Generating Robust Trajectoriesin the Presence of
Ordinary and Linear-Self-Motion Singularities

John E. Lloyd
Computer Science Dept., University of British Columbia
Vancouver, B.C., Canada
[loyd@cs.ubc.ca

Abstract

An agorithmis presented which computes feasible ma-
nipulator trajectories along fixed paths in the presence of
kinematic singularities. The resulting trgjectories are close
to minimum time, given an inverse kinematic solution for
the path and bounds on joint velocities and accel erations.
The a gorithm has complexity O(M log M), with respect
to the number of joint coordinates M, and worksusing “co-
ordinate pivoting”, in which the path timing is generated
locally with respect to whichever joint coordinateischang-
ingthefastest. Thisalowsthehandling of singularities, in-
cludinglinear self-motions(e.g., wrist singularities), where
the path speed iszero but other joint vel ocitiesare non-zero.
Examples involving the PUMA manipulator are shown.

1 Introduction

It is very common for robotic manipulators, when follow-
ing prescribed spatia paths, to encounter kinematic singu-
laritieswhich cause the joint vel ocities and accel erations to
become unacceptably large. Fixed prescribed paths are a
standard component of robot programs and are the typical
output of automatic motion planners. We describe in this
paper a robust trgjectory generator which can take a kine-
matic solution for any specified path and produce an effi-
cient timing that bounds the joint velocities and accelera
tions without deviating from the path. All types of singu-
larities are handled except those involving non-linear self-
motion (Section 3). Animplementation of the agorithmis
available at

http://www.cs.ubc.ca/spider/lloyd/singtraj.html .

Traditional ways of handling singularities by working
with the manipulator Jacobian [1, 2, 3] can cause deviation
from the prescribed path and incur sluggish performance
near the singularity. However, the existence of path tim-
ingswhich permit motion at singularitieswithout deviating
from the path has been shown [4, 5, 6], and some authors
have modified Jacobian-based approachesto thisend [7, 8].

What the above techniques do not do is generate tra-
jectories with tight bounds on joint acceleration. Indeed,
this turns the problem into a variation of the time-optimal
path-following planning problem [9, 10]. We believe that
the algorithm described here is the first to produce near

Vincent Hayward
Center for Intelligent Machines, McGill University
Montréal, PQ., Canada
hayward@cim.mcgill.ca

minimum-time trajectories, given bounds on the joint ve-
locities and accelerations, for any kinematic solution con-
taining ordinary and linear-self-motion singularities. It is
an improvement on an earlier algorithm[11], which did not
handle self-motions. The present algorithm al so has lower
complexity (O(M log M) vs. O(M?3) with respect to the
number of robot joints M), allowsnon-zero joint velocities
at singularities, appears to require fewer data points along
the path, and is simpler and more robust to program.

2 Overview

For input, the algorithm requires an inverse kinematic so-
[ution of the path to befollowed. If the path is described by
X(s), where s isascalar parameter, thentheal gorithmmust
have access to the corresponding joint coordinates ¥ (s) =
(V1(s), ..., 9u(s))T aany valueof s. Thisisstraightfor-
ward when the mani pul ator hasa cl osed-formkinematic so-
lution. If aclosed form solutionis not available, ¥(s) can
still be determined using the manipul ator Jacobian, within-
verse conditioning and step-si ze adjustment at singularities
(see [12] for details), and presented to the dgorithminin-
terpolated form. Alternatively, it would be better to com-
bine such an iterative solution procedure with the knot se-
lection described in Section 5, thoughwe have not yet done
this.

Givend(s), the agorithm finds an efficient path timing
s(t) which keeps the resulting joint velocities 9 and accel-
erations closeto the following individua bounds:

[9;1 < Vi, 1951 < Ay D
Away from singul arities, each J; and v/, can be determined
from ¥, (s) usingthechain rule

0; =0(s)s and ;= 0(s)E + 0Y(s) 5%
The problemisthat near singularities, 7% (s) and ¥’/ (s) may
become very large, and at self-motion singularities, ¥;(s)
may even be discontinuous. To handle this, the algorithm
uses coordinate pivoting (Section 4), in which some other
coordinate velocity is used (locally) in place of $ to con-
trol the path timing. Whichever coordinateis locally used
to generate thetiming is called the driving coordinate, and
itsvalueis denoted by .

As with standard minimum-time path-following proce-
dures[13, 14], thetiming s(¢) isactually produced implic-
itly by computing path speed asafunctionof s. Thisisdone
in two steps:

1. Knot points s; are added aong the path, dividing it
into a sequence of intervals [s;, s;+1]. These knots
are added by recursive bisection until each interval is
small enough to satisfy criterianeeded for good a go-
rithm performance (Section 5).

2. Appropriate driving coordinate velocities are then
computed for each knot ¢ (Section 6).

Between knots, « isinterpolated using a constant value of
#. The resulting path-velocity profile can be integrated to
yield s(t) (see[12]).

3 Singularity Examples

Our agorithm directly handles both ordinary singularities
(i.e., those not associated with self-motion) and linear self-
motion singularities (i.e., those for which the self-motion
formsastraight linein joint space)*. The so-called “wrist”
singularity is probably the most common example of a
linear-self-motion singularity.

Both types of singularity are illustrated by the example
of Figure 1, which involves a planar 2R manipulator, cen-
tered at the origin. Figure 1.A showsall solutionsof 9, for
motion along the x axis.

Ordinary singularitiesoccur & z = +2, where the z-
axis intersects the outer workspace boundary and the two
main solution branches meet. For x < —2 and = > 2, the
target position is outside the workspace and so we define
the respective “closest possible” solutions?, (z) = = and
Y1 (x) = 0, each corresponding to an outstretched arm. At
x = £2, ¥ () becomesinfinite, and so an z-axis motion
defined by x(s) = s,y(s) = 0, will result ininfinite val-
uesfor ¥; and ¢, if s # 0. However, both ¢#; and ; can
be bounded if s is appropriately brought to 0 a the singu-
larity. Whether 7, also needs to be brought to 0 depends
onthesituation. For example, if the robot is brought to rest
at the singularity, then J; will have to be brought to 0 & so.
On the other hand, suppose the manipul ator isrequested to
follow the path = (s) = s from s = 1 to the singularity at
s = 2 with the elbow up (asin Figure 1.B), and then re-
verse direction at s = 2 and go back along the z-axiswith
the elbow down (as in the right side of Figure 1.C). Then
1 will not change sign as it passes through the singul arity
and so a timing exists which bounds ¥, without bringingit
to 0. It is, however, difficult to construct this timing using
$, which iswhy we employ coordinate pivoting instead.

* Self-motions are joint-space manifolds along which the manipulator
can executeafinitejoint motionwithout incurring achangein end-effector
position.

o
7/ N
,///il'.' \

_=-=-57;'=-= RN o o o o N N o =~

Figure 1. (A): Solutions of 9, (solid and dotted lines) for a planar 2R
robot, with both link lengths equal to 1, following the = axis. (B): mo-
tion corresponding to the solid line solution. (C): motion resulting from
switching solution branches (solid to dotted) using the self-motion singu-
larity at the origin.

Figure 1.A dso showsalinear self-motion singul arity at
z = 0, with the associated self-motion solution indicated
by a vertica dotted line along which J; can assume any
value without changing the path position. It is possible to
usethisself-motion singularity to switch solutionbranches,
by bringingtherobot to rest at the singularity, moving along
the self-motion solution, and then resuming along the new
branch (Figure 1.C). The associated ¥, (s) will contain a
discontinuity, which can be handled by our agorithm, re-
sulting in the branch-switching motion. Whileitisusualy
preferable to avoid switching branches (asin Figure 1.B),
task constraints may dictate otherwise. Also, paths which
pass near self-motion singularities may produce solutions
¥;(s) which numerically appear discontinuous.

4 Coordinate Pivoting

Asmentioned above, the a gorithmuses another coordinate
to control the path timing in regions where one or more
v’ (s) becomes large.
To formalize thisidea, extend the set of M joint coordi-
nates to include the path parameter s:
9= (791, ..

T —
"ﬁMaﬁM-I—l)) 79]\44—1:5'

Now consider the i-th interval defined by [s;, s;+1]. Let

'"AY = 9(s;i11) — 9(s;) denote the change in ¥ over
the interval, and then determine the coordinate for which
'AY;|/a; isamaximum, where o; isanormalizing fac-
tort. Thisiscalled the driving coordinate for the interval,
and its value will be denoted by the variable .

Withinthe:-thinterval, al other coordinatesare approx-
imated as functionsof «, using cubic Hermiteinterpolation
of ¥ and ¥’ () at the interval endpoints. Interpolation er-
rors are bounded by keeping the knots sufficiently closeto-
gether (Section 5). Endpoint values of 9% (x) can be deter-
mined from

U5 () = U5(s) /' (s). @)

Because « is the coordinate with the largest variation, we
can generally expect that |’ (x)| < 1, providedtheinterval
issmall enough. Thederivativesusedintheright-handside
of (2) arecomputed numerically by taking finitedifferences
between ¥, (s) and ¥; (s + ¢); thisensuresthat all numbers
remain finite even at singularities. Path timing within the
interval is specified using «, with other velocities ¥; de-
fined by J; = ¥/ ().

With respect to Figure 1.A, consider a motion defined
by #(s) = s. Then (ignoring ¥ for the sake of this ex-
ample) ¥, will be the driving coordinate in right and left
neighborhoodsof s = —2 and s = 2, respectively, and
dsoat s = 0 if the chosen ¥ (s) contains a self-motion
discontinuity. The driving coordinate el sawhere will be s.

The process of choosing =, which we call coordinate
pivoting, is central to our algorithm. It is analogousto piv-
oting in matrix computations, where one divides a matrix
row or column by the el ement with largest magnitude.

The following notation will be used in the sequel. The
driving coordinate associated with the i-th interval will be
denoted by ‘z, anditsvaluesat i andi + 1 by ‘z; and ‘z; ;.
Likewise, 'z; and “#; ., will describeiz ati andi + 1. The
changein® and ¥’ (‘z) over theinterval will be denoted by
A9 and A’ withiAx specifically denotingthechangein
‘z. We will dso refer to the average values of 9’ (z) and
9" (‘z) over an interval, respectively represented by

iy — I(wip1) — 9(2;)
o Az

3

and

= _ 9 (zigr) =9 ()

gy : 4
AL (4)

To ensure continuity of velocities, the driving coordi-
nate velocities must match appropriately at the interva

tor; adjusts for comparisons between coordinateswith different units,
Good values are 27 for revolute joints and the workspace diameter for
prismatic joints. For & 5741 = s, o pr41 Canbe set to therange of s.

endpoints. Generally, at any knot 7, if we define C; =
=1/ ('z), then ¥’ (‘z;) will berelated to 9’ (*~'x;) by

O () =9 (Tlay) G ©)

(though thisis not true if ¢ is a corner point; Section 5.1).
Vel ocity continuity then requires that

5 Adding Knot Points

The agorithm begins by adding a sufficient number of
knots adong the path. Starting with an initid set of knots,
more knots are added by recursive bisection until each of
the following conditions are satisfied:

(8 The path error iswithin bounds;

(b) Each |'Ad;| iswithin a prescribed limit;

(c) Each |iA793| iswithin a prescribed limit;

(d) The (interpolated) function s(’z) is monotone.

The conditions will only be summarized here; further
details can be obtained from [12].

Condition (a) ensures that in interpolating ¥ (‘x) across
the interval, we do not deviate from X(s) by more than
some prescribed tolerance. Thisis a standard problem in
path generation, and is handled using the same sort of test
described in [15].

Condition(b) helps ensure that the path solutionwill be
close to minimum-time. Because v; is approximately con-
stant across any interval (by condition (c)), then if |"Ad,]|
istoo large, |7§j| may be unable to reach its maximum A4;
value without violating the velocity constraint ;| < V;.
However, within intervals where ¥, (*z) is monotone and
i, is assumed constant, it can be shown that |4/;| will al-
ways reach A;, for any velocity change whose magnitude
exceeds V; /2, if

ngi <

a0l < g @
Thisisthetest we usually use to bound each |'A4;|.

Condition (c) limitsthe local curvature of each ¥, (‘z),
which is necessary because the agorithm assumes that a
constant ‘& within each interval results in a roughly con-
stant value for ¥;. If Jg; denotestheerrorin 9, (i.e., the
amount it deviates from a constant value), and we assume
that ¥, (‘z) is approximately quadratic over the interval, it
ispossibleto show that | z;] < 4;/2 (i.e, 50% of A;) if
A

AW < 2L
AV < (®)

where A, isthe maximum valuefor |'z|. Sincethe derivar
tionof (8) isfairly conservative, | ;| will usually bemuch
smaller than A; /2.

Condition (d) ensures that by using iz as a driving co-
ordinate we don't reverse direction along the path as an ar-
tifact of interpolating ¥ (‘) withintheinterval. It also en-
sures that %z is of uniform sign within the interval, an as-
sumption used when assigning knot point velocities (Sec-
tion 6).

5.1 Discontinuitiesand corners

The recursive subdivision of intervalsto satisfy conditions
(b) through (d) may fail to terminate if ¥(‘z) contains dis-
continuitiesor corners (i.e., discontinuitiesin 9’ (z)). Fig-
ure lillustratesboth: apossiblediscontinuity at = 0 (de-
pending on the choice of solution branches), and possible
cornersat # = +2, where the main branches meet the arti-
ficid solutions ¥ (s) = = for z < —2 and ¥, (s) = 0 for
x> 2.

If |’As| falls below asmall threshold ¢, and conditions
(c) or (d) are till not satisfied, then the situationis resolved
by declaring knot ¢ and/or knot ¢ + 1 to be a corner. If
knot i isacorner, itimpliesthat ¥’ (‘z;) and 9’ (*~'z;) are
no longer related by (5). Instead, we recompute each sepa-
rately, based on adjacent curve information, according to

9 (') =2 ig - 9 ("rig1)
ﬂ/(i_ll‘i) =2 i_l’l_9/ — ﬂ/(i_ll‘i_l).

If |!’As| fallsbelow ¢, and condition (b) isstill not satis-
fied, then a discontinuity in9(‘z) isassumed. In thiscase,
we linearly interpolate ¥(‘z) across the interval, adding
enough extra knots so asto ensure satisfaction of condition
(b). By construction, the driving coordinate of each inter-
polated knot will still be iz. Usually, when a discontinuity
isdetected, the endpoints: and ¢ + 1 will also turn out to be
corners.

This handling of discontinuitiesis what permits the -
gorithm to function properly at linear self-motion singu-
larities. If the self-motion solution does not form a line
in joint space, then linear interpolation across the discon-
tinuity will result in a motion that wanders off the path. If
such non-linear self-motionsare anticipated, and path devi-
ations unacceptabl e, then the algorithm should be modified
to either abort on discontinuities, or perform an appropri-
ate non-linear interpolation that tracks the self-motion so-
[ution.

6 Velocity Assignment

After the path has been subdivided, the algorithm com-
putes, at each knot, a driving coordinate velocity value 'z;.

Thisisdoneso asto try and produce minimum-timemotion
while closely adhering to the constraints of (1).

Rather than working with driving coordinate velocities
ii directly, it iseasier to compute the coordinate energy ‘e,
defined by ‘e = 1/, ‘2%, Thisis because, as discussed be-
low, the acceleration constraints |v;| < A; imply linear
constraintson ‘e. Notethat ‘e isamathematical energy, not
aphysica one. The coordinate energy values correspond-
ing to the interval endpoint velocitiesz; and ;4 are de-
fined by iei = 1/2 Zl‘ZZ and ieH_l = 1/2 ii‘?_l_l.

To begin, wenotethat if ¢ isacorner point (Section 5.1),
then maintaining velocity continuity requires that 'z; = 0
and therefore ‘e; must be set to 0.

Next, the constraints [¢;| < V; can be satisfied exactly
at each knot ¢ by requiring that

2
: , , 1 :
Zek < ZBk, where sz = —mjn /L .
2 ﬁj(ll‘k) (9)

Betweenknots, i isconstant, resultinginan approximately

constant ¢; (condition (c), Section 5), and so ¥; will stay

roughly between its endpoint values and so closely adhere
Finally, for the constraints |J;| < A;, we start by ob-

serving from basic kinematics that

oo BE =R ey — e

YT T YAy T A (19

Now let z = ‘z. If we assume that ¥, () is approximately
quadratic over the interval, with average values for ¥ (x)

and 9" (x) given by 0, and ', (defined by equations (3)
and (4)), then by the chain rule

. i=l . =l g
U = ﬁjx—l— 79]» x-.

If 22 is replaced with its average value on the interval,
which equals ‘e; 11 + ‘e;, and # is replaced by (10), then
the constraint |;| < A; becomes

ig" 25; i i 25; i

This means that the pair (‘e;, ‘e;11) must lie between two
paralle linesin the’e;-‘e; 1 plane. The intersection of all
such constraints for each j, plus the constraintse; < ®B;
and e; 11 < *B;, implied by (9) and the fact that ‘e; and
‘e; 11 are positive, forms a convex polygona region &; in
thefirst quadrant of the ‘e;-e; .1 plane (Figure 2).

Let ‘e = (%e;,%;41). In determining energies ‘e; for
each knot point, we want to ensure that ‘e € &;, meaning
that the congtraints (1) are approximately satisfied. At the

/

0 2 4 6 8

eyt

Figure2: Region&; inthe‘e;-‘e; 1, plane(shaded gray) formed by the
intersection of velocity and acceleration constraints.

sametime, wewant theresulting motionto be close to mini-
mum time, meaning that ‘e should beassoci ated withamin-
imal interval transit time. Sincethe interva transit timeis
inversely proportional to#; 42, 4 1, it can be minimized by
maximizing F = /%e; + +/"e;+1. |dedlly, then, we would
like ‘e to be close to the point ‘e* = (‘e ‘er, ;) within&;
that maximizes F'. It is easy to show that ‘e* must lie on
the boundary of &;, and so can be found by examining the
edges of &;.

Computing ‘e; isactually more complicated that simply
assigning it the value ‘e;. That is because ‘e; also corre-
spondsto theelement ~e; inthetuple’ ‘e associated with
the previousinterval, and so setting ‘e; := ‘e may conflict
with the requirement *~le € &_,. Consequently, energies
are assigned using a three step procedure;

1. Initialization: Each ‘e; is set to the minimum of ‘e
and the value corresponding to i~ !e? (note that this
may mean ‘e ¢ &). Also, le; and ey are set ac-
cording to initial conditions (typicaly to 0), and ‘e;
isset to 0 at every corner point (to prevent velocity
discontinuities).

2. Forward Pass: A pass is made through the knots,
inincreasing order, which attempts to place each ‘e
within & by reducing thevalueof ‘e; ;.

3. Reverse Pass: Another pass is made through the
knots, in decreasing order, which ensures that each
‘e iswithin & by reducing the value of ‘e;.

It is possible to prove (using arguments contained in
[12]) that at the conclusion of these steps, ‘e € &; for al
knots i. The forward pass has the effect of clipping posi-
tive accel erations, whilethe reverse pass clipsthe negative
accelerations.

In the above discussion, we ignored the fact that inter-
vasi — 1 and ¢ may have different driving coordinates,
meaning that, if 7 is not a corner, ‘e; must be converted to

i—le;, and viceversa, using thevel ocity conversion of equa-
tion (6). In particular, itiseasy to see that

i=le, =, C'Z»2

and e, ="l /CE (11)

Taking such conversionsinto account, the compl ete energy
assignment procedure for K knotsis summarized bel ow:

proc assignEnergies(K) =
fori:=2toK —1do /l'Initializevalues
‘e; := min(*~le} /C2,le})
od

Initialize 'e; and Xex and set ‘e; := 0 at corners
fori:=1toK —1 /I Forward pass
y := max{\: (%e;, \) € &}
ify <'*leip1CFyy
ey = y/0i2+1
fi
od
fori:=K—-1toldo /I Reverse pass
y :=max{\: (A, Tl 1 C) € &)
ify <'e

7 Complexity

For thisanalysis, since¥(s) isan agorithminput, we start
by ignoring inverse kinematic costs and assume that 9(s)
can be determined at any s with a complexity proportional
to the number of joint coordinates M. Then knot cre-
ation, which proceeds by recursive bisection using tests
with complexity proportional to M, has itself a complex-
ity of O(K M), where K isthe number of knots.

Velocity assignment begins by creating a region &; at
each knot. Each &; has O (M) edges, corresponding to A/
velocity and acceleration constraints, and so can be con-
structed in O(M log M) time [16]. The initiaization of
each ‘e; then requires ‘e*, which can be computed by in-
specting each edge of &; and so takes O (M) time. Lastly,
the computation of y in the forward and reverse passes of
assignEnergies() is equivalent to intersecting &£; with aline
segment and so also takes O (M) time.

Thetotal agorithm complexity is thus O (K M log M).
If we also consider inverse kinematic costs, and these have
acomplexity C'(M) greater than M log M, then the total
complexity becomes O(C (M) K).

8 Experiments

The algorithm has been implemented and tested on awide
range of examples for the PUMA and planar 2R robots.

2
s
[
1'92 . A2 v
,, 5
7§3 . A3 v
,,, A
s AP
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Vy
[

Fi gure 3: Motion out to and back from the PUMA workspaceboundary.
Upper plots show & (¢) and 2 (¢) when this motion is done at constant
speed. Lower plots show results after algorithm time scaling has been ap-
plied. By changing configurationsat the singularity, it is possibleto main-
tain a finite joint speed while transiting the singularity, even though the
speed along the path (indicated here by s) is brought to 0.

Two examples are shown here, both of which could not be
handled by our earlier work in [11].

In the first example (Figure 3), the PUMA is driven
along a straight-line path into the outer workspace bound-
ary with the elbow “up”, and then pulled back aong the
same path with the elbow “down”. If done with constant
speed this results in very large spikesin ¢, and d5. Ap-
plication of the agorithm, with V; = 150°/sand A; =
500°/s? for the robot joints, removes these spikes and re-
solves the velocity profiles satisfactorily. Because there is
no sign change in the velocities, it is possible to bound ¥/,
and 3 without bringing them to rest.

2
by Ve
b4
t
A v
st ’,.c,Aa Ny,
Fq] A4 o iy,
$ " ~Ap
VP
t

Figure4: A parabolic motion taking the PUMA to the triple singul arity
near the ready position. Upper plots show ¢ (¢), 92 (¢), and 4 (¢) when
thismotion is done at constant speed. The extremely large spikein 94 is
due to the self-motion at the wrist singularity. Lower plots show results
after algorithm time scaling has been applied.

In the second example (Figure 4) the PUMA is driven
along aparabolictrajectory that bringsit closeto thetriple-
singularity at its “ready” position. Traversing the path at
constant speed results in unmanageable profilesfor 1, v3
and v, (aswell as other joints, not shown). The extremely

large spikes in V4 are due to a pair of discontinuitiesin
Y4(s) resulting from the self-motion wrist singularity. Ap-
plication of the agorithm, with V; = 180°/sand A; =
500°/s? for the robot joints, resolves al the velocity pro-
files satisfactorily.

For both examples, s was equiva ent to the path’s spatial
length. The nominal path speed was s = V; = 400 mn/s,
and the algorithm enforced an acceleration bound of |5] <
A, = 2500 mmV/s’. The path error tolerance was 0.01 mm.
Computations were done on a Sun Ultra SPARC 2 work-
station, capable of about 60 Mflops. The first example re-
quired 68 knotsand took 19.5 msec to compute. The second
example generated 180 knots and took 56.8 msec to com-
pute. All code iswritten in C++ and significant speed im-
provements are still possible.

To hel p gauge performance, thevel ocity plotsassociated
with the algorithm contain dotted horizontal and diagonal
linesindicating V; and A;. Aswell, s isplotted to give an
indication of how the nomina path speed is reduced near
singularities. It will be noted that the constraints(1) arefol -
lowed quitetightly, and that thetrajectoriesare also closeto
minimumtime, as evidenced by thefact that usualy at | east
one coordinate is close to saturation with respect to either
itsvelocity or acceleration constraint.

9 Conclusion

We believethat, fromapractical point of view, the problem
of robust trajectory generation al ong fixed paths containing
singularitiesisnow closeto being solved. Further study of
computational issues, alongwith accuracies and tol erances,
would be useful. The algorithm should aso be extended
to handle non-linear self-motions. Also, at present we do
not consider the computation of 9(s) to be part of the a go-
rithm; this should be changed so as to integrate Jacobian-
based computation of 99(s) with the knot selection process.

It should be noted that the agorithm produces a near
minimum-timetrajectory for afixed input9(s). No attempt
ispresently made to improvethetiming by modifying 9(s)
(such as by changing branch sdlections at singularities), a-
though such abilities could certainly be introduced.

Our agorithm relies on the idea of coordinate pivoting,
in which the coordinate « with the steepest derivative is
used locally to control the path timing. All other coordi-
nates then have well-behaved derivativeswith respect to z,
which makes computation and analysisconsiderably easier.
In particular, it alowsusto do path vel ocity assignment us-
ing the convex polygonal region &;, whereas the equivalent
region in our earlier work [11] was formed by intersecting
hyperbolas, and therefore much more tediousto work with.

By providing a more general definition of &;, it should
be possible to take into account the manipulator’s dynam-
ics, thereby allowingthisalgorithmto also be applied tothe
general time-optimal path-following problem.

References

[1] C.W.Wampler Il and L. J. Leifer, “ Applications of damped
least-squares methods to resolved-rate and resolved-
acceleration control of manipulators,” Transactions of the
ASME: Journal of Dynamic Systems, Measurement, and
Control, vol. 110, pp. 31-38, Mar. 1988.

[2] A.A.Macigjewski andC. A. Klein, “Thesingular value de-
composition: Computation and applicationstorobotics,” In-
ternational Journal of RoboticsResearch, vol. 8, pp. 63—79,
Dec. 1989.

[3] S. Chiaverini, B. Siciliano, and O. Egeland, “Review of
the damped least-squares inverse kinematics with experi-
ments on an industrial robot manipulator,” IEEE Transac-
tions on Control Systems Technology, vol. 2, pp. 123-134,
June 1994.

[4] L. Nielsen, C. C. deWit, and P. Hagander, “ Controllability
issues of robots near singular configurations,” in Advances
in Robot Kinematics, 2nd International Workshop, (Linz,
Austria), pp. 283-290, Sept.10-12 1990.

[5] J.Kieffer, “ Differential analysisof bifurcations and isolated
singularities for robots and mechanisms,” |IEEE Transac-
tions on Robotics and Automation, vol. RA-10, pp. 1-10,
Feb. 1994.

[6] C. Chevallereau, “Feasibletrajectories for a non redundant
robot at a singularity,” in Proceedingsof the |EEE Interna-
tional Conferenceon Robotics and Automation, (Minneapo-
lis, Minnesota), pp. 1871-1876, Apr. 1996.

[7] D. N. Nenchev, Y. Tsumaki, M. Uchiyama, V. Senft, and
G. Hirzinger, “ Two approachesto singularity-consistent mo-
tion of nonredundant robotic mechanisms,” in Proceedings
of the |EEE International Conference on Robotics and Au-
tomation, (Minneapolis, Minnesota), pp. 1883—1890, Apr.
1996.

[8] K. A. O'NEeil, Y. C. Cheng, and J. Seng, “Desingulariza-
tion of resolved motion rate control of mechanisms,” in Pro-
ceedings of the |EEE International Conferenceon Robotics
and Automation, (Minneapolis, Minnesota), pp. 3147-3154,
Apr. 1996.

[9] K. G. Shin and N. D. McKay, “Minimum-time control
of robotic manipulators with geometric path constraints,”
IEEE Transactions on Automatic Control, vol. AC-30,
pp. 531-541, June 1985.

[10] J-J. Slotine and H. S. Yang, “Improving the efficiency of
time-optimal path-following algorithms,” IEEE Transac-
tions on Roboticsand Automation, vol. RA-5, pp. 118-124,
Feb. 1989.

[11] J. E. Lloyd and V. Hayward, “A discrete algorithm for
fixed-path trajectory generation at kinematic singularities,”
in Proceedings of the IEEE International Conference
on Robotics and Automation, (Minneapolis, Minnesota),
pp. 2743-2748, Apr. 1996.

[12] J. E. Lloyd, “Singularity-robust trajectory genera-
tion for robotic manipulators,” Tech. Rep. 98-02,
Department of Computer Science, University of
British Columbia, 201-2366 Main Mall, Vancou-
ver, Canada, V6T 174, Mar. 1998. Available from
http://www.cs.ubc.ca/spider/lloyd/papers/singrob.ps.Z.

[13] J.Bobrow, S. Dubowsky, and J. Gibson, “ Time-optimal con-
trol of robotic manipulators along specified paths,” Interna-
tional Journal of Robotics Research, vol. 4, pp. 3-17, Fall
1985.

[14] K. G. shin and N. D. McKay, “Minimun time tragjec-
tory planning for industrial robots with general troque con-
straints,” in Proceedingsof the |EEE International Confer-
ence on Robotics and Automation, (San Fransisco, Califor-
nia), pp. 412-417, Apr.7-10 1986.

[15] R. H. Taylor, “Planning and execution of straight line ma-
nipulator trajectories,” IBM Journal of Researchand Devel-
opment, vol. 23, pp. 424-436, 1979.

[16] F. P.Preparataand M. I. Shamos, Computational Geometry.
An Introduction. Springer-Verlag, New York, 1985.

