,
by bringing the robot to rest at the singularity, moving along
the self-motion solution, and then resuming along the new
branch (Figure 1.C). The associated #1(s) will contain a
discontinuity, which can be handled by our algorithm, re-
sulting in the branch-switching motion. While it is usually
preferable to avoid switching branches (as in Figure 1.B),
task constraints may dictate otherwise. Also, paths which
pass near self-motion singularities may produce solutions
#j(s) which numerically appear discontinuous.

4 Coordinate Pivoting

As mentioned above, the algorithm uses another coordinate
to control the path timing in regions where one or more
#0j(s) becomes large.

To formalize this idea, extend the set of M joint coordi-
nates to include the path parameter s:

� (#1; : : : ; #M; #M+1)
T ; #M+1 � s:

Now consider the i-th interval defined by [si; si+1]. Let

i�### � ###(si+1) � ###(si) denote the change in ### over
the interval, and then determine the coordinate for which
ji�#jj=�j is a maximum, where �j is a normalizing fac-
tory. This is called the driving coordinate for the interval,
and its value will be denoted by the variable x.

Within the i-th interval, all other coordinates are approx-
imated as functions of x, using cubic Hermite interpolation
of ### and ###0(x) at the interval endpoints. Interpolation er-
rors are bounded by keeping the knots sufficiently close to-
gether (Section 5). Endpoint values of #0j(x) can be deter-
mined from

#0j(x) = #0j(s)=x
0(s): (2)

Because x is the coordinate with the largest variation, we
can generally expect that j#0j(x)j � 1, provided the interval
is small enough. The derivatives used in the right-handside
of (2) are computed numerically by taking finite differences
between #j(s) and #j(s+ �); this ensures that all numbers
remain finite even at singularities. Path timing within the
interval is specified using _x, with other velocities _#j de-
fined by _#j = #0j(x) _x.

With respect to Figure 1.A, consider a motion defined
by x(s) = s. Then (ignoring #2 for the sake of this ex-
ample) #1 will be the driving coordinate in right and left
neighborhoods of s = �2 and s = 2, respectively, and
also at s = 0 if the chosen #1(s) contains a self-motion
discontinuity. The driving coordinate elsewhere will be s.

The process of choosing x, which we call coordinate
pivoting, is central to our algorithm. It is analogous to piv-
oting in matrix computations, where one divides a matrix
row or column by the element with largest magnitude.

The following notation will be used in the sequel. The
driving coordinate associated with the i-th interval will be
denoted by ix, and its values at i and i+1 by ixi and ixi+1.
Likewise, i _xi and i _xi+1 will describe i _x at i and i+ 1. The
change in### and###0(ix) over the interval will be denoted by
i�### and i�###0, with i�x specifically denoting the change in
ix. We will also refer to the average values of ###0(ix) and
###
00(ix) over an interval, respectively represented by

i
###
0 � ###(ixi+1)� ###(ixi)

i�x
(3)

and

i
###
00 � ###

0(ixi+1)� ###0(ixi)
i�x

: (4)

To ensure continuity of velocities, the driving coordi-
nate velocities must match appropriately at the interval

y
�j adjusts for comparisons between coordinates with different units.

Good values are 2� for revolute joints and the workspace diameter for
prismatic joints. For #M+1 � s, �M+1 can be set to the range of s.

endpoints. Generally, at any knot i, if we define Ci �
i�1x0(ix), then ###0(ixi) will be related to ###0(i�1xi) by

###
0(ixi) = ###

0(i�1xi)Ci (5)

(though this is not true if i is a corner point; Section 5.1).
Velocity continuity then requires that

i�1 _xi =
i _xiCi: (6)

5 Adding Knot Points

The algorithm begins by adding a sufficient number of
knots along the path. Starting with an initial set of knots,
more knots are added by recursive bisection until each of
the following conditions are satisfied:

(a) The path error is within bounds;

(b) Each ji�#jj is within a prescribed limit;

(c) Each ji�#0jj is within a prescribed limit;

(d) The (interpolated) function s(ix) is monotone.

The conditions will only be summarized here; further
details can be obtained from [12].

Condition (a) ensures that in interpolating###(ix) across
the interval, we do not deviate from X(s) by more than
some prescribed tolerance. This is a standard problem in
path generation, and is handled using the same sort of test
described in [15].

Condition (b) helps ensure that the path solution will be
close to minimum-time. Because �#j is approximately con-
stant across any interval (by condition (c)), then if ji�#jj
is too large, j�#jj may be unable to reach its maximum Aj
value without violating the velocity constraint j _#jj � Vj .
However, within intervals where #j(ix) is monotone and
�#j is assumed constant, it can be shown that j�#jj will al-
ways reach Aj, for any velocity change whose magnitude
exceeds Vj=2, if

ji�#jj �
V 2
j

8Aj
: (7)

This is the test we usually use to bound each ji�#jj.
Condition (c) limits the local curvature of each #j(

ix),
which is necessary because the algorithm assumes that a
constant i�x within each interval results in a roughly con-
stant value for �#j. If �#Ej denotes the error in �#j (i.e., the
amount it deviates from a constant value), and we assume
that #j(ix) is approximately quadratic over the interval, it
is possible to show that j�#Ejj < Aj=2 (i.e., 50% of Aj) if

ji�#0jj <
Aj
4Ax

; (8)

where Ax is the maximum value for ji�xj. Since the deriva-
tion of (8) is fairly conservative, j�#Ejjwill usually be much
smaller than Aj=2.

Condition (d) ensures that by using ix as a driving co-
ordinate we don’t reverse direction along the path as an ar-
tifact of interpolating###(ix) within the interval. It also en-
sures that i _x is of uniform sign within the interval, an as-
sumption used when assigning knot point velocities (Sec-
tion 6).

5.1 Discontinuities and corners

The recursive subdivision of intervals to satisfy conditions
(b) through (d) may fail to terminate if ###(ix) contains dis-
continuities or corners (i.e., discontinuities in ###0(ix)). Fig-
ure 1 illustrates both: a possible discontinuityat x = 0 (de-
pending on the choice of solution branches), and possible
corners at x = �2, where the main branches meet the arti-
ficial solutions #1(s) � � for x < �2 and #1(s) � 0 for
x > 2.

If ji�sj falls below a small threshold �s and conditions
(c) or (d) are still not satisfied, then the situation is resolved
by declaring knot i and/or knot i + 1 to be a corner. If
knot i is a corner, it implies that ###0(ixi) and ###0(i�1xi) are
no longer related by (5). Instead, we recompute each sepa-
rately, based on adjacent curve information, according to

###
0(ixi) := 2 i

###
0 � ###0(ixi+1)

###
0(i�1xi) := 2 i�1

###
0 � ###0(i�1xi�1):

If ji�sj falls below �s and condition (b) is still not satis-
fied, then a discontinuity in ###(ix) is assumed. In this case,
we linearly interpolate ###(ix) across the interval, adding
enough extra knots so as to ensure satisfaction of condition
(b). By construction, the driving coordinate of each inter-
polated knot will still be ix. Usually, when a discontinuity
is detected, the endpoints i and i+1 will also turn out to be
corners.

This handling of discontinuities is what permits the al-
gorithm to function properly at linear self-motion singu-
larities. If the self-motion solution does not form a line
in joint space, then linear interpolation across the discon-
tinuity will result in a motion that wanders off the path. If
such non-linear self-motions are anticipated, and path devi-
ations unacceptable, then the algorithm should be modified
to either abort on discontinuities, or perform an appropri-
ate non-linear interpolation that tracks the self-motion so-
lution.

6 Velocity Assignment

After the path has been subdivided, the algorithm com-
putes, at each knot, a driving coordinate velocity value i _xi.

This is done so as to try and produce minimum-time motion
while closely adhering to the constraints of (1).

Rather than working with driving coordinate velocities
i _x directly, it is easier to compute the coordinate energy ie,
defined by ie � 1=2 i _x2. This is because, as discussed be-
low, the acceleration constraints j�#jj � Aj imply linear
constraints on ie. Note that ie is a mathematical energy, not
a physical one. The coordinate energy values correspond-
ing to the interval endpoint velocities i _xi and i _xi+1 are de-
fined by iei � 1=2 i _x2i and iei+1 � 1=2 i _x2i+1.

To begin, we note that if i is a corner point (Section 5.1),
then maintaining velocity continuity requires that i _xi = 0
and therefore iei must be set to 0.

Next, the constraints j _#jj � Vj can be satisfied exactly
at each knot i by requiring that

iek � iBk; where iBk � 1

2
min
j

Vj

#0j(
ixk)

!2

:
(9)

Between knots, i�x is constant, resulting in an approximately
constant �#j (condition (c), Section 5), and so _#j will stay
roughly between its endpoint values and so closely adhere
to j _#jj � Vj .

Finally, for the constraints j�#jj � Aj , we start by ob-
serving from basic kinematics that

i�x =
i _x2i+1 � i _x2i

2 i�x
=

iei+1 � iei
i�x

: (10)

Now let x � ix. If we assume that #j(x) is approximately
quadratic over the interval, with average values for #0j(x)

and #00j (x) given by i#
0

j and i#
00

j (defined by equations (3)
and (4)), then by the chain rule

�#j � i#
0

j �x+ i#
00

j _x2:

If _x2 is replaced with its average value on the interval,
which equals iei+1 + iei, and �x is replaced by (10), then
the constraint j�#jj � Aj becomes

�Aj �
0
@i#

00

j �
i#

0

j

i�x

1
A iei +

0
@i#

00

j +
i#

0

j

i�x

1
A iei+1 � Aj:

This means that the pair (iei; iei+1) must lie between two
parallel lines in the iei-iei+1 plane. The intersection of all
such constraints for each j, plus the constraints iei � iBi
and iei+1 � iBi+1 implied by (9) and the fact that iei and
iei+1 are positive, forms a convex polygonal region Ei in
the first quadrant of the iei-iei+1 plane (Figure 2).

Let ie � (iei; iei+1). In determining energies iei for
each knot point, we want to ensure that ie 2 Ei, meaning
that the constraints (1) are approximately satisfied. At the

0 2 4 6 8

2

4

6

8

iei

iei+1

Figure 2: Region Ei in the iei-iei+1 plane (shaded gray) formed by the
intersection of velocity and acceleration constraints.

same time, we want the resultingmotion to be close to mini-
mum time, meaning that ie should be associated with a min-
imal interval transit time. Since the interval transit time is
inversely proportional to i _xi+i _xi+1, it can be minimized by
maximizing F � p

iei +
p

iei+1. Ideally, then, we would
like i

e to be close to the point ie� � (ie�i ;
ie�i+1) within Ei

that maximizes F . It is easy to show that ie� must lie on
the boundary of Ei, and so can be found by examining the
edges of Ei.

Computing iei is actually more complicated that simply
assigning it the value ie�i . That is because iei also corre-
sponds to the element i�1ei in the tuple i�1e associated with
the previous interval, and so setting iei := ie�i may conflict
with the requirement i�1e 2 Ei�1. Consequently, energies
are assigned using a three step procedure:

1. Initialization: Each iei is set to the minimum of ie�i
and the value corresponding to i�1e�i (note that this
may mean i

e 62 Ei). Also, 1e1 and KeK are set ac-
cording to initial conditions (typically to 0), and iei
is set to 0 at every corner point (to prevent velocity
discontinuities).

2. Forward Pass: A pass is made through the knots,
in increasing order, which attempts to place each i

e

within Ei by reducing the value of iei+1.

3. Reverse Pass: Another pass is made through the
knots, in decreasing order, which ensures that each
i
e is within Ei by reducing the value of iei.

It is possible to prove (using arguments contained in
[12]) that at the conclusion of these steps, ie 2 Ei for all
knots i. The forward pass has the effect of clipping posi-
tive accelerations, while the reverse pass clips the negative
accelerations.

In the above discussion, we ignored the fact that inter-
vals i � 1 and i may have different driving coordinates,
meaning that, if i is not a corner, iei must be converted to

i�1ei, and vice versa, using the velocity conversion of equa-
tion (6). In particular, it is easy to see that

i�1ei =
iei C

2
i and iei =

i�1ei=C
2
i : (11)

Taking such conversions into account, the complete energy
assignment procedure for K knots is summarized below:

proc assignEnergies(K) �
for i := 2 to K � 1 do // Initialize values

iei := min(i�1e�i =C
2
i ;
ie�i)

od
Initialize 1e1 and KeK and set iei := 0 at corners
for i := 1 to K � 1 // Forward pass

y := maxf� : (iei; �) 2 Eig
if y < i+1ei+1C

2
i+1

i+1ei+1 := y=C2
i+1

fi
od
for i := K � 1 to 1 do // Reverse pass

y := maxf� : (�; i+1ei+1C2
i+1) 2 Eig

if y < iei
iei := y

fi
od.

7 Complexity

For this analysis, since ###(s) is an algorithm input, we start
by ignoring inverse kinematic costs and assume that ###(s)
can be determined at any s with a complexity proportional
to the number of joint coordinates M . Then knot cre-
ation, which proceeds by recursive bisection using tests
with complexity proportional to M , has itself a complex-
ity of O(KM), where K is the number of knots.

Velocity assignment begins by creating a region Ei at
each knot. Each Ei has O(M) edges, corresponding to M
velocity and acceleration constraints, and so can be con-
structed in O(M logM) time [16]. The initialization of
each iei then requires i

e
�, which can be computed by in-

specting each edge of Ei and so takes O(M) time. Lastly,
the computation of y in the forward and reverse passes of
assignEnergies() is equivalent to intersecting Ei with a line
segment and so also takes O(M) time.

The total algorithm complexity is thus O(KM logM).
If we also consider inverse kinematic costs, and these have
a complexity C(M) greater than M logM , then the total
complexity becomes O(C(M)K).

8 Experiments

The algorithm has been implemented and tested on a wide
range of examples for the PUMA and planar 2R robots.

_#2

_#3

t

Vp

V3

V2

_#2

_#3

_s

A2

A3

Ap

t

Figure 3: Motion out to and back from the PUMA workspace boundary.
Upper plots show _#2(t) and _#3(t) when this motion is done at constant
speed. Lower plots show results after algorithm time scaling has been ap-
plied. By changing configurations at the singularity, it is possible to main-
tain a finite joint speed while transiting the singularity, even though the
speed along the path (indicated here by _s) is brought to 0.

Two examples are shown here, both of which could not be
handled by our earlier work in [11].

In the first example (Figure 3), the PUMA is driven
along a straight-line path into the outer workspace bound-
ary with the elbow “up”, and then pulled back along the
same path with the elbow “down”. If done with constant
speed this results in very large spikes in _#2 and _#3. Ap-
plication of the algorithm, with Vj = 150�=s and Aj =
500�=s2 for the robot joints, removes these spikes and re-
solves the velocity profiles satisfactorily. Because there is
no sign change in the velocities, it is possible to bound _#2
and _#3 without bringing them to rest.

t

_#1

_#3

_#4

_#1

_#3

_#4

t

_s

A1

A3

A4

Ap

V1

V3

V4

Vp

Figure 4: A parabolic motion taking the PUMA to the triple singularity
near the ready position. Upper plots show _#1(t), _#3(t), and _#4(t) when
this motion is done at constant speed. The extremely large spike in _#4 is
due to the self-motion at the wrist singularity. Lower plots show results
after algorithm time scaling has been applied.

In the second example (Figure 4) the PUMA is driven
along a parabolic trajectory that brings it close to the triple-
singularity at its “ready” position. Traversing the path at
constant speed results in unmanageable profiles for _#1, _#3
and _#4 (as well as other joints, not shown). The extremely

large spikes in _#4 are due to a pair of discontinuities in
#4(s) resulting from the self-motion wrist singularity. Ap-
plication of the algorithm, with Vj = 180�=s and Aj =
500�=s2 for the robot joints, resolves all the velocity pro-
files satisfactorily.

For both examples, s was equivalent to the path’s spatial
length. The nominal path speed was _s = Vs = 400 mm/s,
and the algorithm enforced an acceleration bound of j�sj �
As = 2500 mm/s2. The path error tolerance was 0.01 mm.
Computations were done on a Sun Ultra-SPARC 2 work-
station, capable of about 60 Mflops. The first example re-
quired 68 knotsand took 19.5 msec to compute. The second
example generated 180 knots and took 56.8 msec to com-
pute. All code is written in C++ and significant speed im-
provements are still possible.

To help gauge performance, the velocity plots associated
with the algorithm contain dotted horizontal and diagonal
lines indicating Vj and Aj. As well, _s is plotted to give an
indication of how the nominal path speed is reduced near
singularities. It will be noted that the constraints (1) are fol-
lowed quite tightly, and that the trajectories are also close to
minimum time, as evidenced by the fact that usually at least
one coordinate is close to saturation with respect to either
its velocity or acceleration constraint.

9 Conclusion

We believe that, from a practical point of view, the problem
of robust trajectory generation along fixed paths containing
singularities is now close to being solved. Further study of
computational issues, along with accuracies and tolerances,
would be useful. The algorithm should also be extended
to handle non-linear self-motions. Also, at present we do
not consider the computation of ###(s) to be part of the algo-
rithm; this should be changed so as to integrate Jacobian-
based computation of ###(s) with the knot selection process.

It should be noted that the algorithm produces a near
minimum-time trajectory for a fixed input###(s). No attempt
is presently made to improve the timing by modifying###(s)
(such as by changing branch selections at singularities), al-
though such abilities could certainly be introduced.

Our algorithm relies on the idea of coordinate pivoting,
in which the coordinate x with the steepest derivative is
used locally to control the path timing. All other coordi-
nates then have well-behaved derivatives with respect to x,
which makes computation and analysis considerably easier.
In particular, it allows us to do path velocity assignment us-
ing the convex polygonal region Ei, whereas the equivalent
region in our earlier work [11] was formed by intersecting
hyperbolas, and therefore much more tedious to work with.

By providing a more general definition of Ei, it should
be possible to take into account the manipulator’s dynam-
ics, thereby allowing this algorithm to also be applied to the
general time-optimal path-following problem.

References
[1] C. W. Wampler II and L. J. Leifer, “Applications of damped

least-squares methods to resolved-rate and resolved-
acceleration control of manipulators,” Transactions of the
ASME: Journal of Dynamic Systems, Measurement, and
Control, vol. 110, pp. 31–38, Mar. 1988.

[2] A. A. Maciejewski and C. A. Klein, “The singular value de-
composition: Computation and applications to robotics,” In-
ternational Journal of Robotics Research, vol. 8, pp. 63–79,
Dec. 1989.

[3] S. Chiaverini, B. Siciliano, and O. Egeland, “Review of
the damped least-squares inverse kinematics with experi-
ments on an industrial robot manipulator,” IEEE Transac-
tions on Control Systems Technology, vol. 2, pp. 123–134,
June 1994.

[4] L. Nielsen, C. C. de Wit, and P. Hagander, “Controllability
issues of robots near singular configurations,” in Advances
in Robot Kinematics, 2nd International Workshop, (Linz,
Austria), pp. 283–290, Sept.10-12 1990.

[5] J. Kieffer, “Differential analysis of bifurcations and isolated
singularities for robots and mechanisms,” IEEE Transac-
tions on Robotics and Automation, vol. RA-10, pp. 1–10,
Feb. 1994.

[6] C. Chevallereau, “Feasible trajectories for a non redundant
robot at a singularity,” in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, (Minneapo-
lis, Minnesota), pp. 1871–1876, Apr. 1996.

[7] D. N. Nenchev, Y. Tsumaki, M. Uchiyama, V. Senft, and
G. Hirzinger, “Two approachesto singularity-consistentmo-
tion of nonredundant robotic mechanisms,” in Proceedings
of the IEEE International Conference on Robotics and Au-
tomation, (Minneapolis, Minnesota), pp. 1883–1890, Apr.
1996.

[8] K. A. O’Neil, Y. C. Cheng, and J. Seng, “Desingulariza-
tion of resolved motion rate control of mechanisms,” in Pro-
ceedings of the IEEE International Conference on Robotics
and Automation, (Minneapolis, Minnesota), pp. 3147–3154,
Apr. 1996.

[9] K. G. Shin and N. D. McKay, “Minimum-time control
of robotic manipulators with geometric path constraints,”
IEEE Transactions on Automatic Control, vol. AC-30,
pp. 531–541, June 1985.

[10] J.-J. Slotine and H. S. Yang, “Improving the efficiency of
time-optimal path-following algorithms,” IEEE Transac-
tions on Robotics and Automation, vol. RA-5, pp. 118–124,
Feb. 1989.

[11] J. E. Lloyd and V. Hayward, “A discrete algorithm for
fixed-path trajectory generation at kinematic singularities,”
in Proceedings of the IEEE International Conference
on Robotics and Automation, (Minneapolis, Minnesota),
pp. 2743–2748, Apr. 1996.

[12] J. E. Lloyd, “Singularity-robust trajectory genera-
tion for robotic manipulators,” Tech. Rep. 98-02,
Department of Computer Science, University of
British Columbia, 201-2366 Main Mall, Vancou-
ver, Canada, V6T 1Z4, Mar. 1998. Available from
http://www.cs.ubc.ca/spider/lloyd/papers/singrob.ps.Z.

[13] J. Bobrow, S. Dubowsky, and J. Gibson, “Time-optimal con-
trol of robotic manipulators along specified paths,” Interna-
tional Journal of Robotics Research, vol. 4, pp. 3–17, Fall
1985.

[14] K. G. Shin and N. D. McKay, “Minimun time trajec-
tory planning for industrial robots with general troque con-
straints,” in Proceedings of the IEEE International Confer-
ence on Robotics and Automation, (San Fransisco, Califor-
nia), pp. 412–417, Apr.7-10 1986.

[15] R. H. Taylor, “Planning and execution of straight line ma-
nipulator trajectories,” IBM Journal of Research and Devel-
opment, vol. 23, pp. 424–436, 1979.

[16] F. P. Preparata and M. I. Shamos, Computational Geometry.
An Introduction. Springer-Verlag, New York, 1985.

