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Abstract

We present an anytime algorithm which com-
putes policies for decision problems represented
as multi-stage influence diagrams. Our algo-
rithm constructs policies incrementally, starting
from a policy which makes no use of the avail-
able information. The incremental process con-
structs policies which includes more of the infor-
mation available to the decision maker at each
step. While the process converges to the opti-
mal policy, our approach is designed for situa-
tions in which computing the optimal policy is in-
feasible. We provide examples of the process on
several large decision problems, showing that, for
these examples, the process constructs valuable
(but sub-optimal) policies before the optimal pol-
icy would be available by traditional methods.

1 INTRODUCTION

The representational tools which decision analysts and
AI practitioners have devised can represent large deci-
sion problems. When costs of computation are not taken
into account, optimal policies can be determined using dy-
namic programming [Howard & Matheson, 1984; Shachter,
1986]. When the costs of computation are not negligible,
the cost of computing the optimal policy using dynamic
programming may be prohibitive.

We have developed an algorithm which can be used to com-
pute policies for large multi-stage decision problems un-
der uncertainty represented as influence diagrams. Our ap-
proach is incremental, and uses abstraction. The algorithm
is sufficiently general to make use of existing tools for prob-
abilistic reasoning, and has already provided reasonably
valuable (but non-optimal) policies for influence diagrams
with about

�����
states.

The algorithm is an extension of the iterative refinement
technique presented in [Horsch & Poole, 1996], applied to

multi-stage influence diagrams. The refinement is applied
to the decision nodes in random access ordering (as op-
posed to the sequential ordering of dynamic programming).

This paper is organized as follows. First we briefly discuss
influence diagrams and the decision tree representation of
decision functions. Section 2 presents the random access
algorithm. Empirical results are presented in Section 3.

1.1 INFLUENCE DIAGRAMS

An influence diagram (ID) is a DAG representing a sequen-
tial decision problem under uncertainty [Howard & Math-
eson, 1984]. An ID models the subjective beliefs, prefer-
ences, and available actions from the perspective of a single
decision maker.

Nodes in an ID are of three types. Random variables, which
the decision maker cannot control, are represented by circle
shaped chance nodes. Decisions, i.e., sets of mutually ex-
clusive actions which the decision maker can take, are rep-
resented by square shaped decision nodes. The set of out-
comes (or actions) which can be taken by a chance node �
(or decision node � ) is specified by �	� (or �	
 ).

The diamond shaped value node represents the decision
maker’s preferences in the form of a value function.

Arcs represent dependencies. A chance node is condition-
ally independent of its non-descendants given its direct pre-
decessors. The direct predecessors of a decision node will
be called information predecessors; a value for each of
these predecessors will be observed before an action must
be taken. The decision maker’s preferences are expressed
as a function of the value node’s direct predecessors. The
set of a node’s direct predecessors is specified by � sub-
scripted by the node’s label.

Dependencies are accompanied by numerical information.
There is a conditional probability table associated with ev-
ery chance node in the form ������ ����� (unconditional, if it
has no predecessors). The value node � has an associated
value function, �����	������� , which may be represented
as a table.
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Figure 1: The Car Buyer Problem, expressed as an influ-
ence diagram [Smith, Holtzman, & Matheson, 1993].

A policy prescribes an action (or sequence of actions, if
there are several decision nodes) for each possible combi-
nation of outcomes of its information predecessors. The set
�	�! is the set of all possible combinations of values for de-
cision node � ’s information predecessors. An element in
this set will be called an information state. A decision func-
tion for decision node � is a mapping "#�$�	�! ��%� 
 . A
policy for an ID is a set &('*)+"-,/.10	'(24353+37698 of decision
functions, one for each decision node.

An optimal policy maximizes the decision maker’s ex-
pected value, without regard to the cost of finding such a
policy. If computational costs are not negligible, the deci-
sion maker’s expected value might be maximized by a pol-
icy which is not optimal in this sense.

For example, the ID in Figure 1 represents the problem of
deciding whether or not to buy a particular car. The decision
maker has the option of performing a number of tests to var-
ious components of the car. The results of these tests will
provide information to the decision to buy the car. The ac-
tual condition of the car is not observable directly at the time
the decision maker must act, but influences the final value
of the transaction. A policy for this problem would indicate
which tests to do under which circumstances, as well as a
prescription to buy the car (or not) given the results of the
tests. Due to space constraints, none of the numerical data
required to complete the specification of this problem is
shown; this information can be found in [Qi & Poole, 1995;
Smith, Holtzman, & Matheson, 1993].

In this paper, IDs are assumed to have chance and decision
nodes with a finite number of discrete values. Furthermore,
we limit the discussion to IDs with a single value node.
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Figure 2: A policy for the influence diagram in Figure 1.
There are three decision trees, one for each decision node:
Test 1, Test 2 and Buy Car?.

1.2 DECISION TREES

Let � be a decision node in an ID. A decision tree : for
� is either a leaf labelled by an action ;+<>=?� 
 or a non-
leaf node labelled with some �@=A� 
 . Each non-leaf has
a child decision tree for every value B$CA=D� � . An infor-
mation predecessor �E=F��
 appears at most once in any
path from the root to a leaf. Each vertex � in a decision tree
has a context, G�� , defined to be the conjunction of variable
assignments on the path from the root of the tree to � . The
action at the leaf represents the action to be taken in the con-
text of the leaf. Given an information state HI=J�	�! , there
is a corresponding path through a decision tree for ; , start-
ing at the root leading to a leaf, which is labelled with the
prescribed action to be taken in when H is observed.

Note that the context of an action need not contain an as-
signment for every variable in ��
 . In this case, the in-
formation has not been used in the decision function, even
though it is available to the decision maker. In such a situ-
ation, a context is said to cover a set of information states.

A decision tree represents a decision function. We will refer
to the action prescribed by a decision function by "$KH�� for
information state H , or by ;ML if N is a leaf on a given decision
tree.



Figure 2 shows three decision trees, one tree for each de-
cision node in the Car Buyer problem (Figure 1). The de-
cision tree for Test 1 is a single leaf, which tells the
decision maker to perform the test on the transmission.
Since there are no information predecessors for this deci-
sion node, this decision tree is complete.

The decision tree for Test 2 tells the decision maker not
to perform the test. Note that this decision node has 2 in-
formation predecessors. The decision tree does not make
use of the available information; every information state is
mapped to the action no test.

The decision tree for Buy Car? is a non-trivial tree, using
two of four information predecessors. This decision func-
tion tells the decision maker to check the result from the first
test: if there is no result or if there are no defects, the deci-
sion maker is directed to buy the car. If the result of Test
1 indicates one defect, the decision function uses the infor-
mation from the previous decision Test 2. If the decision
to take the second test had been made, the decision maker
should buy the car; if the decision maker did not have the
second test performed, the car should be bought with a guar-
antee.

Note that not all of the information is used. A policy which
used all of the available information naively would have 96
leaf vertices for Buy Car?; many of these would be log-
ically impossible due to the asymmetries of the problem.
The problem is well known for its asymmetry, and the op-
timal policy can be represented by decision trees very suc-
cinctly.

1.3 THE SINGLE STAGE ALGORITHM

The single stage information refinement algorithm con-
structs a decision tree for a influence diagram with a sin-
gle decision node. The following description is a brief syn-
opsis. The algorithm has been described in more detail in
[Horsch & Poole, 1996], and is similar to algorithms de-
scribed in [Heckerman, Breese, & Horvitz, 1989; Lehner &
Sadigh, 1993].

For a given leaf N in a decision tree, its context G L is exten-
sible if it does not contain all the information variables. We
refer to the information variables which are not in the con-
text as possible extensions, writing O+L . A decision tree P can
be extended if there is a leaf with an extensible context; oth-
erwise, the tree is called complete.

The single stage algorithm can be summarized as follows:
A decision tree is extended by removing an extensible leaf
N having context G L . This leaf is replaced with new a vertex
�Q=IO L . The new vertex � is given a new leaf for every
value B < =R�	� . Each leaf has a context G < which is the
assignment of values ���'�B�<���STGML . Each leaf out of �
will be labelled with an action ;+<#=U� 
 . The action ;+< is
the action which maximizes the expected utility in the new

context G+<V'R��W'DB�<M�!S>G�L (this action will be called the
MEV action for the leaf). The initial tree has one leaf, which
is the MEV action to be taken in the empty context.

Other refinement operators are possible. For example, an
extension might generate a branch for a particular value of
� , and summarize the remaining values in a single branch.
Determining how and when to use this kind of operator is
an avenue for future research.

The sequence of trees created by the procedure is monoton-
ically non-decreasing in expected value. However, the pro-
cedure is myopic; there is no guarantee that the expected
value will increase with every extension of the tree.

Ideally, an algorithm would choose the extension which
maximizes the increase in expected value. The increase in
expected value due to a myopic extension can only be de-
termined after the extension has been made. Furthermore,
the best extension for a given decision tree can only be de-
termined by extending all the leaf vertices in the tree, and
looking at their respective effect on the value of the deci-
sion tree.

We use heuristics to avoid computing all myopic extensions
for the decision tree. The problem of making the next ex-
tension is separated into two parts: the heuristic choice of a
leaf, and the strategic choice of an extension for a particular
leaf. These tasks are orthogonal [Horsch & Poole, 1996].

We have implemented several heuristics to indicate which
leaf to extend. These heuristics are based on domain in-
formation available in the influence diagram in terms of
probability and expected value. For example, one heuristic
chooses to extend the leaf whose context has highest proba-
bility. With this heuristic, the most likely situations are ex-
plored first. Another of our heuristics looks at the expected
value of the possible actions at the leaf; this heuristic or-
ders leaf vertices according to the value of the runner up
to the MEV action at every leaf. This is called the second
best action heuristic, and is based on the intuition that if the
value of the second best action is high, it must be close to
the value of the best action. In this case, it seems reasonable
to explore the context further, since the context may be cov-
ering more refined contexts in which the respective actions
are very different in value.

Given that a particular leaf has been chosen to be refined,
an extension must be chosen for the leaf. There are several
strategies which could be used to select one of the possible
extensions. For example, a possible extension can be se-
lected at random. The strategy which selects the extension
which maximizes the increase in expected utility is called
the maximal extension strategy. We have also implemented
a greedy strategy which chooses the first extension it can
find which increases the value of the policy. These strate-
gies and heuristics are discussed in more detail in [Horsch,
1998].



2 RANDOM ACCESS REFINEMENT: AN
ANYTIME ALGORITHM

In this section, we present an anytime algorithm for com-
puting policies for multi-stage influence diagrams. A pol-
icy is represented by a collection of decision trees, one for
each decision node in the influence diagram. As in Sec-
tion 1.3, these decision trees prescribe actions for contexts
which may not make use of all the information available to
the decision maker. The policy is refined by choosing a leaf
from one of these trees and applying a single refinement to
the leaf, keeping the rest of the policy fixed.

There is no a priori order in which the trees are refined,
which is a departure from standard dynamic programming
techniques for building an optimal policy. Furthermore, our
algorithm always has a policy available, refining it as until
the decision maker interrupts the process to act.

While the high level outline of the process is simple, two
complications arise in the details. The first is that a de-
terministic decision tree (as described in Section 1.2) is
an inappropriate representation for a decision function in a
multi-stage policy which is being refined. The second com-
plication is that for multi–stage decision problems, the re-
finement may have ramifications for the global policy. Nei-
ther of these complications occur for single-stage problems.
We describe these complications and our solutions before
we present the complete algorithm.

2.1 STOCHASTIC DECISION FUNCTIONS

When the decision maker has to act, an unambiguous policy
must be available. In single stage problems, an unambigu-
ous policy is represented by a deterministic decision tree.
However, during deliberation of multi-stage decision prob-
lems, a deterministic decision tree is not a suitable represen-
tation of the decision function. Here we describe the prob-
lem, and our solution.

The refinement process splits contexts on information pre-
decessors. Consider the situation in which the decision tree
for � C is being refined by splitting on a previous decision
�X, . Suppose that there are already a decision functions for
�X, and ��C , and that both are represented as a deterministic
decision tree. The split on ��, will not increase the expected
value of the decision function for ��C , since all but one of
the possibilities for �X, would be ruled out by the decision
function for � , . The split is still possible, but will have zero
effect on the value of the whole policy.

For example, consider Figure 2. If Test 2 were added to
the decision function for Buy Car? after the algorithm
determined that no test should be performed at Test
2, splitting on Test 2 could not have increased the ex-
pected value of the policy. In effect, a deterministic deci-
sion function is too committed for the purposes of refining

the policy.

To solve this problem, the existing policy can be treated as
a stochastic mapping from information state to action. For
each context, each available action has an associated proba-
bility, representing the belief that future refinement will en-
dorse the action as best in all more refined contexts. This
belief is computed by reasoning by cases:

��K;�,1� GY�Z'�[Y\-,Y]U^2`_a[Y�^bc,
In this expression, [ is the probability that no further refine-
ment will occur after the current refinement step (with prob-
ability 29_V[ , further refinements will occur); \ , is the prob-
ability that action ;�, will be taken if refinement stops imme-
diately ( \�,!'d2�3fe if action ;M, is the MEV action in the given
context, and e$3fe otherwise); bg, is the probability that ac-
tion ;M, will be taken in any future context derived from the
given context.

The parameters [ and b , are assessed by meta-level con-
siderations. We argue that b , should be close to unity if
the expected value of action ; , is relatively high, and close
to zero if the expected value is relatively low: one way to
realize this intuition is to use b ,ZhDi K; , � GY� where i j; , � GY�
is the expected value of action ;�, in context G .

The choice of [ is subject to fine tuning (similar to the case
of the learning rate in other machine learning algorithms).
We argue that [ should increase as the policy is refined. In-
formal experiments indicate that there is a compromise to
be made in increasing the value of [ . If [ is increased too
slowly or too quickly, the refinement process fails to inves-
tigate worthwhile contexts.

A stochastic decision tree represents the incomplete deci-
sion functions during the random access refinement pro-
cess. It differs from the decision trees discussed in Sec-
tion 1.2 only at the leaf vertices. Instead of a single action
(the MEV action), the stochastic decision tree labels the leaf
N with a probability distribution over the actions ;#=A�	
Zk ,
��K;l� G L � .
When the refinement process halts, the uncertainty over ac-
tion in a given context is resolved by setting [m'd2�3fe .
2.2 THE GLOBAL EFFECTS OF LOCAL

REFINEMENT

The second complication is that the refinement process has
global effects. For the purpose of refining a particular con-
text G within a decision tree, we assume the remainder of
the policy remains fixed. The decision function prescribes
an action ; for context G already, and the refinement of G
may indicate that actions different from ; are better for the
new contexts derived from G 1 The change in the decision

1For refinements to have a positive effect on expected value,
a refinement needs to indicate different actions for different con-
texts.



function may cause changes to the probability of events af-
ter the stage; as well, the change in the decision function
may change the expected value of earlier decisions.

The changes must be reflected in the decision functions.
The expected value of each leaf must be recomputed (we
store the expected value at the leaf of the decision tree). As
well, we store in our decision trees the probability of each
vertex in every context, given the information which pre-
cedes it (from the root). These are recomputed as well.

For each internal vertex in all decision trees which follow
�X, , we need to recompute the posterior probability of the
chance node. These can be computed most efficiently us-
ing a depth first traversal of each tree, working from �X,on �
forwards. We observe that changing these probabilities will
also have an effect on the expected value of the policy, mag-
nifying the effects of refinement at �X, .
After the posterior probabilities have been updated, the ex-
pected value of the leaf vertices needs to be recomputed.
These are computed starting with the decision tree �Xp , and
working backwards to � � . For each leaf N , we need to con-
dition on its context, and recompute the value of action ;M,
in context G�L .

2.3 COMPUTING EXPECTED VALUE

To compute expected value, we convert the influence di-
agram to a Bayesian network, as described in [Shachter
& Peot, 1992; Horsch & Poole, 1996]. Briefly, the value
node is converted to a chance node; its conditional prob-
ability table represents the normalized value function and
its complement. We represent decision nodes by chance
nodes as well. Initially, the arcs into decision–chance node
are dropped, and it is given a uniform probability distribu-
tion. When a decision tree is refined, an arc is added in
the network if the decision function becomes dependent on
an information predecessor. The decision function is in-
stalled into the Bayesian network by constructing a condi-
tional probability table consistent with the stochastic deci-
sion function and ��j�J� G�LK� at each leaf N .
Using this transformation, expected utility can be computed
by making a query to the network. The query ��j�J� qrG��
gives MEV action for decision node � a given context,
where q is the value of the utility–chance node � . Note that
G must be consistent with q before this query is made; in
our implementation, we check that ��jqY� GY� is non-zero be-
fore we query for the MEV action. To find the expected
value of an action ; in a given context G , we make the query
��s�g� ;MG�� . As a result, each time a MEV action is computed,
3 queries are made to the network.

procedure Random Access Refinement
Input:

Multi-stage influence diagram with decision nodest�u1v1w-w1w1v^tyx
Output:

Policy zU{A|�} u�v/w1w1w1v } xM~ , a set of decision trees

For each
ty�

, initialize } � as a single leaf
Do |

Choose an extensible decision tree } �
Choose a leaf from } �
Replace the leaf with an extension
Install the modified decision function
Update the global policy~
Until (stopping criteria are met or policy is complete)

Return the policy

Figure 3: The random access refinement algorithm.

2.4 THE RANDOM ACCESS REFINEMENT
ALGORITHM

The high level description of the algorithm is given in Fig-
ure 3. The algorithm is discussed briefly step by step.

Initialization: The initialization process considers each
decision node in order ��p!.+3+3531.1� � . For each decision
node, the probability distribution �cj� , � is determined for
the empty context. This step requires three queries to the
Bayesian network for each decision node.

Choosing a decision function to refine: We maintain a
priority queue of extensible leaf vertices, ordered by heuris-
tic value. The queue contains pairs j�X,/.�Nj� where ��, is a
decision node, and N is a leaf on the decision tree for �X, .
Thus, the heuristic value assigned to a leaf determines not
only the order in which the leaf vertices for a single tree are
extended, but also the the order in which the decision func-
tions are refined. As a result, decision functions are refined
in order of the heuristic importance of the refinement, rather
than a predetermined sequence. The heuristics discussed in
Section 1.3 can be used for this dual purpose.

Extending a given leaf: As in the single stage algorithm,
an extension is chosen for a given leaf. This can be done by
one of the strategies described briefly in Section 1.3.

Updating the global policy: Each decision tree
�X,on � .+353+31./� p has its observation probabilities updated:
for each vertex � , recompute ������ G � � . The chance
node representing the decision in the Bayesian network is
changed to match the update.

Each decision tree ��p9.53+3531.1� � has its expected value up-
dated. For each leaf vertex, a single query for ��j�J� q�GY� will
provide a vector of b , values, from which we can compute
��K� , � G�� as in Section 2.1. The query ��s�g� ;��1G�� will give
the expected value of the best action. Finally, the chance
node representing the decision in the Bayesian network is
changed to match the update.



2.5 COMPLEXITY

We can analyze the cost of this procedure as follows. Sup-
pose a decision node has 6 information predecessors, each
with at most � values. To find a maximal extension for a
single leaf requires �cK��j6>_?���^� expected value computa-
tions, where � is the number of internal vertices already in
the context for the leaf.

An update of the global policy requires one computation of
posterior probability for each internal vertex and 2 expected
value computations for each leaf. In the worst case all the
stages have probabilities and expected values updated. The
total number of leaf nodes on all the trees is �g^j�9_�2+�^�D]
�c� , where � is the number of refinements which have been
made in total, and � is the number of decision nodes in the
influence diagram. The total number of internal vertices in
all the decision trees is �c^K�Z_F25����]F�c� .
Each computation of expected value is equivalent to a query
in a Bayesian network [Shachter & Peot, 1992]. Thus, the
total cost, in terms of the number of queries to a Bayesian
network, of the a single refinement and update is �cK��j6>_
�$��]F�$�j�4_?2+�^�R]F�c�^� .
In the worst case, the procedure requires �cK� p n � � queries
just for the refinements for a complete policy. In the worst
case, the updates after each refinement add �cK�-� p � total
queries updating the policy after each refinement. This is
substantially more effort than is required by an exhaustive
enumeration of the state space; however, for large state
spaces, a policy is available for use by the decision maker
with much smaller cost than the limit of a complete policy.

The next section applies the random access refinement algo-
rithm to some large decision problems, demonstrating that
the process constructs valuable policies at a fraction of the
cost of computing the optimal policy using exhaustive enu-
meration.

3 EMPIRICAL RESULTS

The random access refinement process is intended to find
valuable policies with a relatively small investment of com-
putational resources. A number of large influence diagrams
were constructed to demonstrate that the algorithm does
achieve this intention. The influence diagrams are identi-
cal in topology, but the conditional probabilities vary. The
problems have a real interpretation, in contrast to randomly
generated problems. The purpose of running the algorithm
on slightly varying problems is to demonstrate the effect of
variations in the problem on the performance of the algo-
rithm.

NS

WS

Action

Y

X

ES

SS

New Y

New X

Figure 4: A influence diagram fragment, showing a single
stage for variations of the maze walker problem. The prob-
lems solved in this paper iterate this structure ten times.

3.1 THE PROBLEMS

The decision problems are based on the model of an agent
traversing a maze. The mazes consist of walls and open
space, and are represented by square tiles whose size corre-
spond to the agent’s single step. The agent has five available
actions: it can move a single step in any of the four compass
directions N, S, E, W, or stay in place. The agent has four
sensors NS, ES, SS, WS, one in each compass direction.

The agent can only detect walls (with or without noise); the
agent’s position is not directly observable. The goal of the
agent is to arrive at a specified location in the maze.

The problem of choosing an action can be represented by
an influence diagram; the representation imposes a finite
structure on the problem, namely that the agent is limited
to a fixed number of actions. A single stage is shown
in Figure 4. The four sensors are directly connected to
the decision node. The two state variables affect the sen-
sors directly, but are themselves not directly observable by
the agent. In principle, the single stage can be repeated
any number of times; no-forgetting arcs connect the maze
walker’s previous sensors and actions to the the current ac-
tion. In the figure, the no-forgetting arcs have not been
drawn.

The probabilistic information required by this influ-
ence diagram forms the agent model. Sensors can be
modelled with the conditional probability distributions
��K�J��� �J.��c� , etc. Actuators can be modelled by the con-
ditional probability distributions ��K�J�5H`��� �J.���.��y�/P/0j��6��
and ��K�J�5H`��� �J.���.��y��P/0K��6�.1�J�5H`�V� .
Four agent models were used in this test. These correspond
to two sensor models: perfect and noisy; and two actuator
models: perfect and noisy. The perfect sensors always de-
tect a wall when there is one, and never detect a wall when
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Figure 5: The mazes for the maze walker problem. The
shaded tiles are obstacles, and there are walls around the
perimeter of the maze.

there isn’t one. The noisy sensor model has probability e$3f�
that a wall is correctly detected, and e�3 eM� that a wall is de-
tected when no wall is there. The perfect actuators always
put the agent in the correct square for a given action. The
noisy actuator model depends on adjacent walls and obsta-
cles. The agent ends up in the right place for a given action
with a probability of about 0.89, and with probability about
0.089, the agent fails to move. The noisy actuator has a very
small probability (about 0.01) of moving to an incorrect ad-
jacent square.

The value function is not shown in the ID fragment. It de-
pends only on the position of the agent in the final stage,
and puts full value (1.0) on being at the goal, and zero else-
where.

The mazes used in our experiments are shown in Figure 5
(Maze 1 is an example from [Littman, Cassandra, & Kael-
bling, 1995]). In our experiments, the agent is allowed ten
stages to reach the goal, which makes it possible to reach
the goal from each starting position. Using 10 stages, the
tenth decision node has 49 direct predecessors.

Maze 1 has a simple policy which guides the perfect agent
to the goal from each possible starting position. The policy
guides the agent south whenever possible, or otherwise east
whenever possible. If neither south nor east is possible, the
agent moves west, if possible, and otherwise stays in place.
This decision function is repeated for the first 8 stages. The
final two steps of the policy direct the agent north one step
and east one step. This policy has an expected value of 1.0,
and can be represented by 8 decision trees which use 3 in-
ternal vertices each, followed by two decision trees which
need no internal vertices.

Maze 2 has an ambiguity which cannot be resolved by fol-
lowing a path to the goal. An optimal policy can guide the
perfect agent to the goal position from 24 of the 25 start-
ing positions of this maze, for a maximum expected value
of 0.96. We estimate that an optimal policy for the perfect
agent in this maze can be represented by 10 decision trees
using a total of about 30 internal vertices.

We do not have optimal policies for Mazes 3 and 4, but all
the ambiguities in these mazes can be resolved along a path
to the goal, i.e., there exist policies which guide the perfect
agent to the goal from all starting positions; these policies
have expected value of 1.0. We estimate that the optimal
policies can be represented by 10 decision trees using be-
tween 20 and 30 internal vertices in total.

The optimal policies for the agents with imperfect sensors
or actuators are unknown; the value of the optimal policy
depends in part on the difficulty of the maze.

3.2 THE RESULTS

The random access refinement algorithm was applied to
these problems. The second best action heuristic was used
to select leaf vertices to extend, and the maximal extension
strategy was used to extend each leaf. The algorithm had
20 extensions in total allocated for each problem. Note that
this resource limit excludes the optimal policy for all the
mazes. The average run time on a SPARC Ultra-2 for these
problems was 73 minutes.

Figure 6 shows 4 datasets, corresponding to the variations
of the agent model navigating Maze 1. The x-axis measures
computational costs, in terms of the number of posterior
probabilities and expected values computed (queries to the
Bayesian network). The y-axis measures expected value of
each policy. Each point on a curve represents the value of a
policy in the sequence of policies constructed by the algo-
rithm. The first policy is the same for each of the problems,
and represents the value of acting randomly before any de-
liberation has occurred.

For the perfect agent, the algorithm does not find the op-
timal policy using the allotted resources, but levels off at
an expected value of 0.869565 after 2280 steps. The policy
guides the agent to the goal from 20 of the 23 starting po-
sitions. This is roughly what one might expect, given that
the optimal policy uses 24 internal vertices, and the algo-
rithm was given resources to include only 20 internal ver-
tices. The error here is 13% from optimal. We do not cur-
rently know whether the refinement process will find an op-
timal policy in reasonable time.

The curves in Figure 6 give an indication of how the con-
ditional probabilities underlying the agent model affect the
performance profile. When the probabilities are very sharp,
and a few states contain most of the probability mass (as in
the case of the perfect agent), the increases tend to be steep
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Figure 6: The performance of the random access refinement algorithm using various agent models for the Maze Walker
problem (Maze 1).

and plateaus are common. As the probability mass of is dis-
tributed over many more states (as in the agent with noisy
sensors and noisy actuators), the increases tend to be less
steep, and the plateaus shorter. These curves are typical.

Table 1 summarizes the performance of the various agents
in the various mazes. The error for the perfect agent for all
four mazes is 13%, 20%, 30% and 9%, respectively. For
comparison, exhaustive enumeration would require more
than

���1�
queries to compute complete policies. 2

For some of the agent models, the algorithm produces poli-
cies which decrease in value (for example, in the range of 0
to 500 queries in Figure 6). This behaviour is the result of
making a local refinement when the commitment to the cur-
rent policy is weak. The refinement takes advantage of the
relatively high probability of a non-MEV action. When the
effects of the refinement are made global, the non-MEV ac-
tion drops in probability,and any action which was based on
the non-MEV action will drop in value. This drop in value
is temporary, and further refinement, stronger commitment,
and global updates correct for the decrease.

The curve for the agent with noisy actuators and perfect sen-
sors also shows slight decreases in expected value in the
range of 3500 to 5500 steps, followed by slight increases.
This decrease has the same explanation as the more dra-
matic decreases observable earlier in the sequence. The ef-

2To get an idea of the scale of this number: the figure is about
10 cm wide; at this scale, ���7� queries is approximately 15 light-
hours to the right. It would take about 23 billion years to compute
according to the average reported above.

fect is smaller since the commitment to the MEV action is
stronger.

Also of note is the fact that the algorithm is able to find a
policy for the agent with noisy actuators and perfect sensors
which exceeds the value of the best policy for the perfect
agent. This behavior is due to the heuristics used by the al-
gorithm. In the case of the perfect agent, the heuristic chose
to examine a certain set of contexts first. The noisy actua-
tors in the other agent gave a different heuristic value to the
contexts.

Some of the variations on the Maze Walker have a rela-
tively large number of impossible information states; poli-
cies which summarize a large subspace of the information
set can exploit these asymmetries, by not refining impossi-
ble contexts. Furthermore, if there is a subset of information
states which cover most of the probability mass, it is possi-
ble to summarize a large portion of the state space by exam-
ining the most likely observations. Druzdzel [1994] argues
that it is common for a few states to cover a large portion
of the total probability mass in a joint probability distribu-
tion. Thus it seems reasonable to expect that policies which
contain a small number of contexts will achieve fairly high
value. The data presented in this paper support this expec-
tation.

Finally, it is important to acknowledge that the space of IDs
is very large, and the set of problems treated in this section
is a small sample from a highly restricted subclass of IDs.
The evidence in this section suggests that there exist large
problems for which random access refinement can find poli-



Agent Model Best
Sensor/Actuator Policy Steps
Perfect/Perfect 0.8696 2280
Perfect/Noisy 0.8874 6236
Noisy/Perfect 0.7767 6374
Noisy/Noisy 0.7045 6474

Agent Model Best
Sensor/Actuator Policy Steps
Perfect/Perfect 0.7692 4962
Perfect/Noisy 0.5159 5355
Noisy/Perfect 0.5887 5838
Noisy/Noisy 0.4703 5775

Maze 1 Maze 2

Agent Model Best
Sensor/Actuator Policy Steps
Perfect/Perfect 0.7037 4522
Perfect/Noisy 0.5452 5581
Noisy/Perfect 0.6169 6079
Noisy/Noisy 0.4933 5799

Agent Model Best
Sensor/Actuator Policy Steps
Perfect/Perfect 0.9130 4564
Perfect/Noisy 0.6511 6219
Noisy/Perfect 0.6760 5319
Noisy/Noisy 0.6270 6162

Maze 3 Maze 4

Table 1: A summary of the best policies found by the random access refinement algorithm applied to several large decision
problems. The optimal policy for the perfect agents is known to have expected value 1.0 for mazes 1, 3 and 4, and 0.96 for
maze 2. The optimal policy for these problems could be computed using dynamic programming, requiring about

�M�1�
steps.

cies which are reasonably valuable policies using reason-
able amounts of computational resources. These problems
are too large to solve using traditional methods.

4 RELATED WORK

The information refinement approach is closely related
to learning classification trees in machine learning (e.g.,
[Quinlan, 1986]). Heckerman et al.[1989] discusses an
algorithm which constructs policies in a similar manner.
Their interest is in representing a policy which can be used
effectively by the decision maker on-line. The costs of
building the decision tree are not taken into account; the
costs of using the decision tree are compared to the cost of
other on–line approaches.

Lehner and Sadigh [1993] also discusses the issue of com-
piling a decision problem into a situation-action tree. They
do not emphasize computational cost; their goal is to take
a complex problem and create rules for use by human de-
cision makers. They determine the best decision tree of a
certain size, regardless of the cost of computing them.

Zhang & Boerlage [1995] simplify decision problems by
removing inconsistent information states and “insignificant
details” before constructing a policy for the problem. The
significance of the details in the information state is mea-
sured in terms of the effects of the information state on the
posterior probabilities of (unobservable) state variables.

Horvitz and Klein [1993] describe a decision theoretic ap-
proach to categorization based on utility. By aggregating
states with similar utility values, and actions with similar
values, decision models can be simplified for increased ef-
ficiency. Poh and Horvitz [1993] presents a greedy ap-

proach to exploring how random variables in a decision
model might be refined, i.e., how they can be given a more
fine–grained set of values, to increase the utility of a deci-
sion. This work is intended to automate some of the effort
that a decision analyst would put into reframing a decision
problem, and deals with the refinement problem on a lower
level than information refinement.

Information refinement is closely related to “input general-
ization” which is used to help deal with large state spaces
in reinforcement learning. Chapman and Kaelbling [1991]
adapt the Q-learning algorithm for large input spaces by us-
ing a decision tree in place of the table to represent the � -
function. The decision tree is extended by “splitting” the
function on significant input bits, as determined by tests for
perceptual and value significance.

5 CONCLUSIONS

We have described an anytime algorithm for information
refinement in multi-stage decision problems represented as
influence diagrams. The process builds a stochastic deci-
sion tree for each decision node in the influence diagram.
Each tree is initialized to be a single leaf labelled with the
best action to perform without using any of the available in-
formation. A leaf is chosen heuristically, and is replaced
with an extension. A probability distribution is imposed
over the actions in the policy, which is a subjective assess-
ment of the probability that any particular action will be car-
ried out once the anytime refinement process is halted. The
global effects of the refinement are propagated through the
decision trees of the policy; probabilities are recomputed
for decision trees following the refinement, and all leaf ver-
tices are recomputed in all the decision trees.



The procedure is very expensive asymptotically, and it is
possible to construct an influence diagram for which the
anytime algorithm will construct policies which are have
no more than 50% of the expected value of the the optimal
policy as long as no contexts are complete. An example of
this kind of influence diagram has only uniform probability
distributions and a value function in the form of the parity
function on its inputs.

The results shown in this paper demonstrate that informa-
tion refinement constructs reasonably valuable policies for
large decision problems using reasonable amounts of com-
putational resources. For some of the influence diagrams
treated in this paper, no optimal policy is known. These
problems are too large to enumerate the information space
exhaustively.
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