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Abstract

This paper describes a visually guided robot that can
plan paths, construct maps and explore an indoor en-
vironment. The robot uses a trinocular stereo vision
system to produce highly accurate depth images at
2 Hz allowing it to safely travel through the envi-
ronment at 0.5 m/s. The algorithm integrates stereo
vision, occupancy grid mapping, and potential field
path planning techniques to form a robust and co-
hesive robotic system for mapping and navigation.
Stereo vision is shown to be a viable alternative to
active sensing devices such as sonar and laser range
finders.

1 Introduction

This paper addresses the problem of robot navigation
in an unknown and dynamic environment. To be mo-
bile, it must be able to safely navigate within its envi-
ronment and reliably get from A to B. We envisage a
robot that can be placed in a dynamic and unknown
environment and can, unaided, discover and main-
tain sufficient information about its surroundings to
enable it to accomplish tasks.

For such a robot, the first requirement is adequate
spatial sensing. The second requirement is that it be
able to retain and integrate sensor readings over a pe-
riod of time to create a reliable map for navigation.
Since the environment is dynamic, the robot must be
able to adapt to changes within its work area. Fi-
nally, to obtain a complete map without supervision,
exploration capabilities are desirable.

There has been considerable research in the field of
mobile robot navigation [2][9][5][11]. However, rela-
tively few complete and working systems have been
reported[3][12]. Most systems to date have used laser
range finder and sonar array sensing devices. Very
few mobile robot systems have used real–time stereo
vision for acquiring 3-D sensory data. This can be at-
tributed to the difficulty in calibrating stereo vision

systems, their expense, and the high computation
cost for computing accurate and dense stereo data
in real–time.

Figure 1: Spinoza

The system presented in this paper combines sev-
eral approaches to sensing, mapping, path planning
and exploration. The experiment was conducted with
the Laboratory for Computational Intelligence mobile
robot Spinoza at the University of British Columbia
[14]. Spinoza (shown in Figure 1) uses a trinocu-
lar stereo system that greatly improves sensing ac-
curacy and reliability relative to binocular systems.
The vision system combines highly calibrated wide
angle cameras and high speed dedicated digital sig-
nal processors (DSPs) to provide fast, dense depth
sensing.

Obstacles detected through the vision system are
mapped into an “occupancy grid”, a raster map of
the robot’s environment. This map is updated con-
tinuously as stereo data is acquired, and is used for
planning paths and exploration.

Path planning is achieved by minimizing a cost
function that is a weighted representation of the prox-
imity to obstacles and the distance to an attractive
goal. The cost function combines shortest path search
methods [7] with potential field approaches [6] [1] to
achieve direct paths that pass obstacles at sufficiently
safe distances.

The same path planning algorithm is adapted for
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exploration by assigning goal attributes to unknown
regions in the map. The robot moves towards the
nearest unexplored region, updating the map as it
goes, until all accessible areas have been explored.

The system is robust and performs at speeds sig-
nificantly faster than those previously reported.

2 System Architecture

The Spinoza robot consists of an Real World Interface
(RWI) B-12 base with 3 black and white video cam-
eras for trinocular stereo. There are two TMS320C40
DSPs for image processing, two T805 transputers for
control and a T225 transputer for communication.
The robot can communicate to a Sun Ultra Sparc
1 workstation over high speed radio modems. One
of the DSPs has two SGS-Thompson A110 convolver
chips added to accelerate stereo processing. The
DSPs were chosen because of their image processing
power while the transputers were chosen for their ease
of use in real time applications, communications, and
distributed processing.
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Figure 2: Architecture

Figure 2 shows the data flow through the subsys-
tems and across the hardware can be seen in Figure 2.
The cameras are genlocked so that the first C40 can
capture a field of video simultaneously from all three.
This is transfered to the second C40 which computes
a trinocular depth image. It then computes a hori-
zontal planar map that contains the nearest obstacle
in each direction the cameras can see. The planar
depth map and the current location and heading of
the robot (as computed from odometry) is sent via

the router and radio modems to the host. On the
host, the mapper program uses the planar map to up-
date its occupancy grid representation of the environ-
ment. The environment map is passed on to the plan-
ner/explorer module which computes safe and desired
paths for the robot. These paths are sent back down
to the robot where the controller communicates with
the RWI base to execute the path.

3 Stereo

Spinoza uses a trinocular stereo system for sensing.
Stereo provides dense depth maps and has high an-
gular resolution. This allows it to resolve small or
narrow objects significantly better than sonar arrays.
Laser range scanners obtain a high degree of accuracy
but require a long time to scan an area. Stereo vision
is also a passive sensing technique, which is preferable
to active sensing for some applications. One of the
major limitations to the use of stereo has been its high
computational cost. Spinoza overcomes these limita-
tions by employing high speed convolvers to ensure
fast computation and precision calibration to achieve
depth images with little noise.

The system gives a high quality depth map that
is 128x120 pixels with 20 disparities and computes
in 350 ms. This high performance combined with
wide angle lenses allows the robot to see a large area
quickly so that it can map without pausing and move
at an acceptable velocity.

The stereo system computes depth maps using
three calibrated cameras with an algorithm similar to
the multi–baseline stereo [10]. On Spinoza the first
pair of cameras are in a horizontal plane while the sec-
ond are in the vertical plane. The trinocular cameras
can achieve better results than a typical two camera
stereo system because the second pair of cameras can
resolve situations that are ambiguous to the first pair.
For example when the horizontal camera pair looks
at a scene that has only horizontal lines, the depth
of the images is ambiguous, but the vertical cameras
can find the depth for this scene.

3.1 Camera Calibration

The internal parameters of each camera are computed
using an extension to the Tsai method[8] that em-
ploys a nonlinear gradient descent technique to com-
pute the centre of radial distortion. This provides
a model of the radial distortion and focal length of
the lenses. The radial distortion is quite significant
because the lenses’ 80 degree field of view is quite
wide. A warp table is generated that maps the orig-
inal images into subsampled versions that have been
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corrected for lens distortion and have epipolar lines
that are aligned with the x and y axis of the image.
An example input image is shown in Figure 3, and
the undistorted image is shown in Figure 4.

Figure 3: Right Image

Figure 4: Corrected Image

The robot is calibrated several times at different
angles of rotation, to determine the centre of rotation
for the robot. This allows the stereo depth maps to be
projected into volumes in 3–D space in a coordinate
system relative to the center of the robot.

3.2 Stereo computation

The stereo algorithm starts by computing the Lapla-
cian of the Gaussian for each of the three images. The
algorithm then loops over the disparities and com-
putes the sum of the absolute values of the differ-
ences (SAD) between the image pairs using a 5 by
5 window. It keeps track of the disparity with the
minimum SAD for each pixel. The correlation and
filtering is done using two Thompson A110 convolver
chips that run in parallel with the C40.

The depth image computed from the scene in Fig-
ure 3 is shown in Figure 5. Points that are closer in

Figure 5: Depth Image

the image are displayed as a lighter color of gray and
invalid points are displayed as completely black. This
stereo data is dense and has almost no noise.

3.3 Validation

The SAD value for each pixel is normalized by the
SAD value that would be found if the right image was
matched against a blank image. If the normalized
value is below a threshold, this location is marked
as invalid in the depth map. Further pixel noise is
removed from the depth map by marking invalid all
pixels that don’t have the same depth value as the
pixel above and below them.

Shiny linoleum floor tends to reflect objects and
the stereo detects these reflections as being under the
floor. Each pixel below the horizon is checked and
pixels that are on or below the floor are marked in-
valid to reject floor texture and floor reflections. The
location of the floor relative to the cameras is known
from calibration.

Once all the invalid pixels in the image have been
found, a planar map is formed by taking the clos-
est disparity in each column of the depth map. This
forms a 1 by 128 planar map that represents the near-
est obstacle in each of the directions that the cameras
can see. The planar map generated from the depth
map in Figure 5 is shown in Figure 6.

4 Map building

The previous work in robotic map building has re-
volved around two themes: occupancy or certainty
grids, and feature-based methods. Feature-based
methods such as demonstrated by Rencken [11] works
by locating features in the environment, localizing
them, and then using them as known landmarks by
which to localize the robot as it searches for the next
landmarks. Occupancy grid mapping, as pioneered
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Figure 6: Planar Map

by Moravec and Elfes [9] [5] is a technique that di-
vides the environment into a discrete grid, and assigns
each grid location a value related to the probability
that the location is occupied by an obstacle. We se-
lected the occupancy grid approach due to its sim-
plicity, robustness and adaptability to dynamic envi-
ronments.

Figure 7: Occupancy Grid Map

In the occupancy grid method, the robot’s envi-
ronment is tessellated into a discrete grid. Each grid
location is assigned a value that represents the prob-
ability that it is occupied by an obstacle. Initially,
all grid values are set to a 50% probability. This rep-
resents the “unknown” case. The grid locations that
fall within the region of uncertainty about each sensed
obstacle point have their values increased, while loca-
tions between the robot and the obstacle have their
probabilities decreased.

Several strategies exist for updating grid location
values. We selected the simplest, which is to incre-
ment or decrement location values with each reading.
Each grid location value could vary from 0 → 255.
The increment/decrement step-size is a tunable pa-
rameter. A high value allows the map to adapt

quickly to new data, but makes it less reliable in the
presence of noise. We chose a value of 30. This is
rather high, but our stereo sensing provides reliable,
consistent data to the degree that this was acceptable.
A sample occupancy grid map is shown in Figure 7.
In this figure, black represents 100% certain obstacles
while white represents clear space.

5 Navigation

We implemented two high-order navigation tasks:
path planning and navigation. In the first, given a
map and a goal, we construct a safe but direct path
for the robot to follow. In the second, the robot is
allowed to choose its paths so as to increase its knowl-
edge of its environment.

5.1 Path planning

In the past, two methods have emerged as dominant
for path planning in discrete grid maps. The first is
the distance transform or shortest path method as de-
scribed in Lengyel et al. [7]. In this method, the goal
destination is labeled with a distance value of 0. All
other locations are labeled with very high values. The
algorithm begins at the destination and each iteration
visits all locations adjacent to locations visited in the
previous iteration. The distance value for site i adja-
cent to previously visited site j is updated by:

if map(i) occupied

d(i) =∞
else

d(i) = min

{
d(i)
d(j) + c(i, j)

where c(i, j) is the cost or distance associated with
moving from site i to site j.

The distance transform expands around the desti-
nation in a wave front, parting at and propagating
around obstacles. The shortest path from any loca-
tion to the destination can then be found by following
the connected sites with minimum d until d = 0 is
reached.

One of the problems with this method is that it
inherently comes as close to obstacles as is allowed.
Another problem is that it is often applied with only
4-connected graphs. This yields a shortest path with
a Manhattan distance measure that is often not desir-
able. Eight-connected graphs (as shown in Figure 8)
yield a more direct path that is better in most appli-
cations.

Another popular approach is the use of potential
fields [6] [1]. In this case, each obstacle applies a
repelling field to the robot, while the goal applies an
attractive field. By applying gradient descent to the
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Figure 8: Manhattan (left) and chamfer (right) dis-
tance connectedness

resultant potential field landscape, one can obtain a
safe path, keeping obstacles at a maximum distance
during the approach to the goal. One of the draw-
backs, however, is the necessity to constrain the prob-
lem with a fixed boundary. Without this, it can lead
to paths that stray quite far from the goal with the
intent of staying away from obstacles.

In our approach, we combine the potential fields
with the shortest path method. We first construct a
labeling, o(i), for all grid locations that contains the
chamfer distance to the nearest obstacle. We then
apply the wave front search starting from the goal.
However, the distance penalty for each visited site is
modified by a cost multiplier α based on the distance
to the nearest obstacle. Thus, for a site i visited from
j,

if map(i) occupied

d(i) =∞
else

d(i) = min

{
d(i)
d(j) + α(o(i)) × c(i, j)

The weighting function α(d) begins at a high penalty
at d = 1 and ramps linearly down to 1 at d equal to a
safe distance related to the size of the robot and the
speed at which it moved.

Figure 9: Distance from obstacles labeling

Figure 9 shows the distance labeling for the map
displayed in Figure 12. One can see that the labeling
clearly indicates the skeleton of the region surrounded

Figure 10: Final cost function with path indicated

by the obstacles as the safest. Figure 10 shows the re-
sult of applying our approach; the total cost function
is mapped, as well as the chosen path.

5.2 Exploration

Exploration methods have been implemented using
neural networks and landmarks [13][4] as well as other
techniques. In our approach, grid locations are clas-
sified into 3 basic types: blocked, clear and unknown.
We would like to reduce all unknown regions until
all reachable areas are either clear or blocked. We
achieve this by assigning an attractive potential field
to all unknown areas, while maintaining the obstacle
repulsion fields.

This was implemented by re-using our path plan-
ning algorithm, with the unknown grid locations all
being assigned as destinations with d = 0. The
breadth-first search is begun simultaneously at all
these locations. By following the path with the mini-
mum cost, the robot is guided to the nearest accessi-
ble unknown region. With periodic reevaluation and
re-planning, the robot will explore from unknown re-
gion to unknown region until no more unknown re-
gions are reachable.

Figure 11 shows an example of exploration in
progress. The dark line indicates the path that
Spinoza has taken. Figure 12 shows the exploration
completed, with no unknown destinations remaining.

6 Conclusion

The paper demonstrated that a visually guided mo-
bile robot can safely map, explore and navigate un-
known indoor environments. We have shown that
real–time stereo vision is a viable alternative to active
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Figure 11: Exploration in progress

Figure 12: End of exploration

sensing devices for these applications. Robot veloci-
ties were limited by the speed at which stereo could
be computed. With our current system calculating
stereo depth images at 2 Hz, the robot traveled at a
speed of 0.5 m/s without degrading safe navigation
or map updating.

Occupancy grid mapping provided a good base
for raster-based path planning techniques. Planning
techniques that combine shortest path searches with
repulsion fields from nearby obstacles can strike a bal-
ance between the most direct and the most safe path.
The exploration module mapped the entire robot en-
vironment via an efficient path.

While the Real World Interface robot base odom-
etry proved to be adequate for our task, future work
will include localization of robot position to comple-
ment odometry readings. Spinoza has an additional
color camera on a pan tilt unit that we plan to use

for tracking and identifying landmarks in a localiza-
tion module. In addition, linking of local maps into
a connected graph of nodes to represent larger spaces
should improve the overall range and capabilities of
the system.
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