Specification and Verification of Hybrid
Dynamic Systems with Timed V-automata

Ying Zhang'! and Alan K. Mackworth*?

! Wilson Center for Research, Xerox Corporation, M/S 128-51E,
Webster, N.Y., USA 14580, zhang@wrc.xerox.com
2 Department of Computer Science, University of British Columbia,
Vancouver, B.C., Canada V6T 174, mack@cs.ubc.ca

Abstract. The advent of computer-controlled embedded systems cou-
pled to physical environments requires the development of new theories
of dynamic system modeling, specification and verification. We present
Timed V-automata, a generalization of V-automata [10], for the specifica-
tion and verification of dynamic systems that can be discrete, continuous
or hybrid. Timed V-automata are finite state and serve as a formal re-
quirements specification language for dynamic systems so that (1) timed
as well as temporal properties can be specified or recognized, and (2)
global properties of either discrete or continuous behaviors can be char-
acterized. In addition, we propose a formal model-checking method for
behavior verification of dynamic systems. This method generalizes sta-
bility analysis of dynamic systems and can be completely automated for
discrete-time finite-domain systems.

1 Motivation and Introduction

A robot is, typically, a real-time embedded system, consisting of a controller
coupled to its plant. In general, all the computer-controlled systems in our daily
lives, such as cars, elevators and copiers, can be considered to be robots. With the
growing demand for robots, we face a major challenge: the development of intel-
ligent robots that are reliable, robust and safe in their working environments [7].
Computer-controlled systems are discrete and physical plants or environments
are, in general, continuous. Therefore, the coupling of a controller, a plant and its
environment constitutes a complex dynamic system that is, in general, hybrid.

A robotic system is the symmetrical coupling of a robot to its environment.
We have decomposed the development of a robotic system into three phases:
system modeling, requirements specification and behavior verification [17, 20].
System modeling represents a complex dynamic system in terms of its com-
positions and interconnections, so that the overall behavior of the system is
precisely defined. Requirements specification expresses global properties such as
safety, reachability, liveness and real-time response. Behavior verification ensures

* Fellow, Canadian Institute for Advanced Research

that the behavior of the modeled system satisfies the specified requirements. We
replace the vague question “Is the robot intelligent?” with the question “Will
the robot do the right thing?” [18]. The answer to that question follows if we
can:

1. model the coupled robotic system at a suitable level of abstraction,
2. specify the required global properties of the system, and
3. verify that the model satisfies the specification.

Most robot design methodologies use hybrid models of hybrid systems, awk-
wardly combining off-line computational models of high-level perception, reason-
ing and planning with on-line models of low-level sensing and control. We have
developed Constraint Nets (CN) as a semantic model for hybrid dynamic sys-
tems [16, 19]. CN introduces an abstraction and a unitary framework to model
discrete/continuous hybrid systems; therefore, the robot and its environment can
be modeled symmetrically in a uniform model.

In this paper, we present Timed V-automata for the specification and veri-
fication of dynamic systems that can be discrete, continuous or hybrid. Timed
V-automata are a generalization of V-automata [10] that have been developed for
the specification and verification of concurrent programs. V-automata are pow-
erful enough to specify global properties such as safety, reachability and liveness,
and simple enough to have a formal verification procedure. Timed V-automata
are finite state and serve as a formal requirements specification language for
dynamic systems so that (1) timed as well as temporal properties can be speci-
fied, and (2) global properties of either discrete or continuous behaviors can be
characterized. The link between a constraint net model and a timed V-automata
specification is the behavior of the system, which can be represented as a gen-
eralized Kripke structure. We propose a formal model-checking method for be-
havior verification of hybrid dynamic systems. This method generalizes stability
analysis of dynamic systems and can be completely automated for discrete-time
finite-domain systems.

The rest of this paper is organized as follows. Section 2 defines the basic con-
cepts of dynamic systems: time, traces, transductions, behaviors, and generalized
Kripke structures. Section 3 develops Timed V-automata, giving the syntax and
semantics. Section 4 proposes a formal method for behavior verification. Sec-
tion 5 concludes this paper and points out future research directions. Theorems
and lemmas are proved in Appendix A. A typical cat-mouse [4] example is used
throughout the paper to illustrate the ideas. However, the method is applied
to various robot testbeds in our Laboratory for Computational Intelligence at
UBC, including robot soccer players [13, 21].

2 Dynamic Systems and Behaviors

In this section, we define the basic concepts of dynamic systems: time, traces,
transductions, behaviors and generalized Kripke structures.

2.1 Time, Traces and Transductions

The key to understanding dynamic systems is understanding time. For our pur-
pose, time is a linearly ordered set with a least element, the start time point.
A measure is defined on some subsets of time points so that the duration of an
interval of time can be captured. Formally, a time structure is defined as follows.

Definition 2.1 (Time structure) A time structure is a pair (T, p) where

— T is a linearly ordered set (T,<) with O as the least element;
— let o be a family of subsets of T including [0,t) for allt € T, (T ,o) be
a measurable space, and RT be the set of non-negative real numbers; then,

pio—RYU{oo} is a measure and (T , o, 1) forms a measure space*.

In this paper, we assume that (1) time is complete, i.e., for any subset of time
points, if there is an upper (lower) bound, there is a least upper (greatest lower)
bound, and (2) time is infinite, i.e., u(7) = oco. Condition (1) is important for
our purpose; it guarantees that the time structure is well-defined: both Zeno
sequence and rational time are excluded. Any time structure can be augmented
to satisfy condition (2) by adding infinite number of time points. A time structure
is discrete iff ¥t > 0,[0,1) is finite; it is continuous iff Vt1,t2,t1 < ta = Jt, 11 <
t < to. For example, the set of natural numbers A" and the set of non-negative
real numbers R*, with u([0,¢)) = ¢, are both time structures; A is discrete and
R is continuous. If 7 is discrete, for any ¢ > 0, let pre(t) denote the least upper
bound of [0,¢). Furthermore, let p([t1,%2)) = p([0,2)) — 1([0,%1)).

The study of dynamic systems is the study of changes over time. Changes
over time can be captured by traces. Formally, let 7 be a time structure and
A be a domain of values. A {race v is a mapping from time to a domain, i.e.,
v:T — A. For example, v = At.e~? is a trace. The set of all traces from time 7
to domain A forms a trace space, denoted A7 .

A dynamic system is composed of a set of interconnected transformational
processes. Transformational processes can be captured by transductions. A trans-
duction is a causal mapping from an input trace space to an output trace
space. Formally, let 7 be a time structure, A and A’ be domains, which can
also be products of domains. Let A7 and A’7 be trace spaces. Two traces
v1,v2 in the same trace space are coincident up to t, written vy ~<; vy, iff
V' < t, vi(t') = wo(t'). A mapping F : AT — A7 is a transduction iff
Yoy, v9,t, 01 ~<p v2 = F(v1) ~<; F(v2). For example, a state automaton with
an initial state defines a transduction on discrete time; a temporal integration
with a given initial value is a typical transduction on continuous time. A translit-
eration 1s a primitive transduction where the output at any time is a function
of the input at that time. Just as nullary functions represent constants, nullary
transductions represent traces.

Bt te) = {tlh <t <t}
* The concepts of measurable space, measure and measure space follow [12].

2.2 Behaviors of Dynamic Systems

A dynamic system can be represented as a set of equations, each of which corre-
sponds to a transduction: v; = Fi(v1,...,vn), 2 = 1,...,m,m < n. A trace of the
dynamic system is a tuple (vy, ..., v,) that satisfies the set of equations [16]. The
behavior of the dynamic system is the set of traces of the dynamic system.
Consider an example of Cat and Mouse modified from [4]. Suppose a cat
and a mouse start running from initial positions X. and X,,, respectively, with
X. > X,, > 0 and with constant velocities V. < V,,, < 0. Both of them will
stop running when the cat catches the mouse, or the mouse runs into the hole
in the wall at 0. Let x. and x,, be the position traces of the cat and the mouse,
respectively. This system can be modeled by the following set of equations:

To = /(Xc)(Vc T), Tm = /(Xm)(Vm), r=(2c>2Tm) Alzm >0) (1)

where [(X) is a temporal integration with initial state X. At any time ¢, r(¢)
is 1 if the running condition (z.(t) > zm(t)) A (zm(t) > 0) is satisfied and
0 otherwise. The behavior of this system is the set of tuples (z.,), each of
which satisfies the set of equations.

A useful and important type of behavior is state-based and time-invariant.
Intuitively, a state-based and time-invariant behavior is a behavior whose traces
after any time are totally dependent on the current snapshot. State-based and
time-invariant behaviors can be defined using generalized Kripke structures. We
define a generalized Kripke structure K as a triple (§,~+,©) where S is a set
of states, ~C 8 x RT x S is a state transition relation, and ® C S is a set of
initial states. We denote (s1,%, s2) €~ as s; AR s9. The state transition relation
~ satisfies the following conditions:

— natwality: s A s;
— transitivity: if sq LEN s9 and s9 I3 s3, then s N $3;
— infinity: Vs € 8,3t > 0,5 € S,s«t» s'.

¢ is a generalized Kripke

For example, (R,~>, @) with s; A so Iff 59 = s1e”
structure.

A time structure 7T is a time structure of K iff (1) for any time point ¢; in 7
and any transition s; R sg in K, there is t2 > t1 in T such that ¢ = u([t1,12)),
and (2) for any time points ¢; and ¢3 with ¢t; < #3 and any state s; in S, there
18 s9 in 8 such that s N([Qﬁ’h)) s
Lemma 2.1 IfT is a discrete time structure of K, then there is § > 0, for any

t > 0,pu([pre(t),t)) = d. And K can be represented as the transitive closure of

L. . §
transitions of next relation s1 ~ ss.

For example, (R,~, @) with s; 34 sy iff s5 = f™(s1)® is a generalized Kripke
structure with discrete time.

5 apply function f n times

Not all generalized Kripke structures have time structures. For example, the

... .. 1 2 .
transitive closure of a two-state transition system s; ~+ s, s3 ~ s1 has no time
structure. However, by adding an intermediary state s%, the transitive closure of

s1 ~~ S9, 89 X sh, sh o s1 has a time structure. A generalized Kripke structure
1s well-defined iff it has a time structure.

A trace of a well-defined generalized Kripke K on its time structure 7 is
a mapping v : T — S such that (1) v(0) € @ and (2) Vt1,i2,t1 < t2 =

v(ty) #ltyta)) v(t2). The behavior of K on T is the set of traces of K on 7. The
behavior of a dynamic system is state-based and time-invariant iff it 1s equal
to the behavior of some generalized Kripke structure. In the rest of this paper,
we focus on state-based and time-invariant behaviors represented as generalized
Kripke structures.

3 Timed V-automata for Requirements Specification

In this section, we define Timed V-automata, giving the syntax and semantics.
First, we introduce Discrete Timed V-automata where time is discrete. Then, we
generalize Discrete Timed V-automata to Timed V-automata where time can be
either discrete or continuous.

3.1 Discrete Timed V-automata

Discrete V-automata are non-deterministic finite state automata over infinite se-
quences. These automata were originally proposed as a formalism for the spec-
ification and verification of temporal properties of concurrent programs [10].
Formally, a V-automaton is defined as follows.

Definition 3.1 (Syntax of V-automata) A V-automaton A is a quintuple
(Q, R, S,e,c) where Q) is a finite set of automaton-states, R C @Q is a set of
recurrent states and S C @ is a set of stable states. With each q € Q, we
associate an assertion e(q), which characterizes the entry condition under which
the automaton may start its activity in q. With each pair q,q' € @), we associate
an assertion c(q,q'), which characterizes the transition condition under which
the automaton may move from q to q'.

R and S are generalizations of accepting states to the case of infinite inputs. We
denote by B = @Q — (RUS) the set of non-accepting (bad) states.
A V-automaton is called complete iff the following requirements are met:

- \/qEQ e(q) is valid.
— For every q € Q, Vq’EQ c(q,q') is valid.

Any automaton can be transformed to a complete automaton by introducing an
additional bad (error) state ¢z, with the entry condition: e(qg) = _'(vqu e(q)),

and the transition conditions:

c(qr, qr) = true
c(qe,q) = false for each q € Q)

e(q,qe) = —(\/ e(q,q")) for each q € Q.
7'€Q

One of the advantages of using automata as a specification language is its
graphical representation. It is useful and illuminating to represent V-automata
by diagrams. A V-automaton can be depicted by a labeled directed graph where
automaton-states are depicted by nodes and transition relations by arcs. The
basic conventions for such representations are the following:

— The automaton-states are depicted by nodes in a directed graph.

— Each initial automaton-state (e(q) # false) is marked by a small arrow, an
entry arc, pointing to it.

— Arcs, drawn as arrows, connect some pairs of automaton-states.

— Each recurrent state is depicted by a diamond inscribed within a circle.

— Each stable state is depicted by a square inscribed within a circle.

Nodes and arcs are labeled by assertions. The labels define the entry conditions
and the transition conditions of the associated automaton as follows.

— Let ¢ € @ be a node in the diagram corresponding to an initial automaton-
state. If ¢ is labeled by 1 and the entry arc is labeled by ¢, the entry condition
e(q) is given by e(q) = ¢ A . If there is no entry arc, e(q) = false.

— Let q, ¢’ be two nodes in the diagram corresponding to automaton-states. If
q' is labeled by ¢, and arcs from ¢q to ¢’ are labeled by ¢;,7 = 1---n, the
transition condition ¢(q, ¢') is given by ¢(q,4") = (p1 V-V @n) A, If there
is no arc from ¢ to ¢', ¢(q,¢') = false.

A diagram representing an incomplete automaton can be interpreted as a com-
plete automaton by introducing an error state and associated entry and transi-
tion conditions. Some examples of V-automata are shown in Fig. 1.

aF TE

() i % C) i
N) 0
J N &) e

@ (b) ©

2]
W)

m

Fig. 1. V-automata: (a) reachability (b) safety (c) bounded response

The formal semantics of discrete V-automata is defined as follows. Let A be
a domain of values. An assertion a on A corresponds to a subset V(a) of A. A
value a € A satisfies an assertion o on A, written a = « or a(a), iff a € V(a).
Let T be a discrete time structure and v : 7 — A be a trace. A run of A over
v is a mapping r : T — @ such that (1) v(0) = e(r(0)); and (2) for all £ > 0,
v(t) | c(r(pre(t)),r(t)). A complete automaton guarantees that any discrete
trace has a run over it.

If r is a run, let Inf(r) be the set of automaton-states appearing infinitely
many times in r, i.e., Inf(r) = {q|Vt3ty > ¢, 7(to) = q}. Notice that the same
definition can be used for continuous as well as discrete time traces. A run r is
defined to be accepting iff:

1. Inf(r)N R # 0, i.e., some of the states appearing infinitely many times in r
belong to R, or

2. Inf(r) C S, i.e., all the states appearing infinitely many times in r belong
to S.

Definition 3.2 (Semantics of V-automata) A V-automaton A accepts a trace
v, written v |E A, iff all possible runs of A over v are accepting.

For example, Fig. 1(a) accepts any trace that satisfies =G only finitely many
times, Fig. 1(b) accepts any trace that never satisfies D, and Fig. 1(c) accepts
any trace that will satisfy F' in the finite future whenever it satisfies E.

In order to represent timeliness, we extend V-automata with time. Timed
V-automata are V-automata augmented with timed automaton-states and time
bounds. Formally, a timed V-automaton is defined as follows.

Definition 3.3 (Syntax of Timed V-automata) A timed V-automaton 7.4
is a triple (A, T, 1) where A = (Q, R, S,e,¢) is a V-automaton, T C Q is a set
of timed automaton-states and 7 : T'U {bad} — Rt U {cc} is a time function.

A V-automaton is a special timed V-automaton with 7' = @ and 7(bad) = co.
Graphically, a T-state is denoted by a nonnegative real number indicating its
time bound. The conventions for complete V-automata are adopted for timed
V-automata. Fig. 2 shows an example of a timed V-automaton.

Fig. 2. Real-time response

The formal semantics of Discrete Timed V-automata is defined as follows. Let
r: 7 — @ bearun and I C T be a time interval. For any P C @, let Sg(P) be
the set of consecutive P-state segments of 7, i.e., |y € Sg(P) for some interval
T'iff Vt € I, »(t) € P. A run r satisfies the time constraints iff

L. (local time constraint) for any ¢ € 7" and any interval I of 7, if r|; € Sg({q})
then p(7) < 7(¢) and

2. (global time constraint) let B = @ — (RU S) and xp : @ — {0,1} be the
characteristic function for set B; for any interval I of 7, if r; € Sg(B U S)
then [, xp(r(t))dt < v(bad).

Let v : 7 — A be a trace. A run r of TA over v is a run of A over v; r is
accepting for T A iff

1. 7 is accepting for .4 and
2. r satisfies the time constraints.

Definition 3.4 (Semantics of Timed V-automaton) A timed V-automaton
T A accepts a trace v, written v = T.A, iff all possible runs of T.A over v are
accepling.

For example, Fig. 2 specifies a real-time response property meaning that any
event (E) will be responded to (F') within 5 time units.

3.2 Timed V-automata

Now we generalize Discrete Timed V-automata to Timed V-automata that can
accept general traces, with discrete time traces as special cases. The syntax
and semantics of Timed V-automata are the same as those of Discrete Timed
V-automata, except for the definitions of runs.

The important concept of general runs is the generalization of the consecution
condition. Let A = (@, R, S, e, ¢) be a V-automaton and v : T — A be a trace.
A run of A over v is a mapping r : T — @ satisfying

1. Initiality: v(0) = e(r(0));
2. Consecution:
— Inductivity: ¥t > 0,3q € Q,t' < t,Vt" ¢/ <t" <t,r(t") = qand v(t)
e(r(t"),r(t)) and
— Continuity: Vt,3¢ € Q,t' > t,¥t";t <t < t',r(t") = q and v(¢") |

c(r(t), r(t")).

When 7T is discrete, the two conditions in Consecution reduce to one, i.e., Vi >
0,v(t) | c(r(pre(t)), r(¢)) and if, in addition, A is complete, every trace has a
run. However, if 7 is not discrete, even if A is complete, not every trace has
a run. For example, a trace with infinite transitions among automaton-states
within a finite interval has no run. A trace v is specifiable by A iff there is a run
of A over v. Any discrete trace is specifiable by a complete automaton.

The definitions of accepting runs for V-automata and for Timed V-automata
are the same as those in discrete cases. For example, Fig. 1(a) accepts the traces
r = M.Ce™" for G = |z] < e. Fig. 1(b) accepts the traces z = At.sin(t) for
D = |z| > 1. Fig. 1(c) and Fig. 2 accept the traces z = At.sin(¢t) for E =2 > 0
and F' =2z < 0.

For the Cat and Mouse example, a formal requirements specification is shown
in Fig 3: indicating that the cat should win.

Running: 0< X< X
CaWwins: g < X, < Xy

MouseWins: Xpn <0< X

Fig. 3. Requirements specification: the cat should win

The distinguished features of timed V-automata are the following;:

— Unlike other timed and/or hybrid automata, they are language recognizers
rather than language generators. For example, they cannot generate traces
like At.C'e™* and At.sin(t), but can recognize some qualitative properties of
these traces.

— They are finite state but can accept continuous-time hybrid-domain traces.
Pre-sampling of the behavior of dynamic systems is not required.

Using timed V-automata, qualitative properties such as liveness, reachability and
safety of hybrid systems can be formally specified and verified.

3.3 The Power of Timed V-automata

It has been shown [10] that Discrete V-automata have the same expressive power
as Buchi Automata [14] and the Extended Temporal Logic (ETL) [15], which
are strictly more powerful than (discrete) Propositional Linear Temporal Logic
(PLTL) [14, 15]. Discrete Timed V-automata is a non-trivial generalization of
Discrete V-automata; therefore, Discrete Timed V-automata is strictly more pow-
erful than Discrete V-automata. However, when time is continuous, V-automata
is no longer more powerful than PLTL, since the ability of counting in automata
[11] is lost when time is dense. We have also developed Timed Linear Tempo-
ral Logics (TLTL) [21]. The relationship among Timed Y-automata, TLTL and
other automata and logics is discussed in [16].

4 A Formal Method for Behavior Verification

Let v be a trace and A be a V-automaton; we have defined that v is specifiable
by A iff there is a run of A over v. Let B be the behavior of a dynamic system;
B is specifiable by A iff Vv € B, v is specifiable by 4. Let B be a behavior
specifiable by A and TA = (A, T, 7) be a timed V-automaton; B satisfies 7 A,
written B |=TA, iff Vv € Bjv = T A.

In this section, we propose a formal method for behavior verification, given
a state-based and time-invariant behavior represented by a generalized Kripke
structure and a requirements specification represented by a timed V-automaton.

Let ¢ and 1 be assertions on states and time durations. For a generalized
Kripke structure K = (S§,~, 0), let {¢}K{v} denote the validity of the following
two consecution conditions:

— Inductivity {e}KX={1}: 36 > 0,Y0 < t < 8,Vs, (p(s) A (55 8') = ¢(s',1)).
— Continuity {p}K+{¢}: (s) = 36 > 0,Y0 < t < 6,Vs', ((s > &) = ¢(s', 1))

If 7 is discrete, these two conditions reduce to one, i.e., ¢(s)A(s 2 s') = P(s',9)
where § is the minimum time duration between two states.

The formal method for behavior verification consists of a set of model-
checking rules, which is a generalization of the model-checking rules developed
for concurrent programs [10].

There are three types of rules: invariance rules (T), stability or eventuality
rules (L) and timeliness rules (T). Let A be a V-automaton (@, R, S, e, ¢) and K
be a generalized Kripke structure (S,~+, ©). The invariance rules check to see if
a set of assertions {a}q.eq is a set of invariants for A and K, i.e., for any trace v
of K and any run r of A over v, ¥t € T, v(t) |= a,(s). Given B = Q —(RUS), the
stability or eventuality rules check if the B-states in any run of A over any trace
of K will be terminated eventually. Given T A as a timed Y-automaton (A, T, 7),
the timeliness rules check if the T-states and the B-states in any run of A over
any trace of K are bounded by the time function 7. The set of model-checking
rules can be represented in first-order logic, some of which are in the form of
(eI}

Here are the model-checking rules for a behavior represented by K = (S, ~,
O) and a specification represented by T.A = (A, T, 1) where A = (Q, R, S, e, c):

Invariance Rules (I): A set of assertions {ag}qeq is called a set of invariants

for K and A iff

(I1) Initiality: Yq € Q, 0 Ae(q) = aq.
(I2) Consecution: Vq,q' € Q,{aq}K{c(q,q) = aq}.

The Invariance Rules are the same as those in [10] except that the condition for
consecution is generalized.

Stability or Eventuality Rules (L): Given that {ag}qeeq is a set of invariants
for K and A, a set of partial functions {py}seq : S — RT is called a set of
Liapunov functions for K and A iff the following conditions are satisfied:

(L1) Definedness: Yq € Q, ay = 3w, py = w.

(L2) Non-increase: Vg € S,q' € Q, {ag A py = w}K {e(q,¢) = py < w} and
Vg€ Q.q' €5, {agApg = wiK¥{c(q,¢') = py < w}.

(L3) Decrease: Je > 0,Vq € B,¢' € Q, {ag A pg = w}K {c(q,q') = w < —e}
and Vg € Q,¢' € B, {ag A pg = wiKH{c(q,q') = 24~ < —¢}.

The Stability or Eventuality Rules generalize both stability analysis of discrete
or continuous dynamic systems [8] and well-foundedness for finite termination
in concurrent systems [10].

Timeliness Rules (T): Corresponding to two types of time bound, we define
two timing functions. Let {ag}4eq be invariants for K and A. A set of partial
functions {v4}qer is called a set of local timing functions for K and T.A iff
vq : 8 = R* satisfies the following conditions:

(T1) Boundedness: Vg € T, ag = v4 < 7(q) and Yq € T,q¢' € Q, {ag Ay, =
wiK {ec(q,¢') => w > t}.
(T2) Decrease: Vg € T, {ag Ay = w}K{c(q,q) = 21— < —1}.

A set of partial functions {n, }4eq is called a set of global timing functions for K
and T A iff n, : § - R7 satisfies the following conditions:

(T3) Definedness: ¥q € Q, ag = Jw, g = w.
(T4) Boundedness: ¥q € B, ag = 14 < 7(bad).
(T5) Non-increase: Yq € S,q' € Q, {ag Ay = w}K {c(q,¢') = ny < w} and
VeeQR,q €S {agAn, =wiKT{c(q,q) = ny < w}.
(T6) Decrease: ¥q € B,q' € Q, {ag Ang = wiK {c(q,¢") = nq't_
Vg€ Q,q¢ € B, {agAny = w}K*{c(q,q) = nq/t—w < -1}
The Timeliness Rules are modifications of the Eventuality Rules; they enforce
real-time boundedness, in addition to termination.
A set of model-checking rules is sound if verification by the rules guarantees
the correctness of the behavior against the specification; it is complete if the

w

< —1} and

correctness of the behavior against the specification guarantees verification by
the rules.

Theorem 4.1 The set of model-checking rules (I), (L) and (T) is sound given
that the behavior of K is specifiable by A.

Theorem 4.2 The set of model-checking rules (I), (L) and (T) is complete
given that time s discrete.

These theorems are proved in Appendix A. The general condition for the com-
pleteness of the rules has been described elsewhere [16].
We illustrate this verification method with the Cat and Mouse example. We

show that the behavior of the cat and mouse in Section 2 satisfies the require-
ments specification in Fig. 3, given that the constant A =)‘i“ — g—’" satisfies

A > 0. The generalized Kripke structure K for the system can be derived from

the constraint net equations Eq. 1:i.e., (R xR, ~+, @) where (z¢, Zm) A G)

if

— > 2y, >0,z >, >0, 2, =z, + Vot, 2l = x.+ Vt; or
X >y >0, 2, = = TVmmTalVe 5 = TemTu. o

V=V V=V
— T > Ty > 0,2, =0, 2, = 7“‘/’”‘,_“7"“0 >0,t=—§=;or

— (x> xm >0), 2. =2, Ty = T
and (X., X,n) € O with)‘(,“ > i(/—’”
Let Inv denote the invariant assertion %— €,’“ = A. Associate with automaton-
states gg, 1 and ¢ (Fig. 3) the assertions Running A Inv, CatWins and false,

respectively. Note that

{Running A Inv}K{Running = Running A Inv}

since the derivative of $ — $# is 0 given that Running is satisfied, and

{Running A Inv}K{MouseWins = false}

7 — 7 < 0. Therefore, the set of assertions is a set

since MouseWins implies
of invariants.

Associate with ¢q, g1 and g5 the same function p : R x R — RT, such that
p(ze,zm) = 0if not Running and p(z., m) = —(’;,z —}—%) if Running. Function
p 1s decreasing at qp with rate 2. Therefore, it is a Liapunov function.

Furthermore, the behavior of the cat and mouse is specifiable by the automa-
ton in Fig. 3. According to the soundness of the rules, the behavior satisfies the
required property.

A model-checking algorithm can be deduced from the set of rules (I), (L)
and (T) for discrete-time finite-domain systems. The algorithm has polynomial
time complexity with respect to both the size of the system and the size of the
specification [16].

5 Conclusion and Further Research

We have presented in this paper Timed V-automata for the specification and
verification of dynamic systems. To our knowledge, Timed V-automata are the
first proposal for recognizing or representing timed dynamic behaviors, such
as safety, reachability, liveness and real-time response, of continuous as well
as discrete time dynamic systems using a finite number of states. In addition,
we have proposed a formal model-checking method for behavior verification of
dynamic systems. This method generalizes stability analysis of dynamic systems
and can be completely automated for discrete-time finite-domain systems.

Much related work has been done in the last few years. The Timed Buchi
Automata (TBA) model has been proposed [2] to express constant bounds on
timing delays between system events. Other developments along this line include
Timed Transition Systems [5] and Time Petri Nets [3]. Hybrid Automata [1] can
be viewed as a generalization of TBA, in which the behavior of variables is
governed in each state by a set of differential equations. Similar work includes
Hybrid Statecharts and Phase Transition Systems [9].

The major difference between our work and others is that we use Constraint
Nets as language generators and Timed V-automata as language recognizers.
Timed Y-automata can capture qualitative properties of traces, but they are not
“fine” enough to distinguish all the different continuous traces. In the near future,
we intend to explore semi-automatic and automatic verification procedures for
various classes of hybrid dynamic systems.

Acknowledgements

This research is supported by Wilson Center for Research and Technology of Xe-
rox Corporation, Natural Sciences and Engineering Research Council in Canada
and the Institute for Robotics and Intelligent Systems.

References

1. R. Alur, C. Courcoubetis, T. A. Henzinger, and P. Ho. Hybrid automata: An algo-
rithmic approach to the specification and verification of hybrid systems. In R. L.
Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid Systems, num-
ber 736 in Lecture Notes on Computer Science, pages 209 — 229. Springer-Verlag,
1993.

2. R. Alur and D. Dill. Automata for modeling real-time systems. In M. S. Paterson,
editor, ICALP90: Automata, Languages and Programming, number 443 in Lecture
Notes on Computer Science, pages 322 — 335. Springer-Verlag, 1990.

3. B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems
using Time Petri Nets. /EEE Transactions on Software Engineering, 17(3):259 —
273, March 1991.

4. R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors. Hybrid Systems.
Number 736 in Lecture Notes on Computer Science. Springer-Verlag, 1993.

5. T. A. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems. In J.W. de-
Bakker, C. Huizing, W.P. dePoever, and G. Rozenberg, editors, Real-Time: Theory
in Practice, number 600 in Lecture Notes on Computer Science, pages 226-251.
Springer-Verlag, 1991.

6. G. F. Khilmi. Qualitative Methods in the Many Body Problem. Science Publishers
Inc. New York, 1961.

7. N. G. Leveson and P. G. Neumann, editors. IEFFE Transactions on Software En-
gineering. IEEE Computer Society, January 1993. Special Issue on Software for
Critical Systems.

8. D. G. Luenberger. Introduction to Dynamic Systems: Theory, Models and Appli-
cations. John Wiley & Sons, 1979.

9. O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In J.W. de-
Bakker, C. Huizing, W.P. dePoever, and G. Rozenberg, editors, Real-Time: Theory
in Practice, number 600 in Lecture Notes on Computer Science, pages 448 — 484.
Springer-Verlag, 1991.

10. Z. Manna and A. Pnueli. Specification and verification of concurrent programs
by V-automata. In Proc. 14th Ann. ACM Symp. on Principles of Programming
Languages, pages 1-12, 1987.

11. R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, 1971.

12. H. L. Royden. Real Analysis, 3rd edition. Macmillan Publishing Company, 1988.

13. M. Sahota and A. K. Mackworth. Can situated robots play soccer? In Proc.
Artificial Intelligence 94, pages 249 — 254, Banff, Alberta, May 1994.

14. W. Thomas. Automata on infinite objects. In Jan Van Leeuwen, editor, Handbook
of Theoretical Computer Science. MI'T Press, 1990.

15. P. Wolper. Temporal logic can be more expressive. Information and Control, 56:72
~ 99, 1983.

16. Y. Zhang. A foundation for the design and analysis of robotic systems and be-
haviors. Technical Report 94-26, Department of Computer Science, University of
British Columbia, 1994. Ph.D. thesis.

17. Y. Zhang and A. K. Mackworth. Specification and verification of constraint-based
dynamic systems. In A. Borning, editor, Principles and Practice of Constraint
Programming, Lecture Notes in Computer Science 874, pages 229 — 242. Springer
Verlag, 1994.

18. Y. Zhang and A. K. Mackworth. Will the robot do the right thing? In Proc.
Artificial Intelligence 94, pages 255 — 262, Banff, Alberta, May 1994.

19. Y. Zhang and A. K. Mackworth. Constraint Nets: A semantic model for hybrid
dynamic systems. Theoretical Computer Science, 138(1):211 — 239, 1995. Special
Issue on Hybrid Systems.

20. Y. Zhang and A. K. Mackworth. Constraint programming in constraint nets. In
V. Saraswat and P. Van Hentenryck, editors, Principles and Practice of Constraint
Programming, pages 49 — 68. MIT Press, 1995.

21. Y. Zhang and A. K. Mackworth. Synthesis of hybrid constraint-based controllers.
In P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid Systems II,
Lecture Notes in Computer Science 999, pages 552 — 567. Springer Verlag, 1995.

A Proofs of Theorems and Lemmas

Lemma 2.1 If T is a discrete time structure of K, then there 1s § > 0, for any
t > 0,u([pre(t),t)) = . And K can be represented as the transitive closure of

L. . §
transitions of next relation s1 ~ ss.

Proof: Assume p([pre(t),t)) = ¢ and p([pre(t’),t')) = &', such that § < §’. For

time point pre(t’) and s; 2 2, there is no time ¢ such that p([pre(t'),t"))) = 4.
Therefore, 6 =4'. O

Theorem 4.1 The set of model-checking rules (I}, (L) and (T) is sound given
that the behavior of K is specifiable by A.

In order to prove this theorem, we shall introduce a method of continuous
induction modified from [6]. A property I' is inductive on a time structure 7 iff
I is satisfied at all ¢t < tq € T implies that I" is satisfied at tq, for all tqc € 7. I’
is continuous iff I' is satisfied at ¢; € 7 implies that It > ¢, Vi, 1o <t < ¥y, I'is
satisfied at t. We should notice that when 7 is discrete, any property is trivially
continuous. The theorem of continuous induction says:

Theorem A.1 If a property I' is inductive and continuous on a time structure
T and I' is satisfied at 0, I' s satisfied at allt € T.

Proof: We call a time point t € 7 regular iff ' is satisfied at all ¢/, 0 < ¢ < ¢.
Let T denote the set of all regular time points. 7" is not empty since I is satisfied
at 0. We prove the theorem by contradiction, i.e., assume that I" is not satisfied
at all t € 7. Therefore, T C T is bounded above; let tg = \/ T € T be the least
upper bound of T' (T is complete). Since #g is the least upper bound, it follows
that I" is satisfied at all £, 0 < ¢ < ¢y. Since I is inductive, it is satisfied at time
tg. Therefore, to € T

Since T C T, tg is not the greatest element in 7. Let 77 = {t|t > #o}.
There are two cases: (1) if 77 has a least element #’, since I' is inductive, t' € T
is a regular time point. (2) otherwise, for any t' € T", {t|[tq < ¢ < '} # 0.
Since I' is also continuous, we can find a # € 7" such that I' is satisfied at all
T" = {t|ts < t < t'}. Therefore, t is a regular time point V¢ € T". Both cases
contradict the fact that #y is the least upper bound of the set 7T". O

Using the method of continuous induction, we obtain the following three
lemmas.

Lemma A.1 Let {az}qeq be invariants for K and A. If r is a run of A over a
trace v of K, ¥t € T, v(t) |= ar(ey-

Proof: We prove that the property v(t) |= . is satisfied at 0 and is both
inductive and continuous on any time structure 7.

— Initiality: Since v(0) = © and v(0) |= e(r(0)), we have v(0) = @ A e(r(0)).
According to the Initiality condition of invariants, we have v(0) |= a, (o).

— Inductivity: Suppose v(t) = @, is saisfied at 0 <t < to. Since r is a run
over v, according to the Inductivity of runs, ¢ € @ and 3| < 1o, V) <t <
to, r(t) = ¢ and v(to) = ¢(q,7(t0)). According to the Inductivity condition of
the invariants, 3t} < to, Vi, <t < tg, v(t) E a4 implies v(t0) | (g, r(t0)) =
Qr(ty)- Therefore, let ¢’ = max(t],15),Vt' <t < to, r(t) = q, v(t) | aq4
(assumption), v(to) k= c(q,7(t0)) = aru,) and v(to) = c(q,7(to)). Thus,
v(to) = Qr(ty)-

— Continuity: Suppose v(tg) = (). Since r is a run over v, according to
the Continuity of runs, 3¢ € @ and] > t,,Vig < t <), r(t) = ¢ and
v(t) E e(r(to),q). According to the Continuity condition of the invariants,
At > 1o, Vto <t < th, v(t) E c(r(to), ¢) = a4. Therefore, let ¢/ = min(t],t5),
Vo <t <t',r(t) = q, v(to) F ar@,) (assumption), v(t) = c(r(to), q) = a4
and v(t) = c(r(to), q). Thus, Vig <t <, v(t) = o).

O

Lemma A.2 Let {ag}qeq be invariants for K and A and r be a run of A over
a trace v of K. If {pg}qeq is a set of Liapunov functions for K and A, then

— pr(t2)(1!(t2)) < pr(tl)(v(tl)) when Vt; <t <ty,r(t) € BUS,
)

- p'"(t“(U(L?)[:f;)(;l)(v(tl) < —c when ty <ty and Vit <1t <t2,r(t) € B, and

— for any run v and any interval I of T, if iy € Sg(BUS), [, xp(r(t))dt < co.

Proof: For any run r over v and for any interval I of T, if rj; € Sg(BUS), p on
I is nonincreasing, i.e., for any t; <t3 € I, pr(s,)(v(t1)) > pr(s,)(v(22)), and the
decreasing speed at intervals of the bad states is no less than €. Let m be the
upper bound of {p,(v(t))[t € I}. Since py > 0, [, xp(r(t))dt < m/c < co. O

Lemma A.3 Let {og}q4eq be invariants for K and A and r be a run of A over
a trace v of K. If there exist local and global timing functions for K and T A,
then

— forany q € T, any run r and any interval I of T, if ri; € Sg({q}), p(I) <
7(q) and

— for any run r and any interval I of T, if rip € Sg(BUS), [, xp(r(t))dt <
T(bad).

Proof: Similar to the proof of Lemma A.2. O

Proof of Theorem 4.1: For any trace v of K, there is a run since v is speci-
fiable by .A. For any run r of A over v, if any automaton-state in R appears
infinitely many times in r, r is accepting for 4. Otherwise there is a time point
to, such that the sub-sequence r» on I = {¢t € T|t > to} has only bad and sta-
ble automaton-states. If there exist a set of invariants and a set of Liapunov
functions, fI xB(r(t))dt is finite. Therefore, all the automaton-states appearing
infinitely many times in r belong to S; r is accepting for A too. If there exists
a set of local and global timing functions, r satisfies the time constraints; r is
accepting for 7. 4. Therefore, the behavior of K satisfies the specification 7.4. O

Theorem 4.2 The set of model-checking rules (I), (L) and (T) is complete
given that time is discrete.

Proof: If T A is valid over K, then there exist a set of invariants, a set of Lia-
punov functions, and a set of local and global timing functions that satisfy the
requirements.

Let n(s, s') denote s 2, &' where & is the minimum time duration between two
states. The invariants can be constructed as the fixpoint of the set of equations:

ag(s') = (3g,5,a4(s) An(s,s') Aclg, d')(s") \/(B(s') Aeld')(s")).

We can verify that {ag}seq is a set of assertions on the states of K and satisfies
the requirements of initiality and consecution. Furthermore, s = a4 iff (g, s) is
a reachable pair for A and K.

Given the constructed invariants {a, }4eq, a set of Liapunov functions {p, }4e@
and a set of global timing functions {n,},eq can be constructed as follows:

— Vg € R, s |E aq, let py(s) = 0 and n4(s) = 0.

— Yq & R,s E aq, pg(s) and ny(s) are defined as follows. Construct a directed
graph G = (V, E), such that (¢,s) € Viff ¢ € R, s = ag, and (g, s) — (¢',s)
in E iff n(s,s’) Ac(q, ¢')(s'). For any path p starting at (g, s), let |p|p be the
number of B-states in p. Let pq(s) = sup{|p|r} and n,4(s) = dp,(s).

We can verify that {pg}seq is a set of Liapunov functions, and that {7,}4eq is
a set of global timing functions.

Similar construction can be carried out for local timing functions. A set of
local timing functions {v,}ser can be constructed as follows. For all ¢ € T,
construct a directed graph G = (V, E), such that s € V iff s = ay, and s — &'
in E iff n(s,s") Ac(q,q)(s"). For any path p starting at s, let |p| be the number
of states in the path. Let v,(s) = d sup{|p|}. We can verify that {v,}se7r is a set
of local timing functions. O

This proof is the basis of the verification algorithm for discrete systems [16].

This article was processed using the IX¥TEX macro package with LLNCS style

