
A Discrete Algorithm for Fixed-path Trajectory Generation at
Kinematic Singularities1

John E. Lloyd Vincent Hayward
Computer Science Dept., University of British Columbia Center for Intelligent Machines, McGill University

Vancouver, B.C., Canada Montréal, P.Q., Canada
lloyd@cs.ubc.ca hayward@cim.mcgill.ca

Abstract

An algorithm is presented for computing the necessary
time-scaling to allow a non-redundant manipulator to fol-
low a fixed Cartesian path containing kinematic singular-
ities. The resulting trajectory is close to minimum-time,
subject to bounds on joint velocities and accelerations. The
algorithm assigns a series of knot points along the path,
increasing the knot density in the vicinity of singularities.
Appropriate path velocities are then computed for each knot
point. Two experiments involving the PUMA manipulator
are shown.

1. Introduction

The problem of kinematic singularities is a serious one
for serial link manipulators assigned to execute prescribed
Cartesian space tasks. Singularities are usually defined in
terms of the manipulator Jacobian J, which maps joint ve-
locities _### into workspace velocities v. At a singularity, J
loses rank, and the process of inverting J to execute a pre-
scribed v may result in extremely high joint velocities and
accelerations.

A conventional way of handling singularities is to mod-
ify the calculation associated with the Jacobian inverse (or
pseudo-inverse, for redundant manipulators), such as by
adding a damping term [8, 13, 4, 5, 7]. Other techniques
include directly eliminating degenerate degrees of freedom
from J [1] or using the Jacobian transpose [3] in place of its
inverse. These approaches to the singularity problem usu-
ally result in some deviation from the prescribed reference
path. Also, it can be difficult to keep joint velocities, and
more troublesome, accelerations, withinbounds without in-
curring sluggish performance.

As an alternative, some recent work has focused on han-
dling singularities exclusively by time-scaling the trajec-
tory, without deviating from the desired path unless that
path actually goes outside the workspace. If the path we
wish to follow is given by X(s), where s is a scalar param-
eter, then the problem can be stated as follows:

Problem 1. Suppose a non-redundant manipulator is to
follow a path X(s) for which the corresponding inverse

1 Presented at the IEEE International Conference on Robotics and Au-
tomation, Minneapolis, Minnesota, April 22-28, 1996

kinematic solution ###(s) is known. Then find a path tim-
ing s(t) such that, for each joint #j, the induced joint ve-
locities and accelerations are bounded by j _#jj � Vj and
j�#jj � Aj , regardless of the presence of singularities. Such
a timing will be termed admissible.

Additional bounds on _s and �s can be added by treating s as
an extra joint coordinate (such as joint “0”, with #0 � s).

_#j and �#j are related to #j(s) by the chain rule:

_#j = #0j(s) _s and �#j = #0j(s) �s + #00j (s) _s
2:

At singularities, one or more #0j(s) or #00j (s) may become

infinite, with serious implications for _#j and �#j. Neverthe-
less, the feasibility of solving Problem 1 in certain cases in-
volving 2R and 3R manipulators was studied in [9, 2]. The
general solvability of Problem 1 for paths which are piece-
wise analytic is described [6]. Loosely stated, the idea is to
make sure that _s and �s approach zero as fast as the elements
of #0j(s) or #00j (s) approach infinity.

We present in this paper a discrete algorithm for com-
puting an approximate solution to problem 1. Its novelty
lies in being able to handle general paths, produce solu-
tions which are nearly time-optimal (subject to j _#jj � Vj
and j�#jj � Aj), and do the required computations rather
quickly. The algorithm is named DAO (for Discrete Ap-
proximate Optimal-admissible timing).

Rather than explicitly computing the path timing s(t),
the algorithminstead computes _s as a functionof s; s(t) can
then be obtained as the solution to the differential equation
ds=dt = f(s). This approach makes it easier to incorpo-
rate constraints on the joint accelerations. To obtain an s(t)
which is monotonically increasing, we require that _s � 0,
with _s = 0 only at single points.

The reader may note that solving Problem 1 is, in prin-
ciple, equivalent to solving the fixed-path minimum-time
trajectory problem [12, 10]. Solutions to the latter usually
consider actuator force/torque limits and the full manipula-
tor dynamics, but do not work at singularities. Essentially,
the DAO algorithm solves a simplified (i.e., unit dynam-
ics) version of the fixed-path minimum-time problem, but
does so robustly at singularities. Presumably the algorithm
could be extended to incorporate dynamics, at the cost of
increased computation. However, it meets our immediate
objective, which is to make Cartesian paths containing sin-
gularities as realizable as trapezoidal-velocity trajectories
for joint paths.

2. Algorithm Overview

The algorithm is assumed to work in conjunction with a
discrete-time trajectory generator which produces joint po-
sition setpoints every T seconds. Assume that the path is
defined over some s interval [sA; sB]. The algorithm se-
lects K knot points si 2 [sA; sB] and then computes, for
each one, a value of _s, denoted by tvi. This output is then
interpolated by the trajectory generator to determine s for
each trajectory sample, from which ###(s) is computed by
applying inverse kinematics to X(s). Interpolation is done
by assuming that �s is constant between knot points; it is
easy to show that this is equivalent to assuming that _s2(s)
is piecewise-linear.

At each knot pointsi, the algorithm computes both###(si)
and ###0(si). The latter can be computed from

###
0(si) = J(si)

�1
u(si); (1)

where u(si) is the tangent toX(si). Near singularities, one
or more #0j(si) may approach infinity. If J(si)�1 is avail-
able in symbolic form, this will correspond to a division by
a small number in some of the expressions. Otherwise, ro-
bust matrix inversion techniques (such as the singular value
decomposition) can be used to identify which #0j(s) blow
up. At present, such cases are handled by simply clipping
#0j(si) to some large value of appropriate sign. A possibly
superior alternative, not yet implemented, would be to dis-
place si slightly so that the affected #0j(si) values are large
but not infinite.

The algorithm’s effectiveness comes from increasing the
knot point density near singularities, as described below.

The algorithm calculates the knot velocities tvi to be
as large as possible (to approach a time-optimal solution)
while trying to approximately satisfy j _#jj � Vj and j�#jj �
Aj . Specifically, the tvi are calculated to try and ensure that

j#0j(si)j � Vj (2)

and

j�ajij � Aj ; (3)

where �aji is the average acceleration between the knots si
and si+1, under the assumption of constant �s between knot
points. Average accelerations are used because (a) it obvi-
ates the need to calculate second-order solution derivatives
and (b) it has been experimentally observed to yield good
timing results.

The tvi are computed in several stages:

1. Select the knot points si.
2. Assign initial knot velocities, denoted by bvi, to sat-

isfy (2) and approximately satisfy (3).
3. Forward pass: for i = 1 toK, try to satisfy (3) by re-

ducing the bvi, producing a new set of velocities fvi.
4. Backward pass: for i = K down to 1, complete the

enforcement of (3) by reducing the fvi. This yields
the final velocities tvi.

By properly chosing the initial bvi, it can be proven that
the subsequent forward and backward passes will then en-
sure satisfaction of (3).

3. Knot point selection

Knot selection is at the heart of the algorithm. The idea is
to start with some nominal set of knots, and then increase
the knot density appropriately in regions where the path so-
lution is highly non-linear (e.g., near singularities).

What makes this work is the fact that the trajectory gen-
erator interpolating the algorithm output works in discrete
time, and so the difference between successive position set
points must always be finite (as noted in [11]).

Now observe that the average velocity �_#j of joint #j
during the travel from knot si to si+1 is given by

�_#j =
#j(si+1) � #j(si)

�t
: (4)

This leads to the velocity rule for knot point selection: if the
knots are spaced closely enough that

j#j(si+1)� #j(si)j � VjT; (5)

where T is the trajectory sample interval, then if the transit
time between knots is less than or equal toT , the associated
average velocity will be within bounds.

The acceleration rule is a bit more complicated but sim-
ilarly motivated; details of its rational can be found in [6].
Letting �si � si+1 � si, enough knot points are added so
that for each i, either

j#0j(si+1)� #0j(si)j �
AjT

2

�si
(6)

or

j#j(si+1)� #j(si)j �
AjT

2

2
(7)

is satisfied. Relation (7) keeps the number of knots bounded
in cases where #0j(si+1) or #0j(si) become very large.

Knot point creation is currently implemented using a
simple bisection strategy where new knots are inserted be-
tween existing ones until both the velocity rule (5), and one
of the acceleration rules ((6) or (7)), are satisfied. As long
as the path solution###(s) is continuous, the process is guar-
anteed to converge. Performance of the algorithm is also
enhanced by placing a specific knot point very close to any
path singularity which is encountered.

These knot selection rules are heuristicly based and have
been experimentally confirmed to yield good results, with-
out creating an unmanageable number of knots. An error
analysis is presently being studied.

4. Constraints on vi

In this section, we describe what constraints on individual
knot velocities vi are necessary to satisfy (2) and (3).

First, it is necessary that vi � bi, where

bi = min
j

(Qji); (8)

and

Qji =

8>>>><
>>>>:

Vj
#0j(si)

if #0j(si) is not close to 0,

s
Aj

2j#00j (si)j
otherwise.

From the chain rule _#j = #0j(s) _s, it can be seen that the
upper definition ofQji enforces (2). At zeros of #0j(si), the

chain rule expression for �#j reduces to 2#00j (s) _s
2, and so

enforcement of (3) requires the lower definition of Qji (for
which an estimate of #00j (si) can be obtained by applying
finite differences to nearby #0j(si) values).

At singularities where one or more #0j(si) approach in-
finity, bi will approach zero. In such cases, setting bi to
zero does not by itself guarantee that _#j will be bounded
(since _s no longer specifies _#j uniquely [6]), but the action
of the rest of the algorithm will in fact ensure that all _#j are
brought to zero (although see Section 9 in this regard).

Next, consider the constraint (3). If �t is the travel time
between knots si and si+1, then the associated average ac-
celeration �aji is given by

�aji =
_#j(si+1)� _#j(si)

�t
: (9)

Because it is assumed that �s is constant between knot points,

�t =
2�si

vi + vi+1
: (10)

For notational convenience, let fi � #0j(si) for some spe-
cific coordinate #j, and let �fi � fi+1 � fi. Then sub-
stituting (10) into (9) and applying the chain rule _#j =
#0j(s) _s, we obtain

fi+1v
2
i+1 +�fivi+1vi � fiv

2
i � 2�si�aji = 0:

(11)

For any given value of �aji, this represents a hyperbola in the
vi-vi+1 plane. We define an admissible sub-regionWj;i to
be the set of (vi; vi+1) for which j�ajij � Aj. This region
is bounded by the two hyperbolas corresponding to �aji =
�Aj in (11), as illustrated in Figure 1.

The region in the vi-vi+1 plane for which constraint (3)
is satisfied for all joints is called the admissible region Wi

and is defined by

Wi �
\
j

Wj;i:

Finally, a complete admissible regionW�

i can be defined
which also satisfies the constraint (2), along with the addi-
tional requirement that each vi be non-negative, by inter-
secting Wi with the square defined by 0 � vi � bi and

0 4 8−4
−8

−4

0

4

8

vi+1

vi

FIGURE 1. A sub-region Wj;i (shown in grey) corre-
sponding to fi = 2, fi+1 = 1, Aj = 6, and �si = 2.

0 � vi+1 � bi+1 (see Figure 2). Any (vi; vi+1) 2 W�

i

therefore satisfies both constraints (2) and (3).

4 6 82
0

2

4

6

8

vi+1

vi

FIGURE 2. A complete admissible regionW�

i given by the
intersection of severalWj;i and the square defined by 0 �
vi � bi and 0 � vi+1 � bi+1 , for bi = 5 and bi+1 = 4.

The objective of the DAO algorithm can now be re-
stated: try to make the output knot velocities tvi as large
as possible subject to (tvi; tvi+1) 2 W�

i . To do this, the
following computations on theWi and W�

i are necessary:

1. Intersect Wi with a fixed vi;
2. Intersect Wi with a fixed vi+1;
3. Compute the vertices ofW�

i .

Details on these calculations are given in Appendix A.

5. Determining initial velocities

After the knots have been selected, each one is assigned an
initial velocity bvi. This is done by first computing a point
(wi;1; wi;2) in each W�

i that maximizes vi + vi+1 (to help
minimize the implied travel time between si and si+1). It
can be shown [6] that such a point must lie on a vertex of

W�

i , the computation of which is described in section A.3.
The bvi are then calculated as follows:

bv1 := w1;1;
for i from 2 to K�1:

bvi := min(wi;1; wi�1;2);
bvK := wK�1;2;

Note that resulting pairs (bvi; bvi+1) may not necessarily
be contained in W�

i . However, since the seed (wi;1; wi;2)
is contained inW�

i , it can be proven [6] that the subsequent
forward and backward passes of the algorithm will yield fi-
nal velocities tvi whose pairs are also contained inW�

i .

6. Forward and Backward Passes

The forward pass computes a new set of velocities fvi:

fv1 :=
bv1;

for i from 1 to K � 1:
y := maxfvi+1 : 0 � vi+1 � bvi+1; (

fvi; vi+1) 2 Wig;
if (y 6= ;) then

fvi+1 := y;
else

fvi+1 :=
bvi+1;

In other words, for each i, counting up from 1, fvi+1 is
nominally set to bvi+1. Then if (fvi; fvi+1) 62 Wi, and this
can be corrected by lowering fvi+1, we do so. The compu-
tation involves determining the admissible vi+1 values for
a given fvi, as described in Section A.1.

The backward pass repeats this in the reverse direction:

tvK := fvK;
for i from K � 1 down to 1:

tvi := maxfvi : 0 � vi � fvi; (vi;
fvi+1) 2 Wig;

In other words, for each i descending from K, tvi is nomi-
nally set to fvi. Then if (tvi; tvi+1) 62 Wi, this is corrected
by lowering tvi. That such a correction is always possible
follows from the above-mentioned proof in [6]. The com-
putation involves determining the admissible vi values for
a given tvi+1, as described in Section A.2.

Note that since these passes only reduce velocities,
(tvi;

tvi+1) 2 Wi implies (tvi; tvi+1) 2 W�

i .

7. Algorithm Summary

Input: Continuous path solution###(s) defined on [sA; sB].
Output: A set of path velocities tvi defined for K knot

points si 2 [sA; sB], implicitly specifying an ap-
proximately optimal admissible path timing s(t).

Step D1. (Knot point selection). Create K knots si, with
s1 = sA and sK = sB , so as to satisfy the veloc-
ity and acceleration rules described in Section 3. If
possible, insert a knot point close to each path singu-
larity.

Step D2. (Initialization). Compute the initial knot veloci-
ties bvi as described in Section 5.

Step D3. (Forward pass). Starting at i = 1, compute the
knot velocities fvi as described in Section 6.

Step D4. (Backward pass). Working backward from i =
K, compute the tvi as described in Section 6.

7.1. Complexity. If K is the number of knots and M the
number of joint coordinates, then step D2 has the worst
complexity, O(KM3), due to the O(M3) complexity of
computing the vertices of each W�

i (Section A.3). A more
efficient calculation may be possible, but has not yet been
investigated.

8. Experimental Results

Numerous experiments are described in [6] involving pla-
nar 2R and PUMA robots; only a couple involving the
PUMA will be shown here. Both involve paths where s
is the translational arc length, and were undertaken with a
trajectory sample period of T = 50 msec, and Vj = 60
deg/sec and Aj = 150 deg/sec2 for all robot joints. Con-
straints j _sj � V0 and j�sj � A0 were also imposed by treat-
ing s as an additional joint coordinate #0, with V0 = 200
mm/sec and A0 = 700 mm/sec2. Computations were done
in 64-bit double precision, and large values of #0j(si) were
clipped to 108. Each experiment is illustrated by a PUMA
stick figure animation, and plots of selected velocities as
functions of time, before and after application of the DAO
algorithm. To make it easier to judge algorithm perfor-
mance, velocity profiles are scaled as shown in Figure 3.

maximum path
 accelerations

maximum joint
 acceleration

maximum
velocities_#1

_s
t

FIGURE 3. Velocity plots are scaled so that velocity and
acceleration constraints appear as shown here. Accelera-
tion limits correspond to a slope of�1 for robot joints and
�2 for _s.

The example of Figure 4 involves the PUMA elbow sin-
gularity. Computations were done for M = 4 (#1 through
#3, and #0 � s), required 206 knots, and took 181 msec
on a Silicon Graphics “Indy” workstation with an R4600
CPU rated at 11 Mflops. The example of Figure 5 involves
the PUMA shoulder singularity. Computations were again
done for M = 4, required 217 knots, and took 149 msec.

These results, typical of a larger body of tests, indi-
cate that the algorithm does in fact produce a timing which
meets the ideal constraints j _#jj � Vj and j�#jj � Aj very
tightly, while being quite close to optimal. The latter state-
ment can be verified by noting that in the resulting trajecto-
ries, one or more coordinates is always close to saturation
with respect to either its velocity or acceleration constraint.

actual path
 followed

_#2

_#3

_s
t

_#2

_#3

_s
t

FIGURE 4. Parabolic reference path, in the plane z = 0,
which leaves and then reenters the robot workspace. The
actual path follows the boundary when the reference path
goes outside of the workspace. Upper plots show _#2, _#3
corresponding to a constant path velocity _s; spikes corre-
spond to the elbow singularity where the reference path
leaves or enters the workspace. Lower plots show the mod-
ified velocities produced by the DAO algorithm.

9. Conclusion

The DAO algorithm demonstrates the practical feasibility
of handling singularities in fixed-path trajectories by time
scaling alone. The present implementation appears to give
excellent results in terms of achieving near-optimal solu-
tions which honor the velocity and acceleration constraints.

There is one aspect in which the algorithm is not opti-
mal: at a singularity where one or more #0j(s) approaches
infinity, all joints are brought to rest, whereas in some (less
common) cases, the optimal solutioncalls for the “most sin-
gular” joints to have non-zero velocities. This problem,
discussed in [6], should be corrected.

Other work on the method can be done along the follow-
ing lines: (a) improving the knot selection process, both in
terms of theoretical understanding and trying to reduce the
number of knots (since we have no reason to believe that
the number of knots selected is optimal), and (b) simplify-
ing the computations and making them more robust, includ-
ing possibly replacing all derivative calculations with ones
involving only finite differences of ###(s).

actual path
 followed

_#1

_#2

_s
t

_#1

_#2

_s
t

FIGURE 5. A straight line reference path, in the plane z =
150, which cuts through the cylindrical void in the center of
the workspace. When the reference path is inside the void,
the actual path is projected onto the boundary cylinder. Up-
per plots show _#1, _#2 corresponding to a constant path ve-
locity; spikes correspond to the shoulder singularity where
the path intersects the cylinder. Lower plots show the mod-
ified velocities produced by the DAO algorithm.

Generalizations of the DAO algorithm to include the
full manipulator dynamics, and hence actuator force/torque
constraints, may also prove useful.

Acknowledgement

This work was supported by the Institute for Robotics and Intelligent Sys-
tems (IRIS) of Canada’s Centers of Excellence Program (NCE), and by the
Natural Sciences and Engineering Research Council of Canada (NSERC).

References

[1] E. W. Aboaf and R. P. Paul, “Living with the Singularity of Robot
Wrists.” Proceedings of the 1987 IEEE International Conference on
Robotics and Automation, pp. 1713 - 1717.

[2] C. Chevallereau and B. Daya, “A New Method for Robot Control
in Singular Configurations with Motion in any Cartesian Direction.”
Proceedingsof the 1994 IEEE International Conference on Robotics
and Automation, pp. 2692 - 2697 (Vol. 4).

[3] Pasquale Chiacchio, Stefano Chiaverini, Lorenzo Sciavicco, Bruno
Siciliano, “Closed-Loop Inverse Kinematics Schemes for Con-
strained Redundant Manipulators with Task Space Augmentation
and Task Priority Strategy”. International Journal of Robotics Re-
search, August 1991, pp. 410 - 425 (Vol. 10, No. 4).

[4] S. Chiaverini, O. Egeland, and R. K. Kanestrom, “Achieving User-
defined Accuracy with Damped Least-squares Inverse Kinematics.”

Fifth International Conference on Advanced Robotics (91 ICAR),
Pisa, 1991, pp. 672 - 677.

[5] A. S. Deo and I. D. Walker, “Adaptive Non-linear Least Squares for
Inverse Kinematics.” Proceedings of the 1993 IEEE International
Conference on Robotics and Automation, pp. 186 - 193 (Vol. 1).

[6] J. E. Lloyd, Robot Trajectory Generation for Paths with Kinematic
Singularities. Ph. D. dissertation, Departmentof Electrical Engineer-
ing, McGill University, January 1995.

[7] A. A. Maciejewski and C. A. Klein, “Numerical Filtering for the
Operation of Robotic Manipulators through Kinematically Singular
Configurations.” Journal of Robotic Systems, December 1988, pp.
527-552 (Vol. 5, No. 6).

[8] Y. Nakamura and H. Hanafusa “Inverse Kinematic Solutions with
Singularity Robustness for Robot Manipulator Control.” Journal of
Dynamic Systems, Measurement, and Control, September 1986 pp.
163-171 (Vol. 108, No. 3)

[9] L. Nielsen, C. Canudas de Wit, and P. Hagander, “Controllability
Issues of Robots near Singular Configurations.” Advances in Robot
Kinematics, 2nd International Workshop, Linz, 1990, pp. 283 - 290.

[10] F. Pfeiffer and R. Johanni, “A Concept for Manipulator Trajectory
Planning.” IEEE Journal of Robotics and Automation, April 1987,
pp. 115 - 123 (Vol. RA-3, No. 2).

[11] E. D. Pohl and H. Lipkin, “A New Method of Robotic Motion Con-
trol near Singularities.” Fifth International Conference on Advanced
Robotics (91 ICAR), Pisa, 1991, pp. 405 - 410.

[12] K. G. Shin and N. D. McKay, “Minimum-time Control of Robotic
Manipulators with Geometric Path Constraints.” IEEE Transactions
on Automatic Control, June 1985, pp. 531-541 (Vol. AC-30, No. 6).

[13] C. W. Wampler II and L. J. Leifer, “Applications of Damped Least-
squares Methods to Resolved-rate and Resolved-acceleration Con-
trol of Manipulators.” Journal of Dynamic Systems, Measurement,
and Control, March 1988, pp. 31-38 (Vol. 110, No. 1).

Appendix A.

A.1. Intersecting Wi with a fixed vi. This amounts to
finding all the vi+1 that are admissible for a fixed vi. One
can compute the answer for each sub-regionWj;i and then
intersect the results. In [6] it is shown that, for a particular
Wj;i, the admissible vi+1 are contained within two inter-
vals [A� B+; A�B�] and [A+B�; A+B+], where

B
+ =

p
(fi + fi+1)2v2i + Ci

2jfi+1j

B
� =

p
(fi + fi+1)2v2i � Ci

2jfi+1j
A =

��fivi

2fi+1
; and Ci = 8jfi+1j�siAj

If (fi+fi+1)2v2i �Ci � 0, this reduces to a single interval
[A�B+ ; A+ B+]. If fi+1 = 0, the interval becomes�

�vi �
2�siAj

jfijvi
;�vi +

2�siAj

jfijvi

�
:

A.2. Intersecting Wi with a fixed vi+1. This amounts to
finding all the vi that are admissible for a fixed vi+1. The
computations are the same as those described in the previ-
ous section, except with vi and vi+1 interchanged, fi re-
placed by �fi+1, and fi+1 replaced by �fi.

A.3. Computing the vertices of W�

i . These are points
on the boundary of W�

i corresponding to the intersections
of the hyperbolic curves and straight lines comprising the

boundary. At present, the vertices are computed in a brute
force way, by finding all such intersections and then dis-
carding those not on the boundary. First, the lines vi = 0,
vi = bi, vi+1 = 0, and vi+1 = bi+1 have 4 intersection
points. Intersecting these with the hyperbolic boundaries
of the Wj;i, using the equations of sections A.1 and A.2,
yields an additional 10M points, where M is the number
of joint coordinates. Now for the intersections of the hy-
perbolas themselves: Suppose there exist two regionsWj;i

and Wk;i, corresponding to coordinates #j and #k, whose
boundaries are described by the two pairs of hyperbolas
represented by

fi+1v
2
i+1 +�fivi+1vi � fiv

2
i = �2�siAj;

gi+1v
2
i+1 +�givi+1vi � giv

2
i = �2�siAk;

where fi � #0j(si) and gi � #0k(si). It can then be verified
that all the intersection points (vi; vi+1) between the two
boundaries are given by

vi+1 =
�(fiHk � giHj)

p
2�sip

[fi+1gi � figi+1][(gi + gi+1)Hj � (fi + fi+1)Hk]

vi =
�(gi+1Hj � fi+1Hk)

p
2�sip

[fi+1gi � figi+1][(gi + gi+1)Hj � (fi + fi+1)Hk]

where � = �1, and Hj = �Aj and Hk = �Ak. This
gives eight solutions, only two of which (it can be shown)
may correspond to vertices of W�

i . Among all M sub-
regionsWj;i we then have at most M (M � 1) such points,
and the total number of intersections among all bounding
lines and curves is therefore bounded by M2 + 9M + 4.

Checking if a point is on the boundary is done by bound-
ing box tests, interval merging, and (lastly) checking to see
if it is contained within all the sub-regionsWj;i by seeing
if it satisfies the associated equations

jfi+1v2i+1 +�fivi+1vi � fiv
2
i j � 2�siAj:

Since there are M such equations, the overall complexity
of computing the vertices is O(M3).

