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Abstract

Thegoalof creatingan integratedcognitiverobot
is still only a tantalizingdream.Currentartificial
intelligenceandroboticsresearchis highly diver-
gentwith little or nocommonalityamongspecial-
izedsubfields.New rich taskdomainsareneeded
to pose the right challengesto extant theories
and promoteconvergence. We proposesoccer-
playing as such a task since it requiressituated
robotics, perception,real-time decisionmaking,
planning, plan recognition, learning and multi-
robot coordinationand control. The technology
to performreal-timevision andbuild autonomous
robotsis available;theDynamitetestbedhasbeen
built to performexperimentswith multiple robots.
A soccertournamenthasbeencarriedout using
the testbedto evaluateaspectsof the proposed
reactivedeliberationrobot architecture. The re-
sults raisenew issuesand problemsfor research
on robotic agentsoperatingin dynamicenviron-
ments.

1 Introduction

Oneof the dreamsof Artificial Intelligenceis the construc-
tion of integratedcognitive robots. Such robots must be
able to integrateperception,reasoning,and action. These
robots should be able to operatein the real world, which
is dynamic and uncertain,not just in highly restricteden-
vironmentssuchas factories. If building real robotsis still
part of the dreamof AI, thenwe needto developtools and
theoriesto accomplishthis goal.

Unfortunately,current researchin AI is highly diver-
gentwith little or no overlapbetweenspecializedsubfields
such as computationalvision, knowledge representation,
robotics, and learning. Each group has its own confer-
encesand journals,and when they do all meetat a single
conference,they diverge in parallel sessions.The version
of divide-and-conquerthat we havebeenplaying, namely,
functionaldecomposition,is not now the beststrategy.

For significantprogressto be madeon the AI dream,
researchersmustwork on commontasks.But which tasks?
It is clear that any sciencemust close its eyesto most of
the allures and mysteriesof nature and choosea highly
circumscribedfragmentof reality to examine. Indeed,the
key experimentaltask domainmay well be an abstraction
of the world; but we must take care to preservethe key
problemsandnot abstractthemaway. For example,Galileo
chose,ashis blocksworld, bodiessliding on a friction-free
inclinedplanein avacuum;Newtonconsideredpointmasses
of infinite density.Thedangerin selectingaproblemdomain
is that researchersmuststeera coursebetweentheScyllaof
enunciatinga vacuousgeneraltheory of an artificial world
andtheCharybdisof implementinga collectionof quick and
dirty hacksthatwork, aftera fashion,on anoverly complex
domainnot properlyabstracted,delimitedor understood.

Therehavebeena numberof task domainsthat have
served to focus AI researchsince its inception. Chess,
the blocks world, video games,Tweety, the Yale Shooting
Problemand many othershaveall servedto motivateand
focus the efforts of communitiesof researchers.We should
realize that the choice of task domain is a theory-laden
decision; that decision should be taken explicitly by the
researchcommunity.

The GoodOld FashionedAI and Robotics(GOFAIR)
[Mackworth,1993]researchparadigmhasshapedtheareaof
roboticssincethe time of the robot Shakey[Nilsson,1984].
Someof the fundamentalassumptionsmadeof the world
were that there is only one agent,that the environmentis
static unlessthe agentchangesit, that actionsare discrete
andarecarriedout sequentiallyandthat theworld the robot
inhabitscanbe accuratelyandexhaustivelymodeledby the
robot. Theseassumptionsproved to be overly restrictive
andultimately sterile. In the usualdynamicof the scientific
dialectic,a new movementhasemergedasthe antithesisto
GOFAIR: Situatedor Nouvelle AI, which we will call the
SituatedAgent approach.

The SituatedAgent paradigmis loosely characterized
by the guiding principlesset forth by Brooks: situatedness,
embodiment,intelligence and emergence[Brooks, 1991].
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The key idea of situatednessand embodimentis that re-
searchersin AI should considerembodiedagentsthat are
connectedto a larger world that provides the context for
their activity. The essenceof intelligenceandemergenceis
that the intelligenceof an agentcanbe judgedby the qual-
ity of its interactionwith its environment. The motivation
for theseprinciples is to direct researchtoward more real-
istic tasksand architecturesand away from the Scylla of
ungroundedtheories.

A paradigmaticdomain is neededto test and develop
the competingGOFAIR andSituatedAgent approaches.It
mustbesuitablefor testingextanttheoriesandbesufficiently
rich to bring the many threadsin AI back together.

2 Why Soccer as a Task Domain?

We proposethat playing soccerbe a paradigmatictaskdo-
mainsinceit breakswith nearlyall of therestrictiveassump-
tions on which GOFAIR is basedand meetsthe standards
proposedin the SituatedAgent approach. The soccerdo-
main can be characterizedby the following:

Neutral, friendly, and hostile agents
Interagentcooperation
Real-timeinteraction
Dynamic environment
Real and unpredictableworld
Objectiveperformancecriteria
Repeatableexperiments

The GOFAIR assumptionsdo not hold in the soccer
world. The one agent assumptionis violated: there are
cooperatingagentson the robot’s team, competingagents
on the other team, and neutral agentssuch as the referee
and the weather. The world is not completelypredictable:
it is not possibleto predictpreciselywherethe ball will go
whenit is kicked,evenif all therelevantfactorsareknown.
The simplifying assumptionof discretesequentialactions
is violated: continuousevents such as a player running
to a position and the ball moving through the air occur
concurrently.

Soccermeetsthe standardsof the SituatedAgent ap-
proach. In soccer,robot agentsare embodiedand are sit-
uatedin an unfolding game. Although it is still true that
the intelligenceof an agentcanbe judgedfrom the dynam-
ics of interactionwith theenvironment,socceralsoprovides
objectiveperformancecriteria.

The ability to scoreandpreventgoalsand the overall
scoreof the gameareobjectivemeasuresof success.These
measuresallow explicit comparisonsof alternativecontroller
designs.The effects of chancecan be factoredout by car-
rying out repeatedexperiments.With objectivecriteria and
repeatability,short-termand long-term learning strategies,
aswell asexperimentsin automaticevolutionof controllers,
becomefeasible. The availability of objectivecriteria is a
critical featureof soccerthatdistinguishesit, alongwith the
aspectof a real andunpredictableenvironment,from many

of the other taskdomainsproposedfor driving the new re-
searchparadigm.

Soccerasa taskdomainis sufficiently rich to support
researchintegratedfrom many branchesof AI. In addition
to the obviouspotentialof the soccerdomain for research
in perceptionand robotics, there are many other areasof
AI that areapplicable:reasoningunderuncertainty,on-line
reasoning,resource-boundedreasoning,planning, decision
theory, qualitative physics,plan recognition,learning,and
multi-agent theory.

Socceris not the real world, but a suitably circum-
scribedfragmentof it. Socceris an appropriateabstraction
of theworld to challengeresearchin AI to focuson achiev-
abletasks,andto drive thedevelopmentof relevanttheories.

3 Dynamite: A Testbed for
Multiple Mobile Robots

TheDynamitetestbedprovidesa practicalplatform for test-
ing theories in the soccerdomain using multiple mobile
robots. The testbedconsistsof a fleet of radio controlled
vehiclesthatperceivetheworld througha sharedperceptual
system[Barman et al., 1993]. In an integratedenviron-
mentwith dataflowandMIMD computers,vision programs
canmonitor thepositionandorientationof eachrobotwhile
planning and control programscan generateand sendout
motor commands.This approachallows umbilical-freebe-
haviourandvery rapid,lightweightfully autonomousrobots.

The mobile robot basesarecommerciallyavailablera-
dio controlledvehicles.We havetwo controllable1/24scale
racing-cars,each22 cm long, 8 cm wide, and4 cm high ex-
cludingtheantenna.Thetestbed(244cm by 122cm in size)
with two carsanda ball is shownin Figure1. Thecarshave
eachbeenfitted with two circular colour markersto allow
the vision systemto identify their position andorientation.
The ball is the small object betweenthe cars.

Thehardwareusedin this systemis shownin Figure2.
Thereis a singlecolour cameramountedin a fixed position
abovethe soccerfield. The video output of the camerais
transmittedto special-purposevideo processingDataCube
hardwarein Figure 2. The DataCubeis a dataflow com-
puter which hasbeenprogrammedto classify imagepixels
into differentcolour classesat video rate(60 Hz). This in-
formation is transmittedto a network of transputerswhich
form a MIMD computer. Additional vision processingis
performedon the transputersto find the position, in screen
coordinates,of the centroid of eachcolouredblob and to
transformthesepositionsfrom screento world coordinates.
The vision subsystemis called the Vision Engine[Little et
al., 1991]. The Vision Engineproducesthe absoluteposi-
tion of all the objectson the soccerfield; the orientationof
eachcar is also reported. This is done at 60 Hz with an
accuracyin position of approximately1 mm.

The reasoningand control componentsof a vehicle
can be implementedon any numberof transputersout of
the available pool. Currently, each vehicle is controlled

2



Figure 1 Robot Playerson the SoccerField

by a distributed user program running on two transputer
nodes. An arbitrary number of nodes, labeled1 to n in
Figure 2, can be used in parallel to control independent
vehicles.Themovementof all vehiclesis controlledthrough
radiotransmittersattachedto asinglesharedtransputernode.
Commandsaretransmittedto thevehiclesat a rateof 60 Hz.

A physics-basedreal-time graphicssimulator for the
Dynamiteworld is alsoavailablefor testinganddeveloping
reasoningand control programs.

A featureof theDynamitetestbedis that it is basedon
the“remotebrain” approachto robotics.The testbedavoids
the technical complexity of configuring and updatingon-
boardhardwareandmakesfundamentalproblemsin robotics
andartificial intelligencemoreaccessible.We haveelected
not to get on-boardthe on-boardcomputationbandwagon,
sincethe remote(but untethered)brain approachallows us
to focuson scientific researchwithout devotingresourcesto
engineeringcompactelectronics.

4 A Robot Architecture for Dynamic Domains

Most extant theoriesof robot architecturesdo not directly
addressthe problemsposedby dynamicenvironments.In
a changingworld, an agentmust be able to generateintel-
ligent behaviourin real-time. The soccerdomainis a good
testing ground for theoriesthat addresstheseissuessince
it is a highly dynamicenvironment. In this section,an ar-
chitecturetargetedtowardsdynamicenvironments,reactive
deliberation,is described.

Much of the previous work on architecturesfor dy-
namic environmentshas been addressedby two distinct
schools. Architectures in the situated behaviour school
[Brooks, 1986; Agre and Chapman,1987; Kaelbling and
Rosenschein,1990] typically allow frequentchangesin the
actionsof therobot,yet restricttheallowablecomputational
models. The planningschool [Nilsson, 1984; Firby, 1992;
Gat, 1992] allows unrestrictedcomputationalmodels, yet
the commitmentto arbitrarylengthplanshindersthe ability
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Figure 3 The ReactiveDeliberationController

of the agentto changeits goalsandactionsin responseto
unanticipatedchangesin the environment.

Theproblemof decidingwhat to do nexthasalsobeen
addressedin decisiontheory [Kanazawaand Dean,1989],
Maes’dynamicsof actionselection[Maes,1990],andMin-
sky’s mentalproto-specialists[Minsky, 1986]. Decisionthe-
oretic tools are limited in their ability to handlecontinuous
variablesand perform sophisticatedspatial reasoning.The
dynamicsof action selectionperformedpoorly in simula-
tions[Tyrrell, 1993]in partdueto a relianceof themodelon
predicateinputs. Minsky’s argumentsagainstmentalproto-
specialists(that bid againstone anotherfor control of the
agent)neglectto include the externalstateof the world as
a valid basisfor decisions.

Reactivedeliberationis a robot architecturethat com-
binesresponsivenessto theenvironmentwith intelligentde-
cision making [Sahota,1993; Sahota,1994]. Even delib-
eration must be to someextent be reactiveto respondto
changesin the environment. Although the nameis appar-
ently an oxymoron, it is consistentwith Artificial Intelli-
gencenomenclature(cf. ReactivePlanning).

Underreactivedeliberation,the robot controller is par-
titioned into a deliberatorand an executor;the distinction
is primarily basedon the different time scalesof interac-
tion. Informally, thedeliberatordecideswhat to do andhow
to do it, while the executorinteractswith the environment
in real-time. Thesecomponentsrun asynchronouslyto al-
low theexecutorto interactcontinuouslywith theworld and
the deliberatorto performtime consumingcomputations.A
structuralmodel illustrating the partition with examplescan
be seenin Figure3. The deliberatoris responsiblefor gen-
eratinga singleaction,whereasotherplanning-basedarchi-
tecturesgeneratea completeplan(i.e. sequencesof actions).
This distinctionhelpsfocusthedeliberativeactivitieson the
immediatesituation.

The executor is composedof a collection of action

schemas.An actionschemais a robotprogramthatinteracts
with the environmentin real-time to accomplishspecific
actions. Only one action schemais enabledat a time and
it interactswith the environmentthrougha tight feedback
loop. Theactiveschemareceivesrun-timeparametersfrom
the deliberatorthat fully define its activity.

The focus of the deliberatoris on an effective mech-
anism for selectingactions or goals in a timely manner.
A central featureof reactivedeliberationis that the delib-
erator is composedof concurrentlyactive modulescalled
behavioursthat representthe goals of the robot. The no-
tion of a behaviouris usedin the senseof Minsky’s mental
proto-specialists[Minsky, 1986] with someimportant dis-
tinctions. In reactivedeliberation,eachbehaviourcomputes
an actionandgeneratesa bid reflectinghow suitableit is in
the currentsituation. The most appropriatebehaviour,and
henceaction,is determinedin a distributedmannerthrough
inter-behaviourbidding. Someexamplesof behavioursare:
shootball, defendgoal, go to midfield, cleanfloor, andde-
liver mail.

A behaviouris a robot programthat computesan ac-
tion that may, if executed,bring abouta specific goal. Be-
havioursproposeactionswhereasaction schemasperform
actions.Eachbehaviourmustperformthe following: 1) se-
lect an action schema,2) computerun-time parametersfor
the schema(plan the action),and3) generatea bid describ-
ing how appropriatethe action is.

Behavioursin reactivedeliberationhavea numberof
features.Dif ferentcomputationalmodelscanbeusedwithin
behavioursto provideflexibility in the designof robot con-
trollers. Inter-behaviourbidding is an effective mechanism
for goal arbitration[Tyrrell, 1993] and can also be accom-
plished in a distributedcomputingenvironment. Another
importantpropertyis thatbehaviourscanbeusedasa mech-
anismfor distributing computationalresources.

Reactivedeliberationis not a panaceafor robotic ar-
chitecturalwoes. A further disclaimer is that it is an in-
completerobot architecturesince it focuseson the issues
relatedto dynamicdomainsandignoresa numberof issues
suchasperceptualprocessingandthedevelopmentof world
models. The proposalis orthogonalto thoseissues.How-
ever, it makesexplicit the needto evaluatethe actionsand
goalsof the robot at a rate commensuratewith changesin
the environment.

5 Some Experimental Results

Severalcontrollersbasedon reactivedeliberationhavebeen
implementedto allow robotsto competein completeone-on-
one gamesof soccer[Sahota,1993]. Currentfunctionality
includesvarioussimple offensiveand defensivestrategies,
motionplanning,ball shootingandplayinggoal. Therobots
can drive under accuratecontrol at speedsup to 1 m/s,
while simultaneouslyconsideringalternateactions.We have
produceda 10 minutevideo that documentsthesefeatures.

As documentedin [Sahota,1993], a seriesof exper-
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iments, soccergames,called the Laboratory for Compu-
tational Intelligence(LCI) Cup were performedusing the
Dynamite testbed. The most elaboratedreactivedelibera-
tion controller competedwith subsetsof itself to provide,
through the scoresof the games,an objectiveutility mea-
surefor someof the architecturalfeaturesof reactivedelib-
erationandthebehaviourthemselves.Throughtheresultsof
the LCI Cup the importanceof modifying goalsin response
to changesin theenvironmenthasbeenshown.Further,the
resultsdemonstratethatthearchitecturalelementsin reactive
deliberationaresufficient for real-timeintelligent control in
dynamic environments.

The reactivedeliberationarchitectureprovidesa first
step towards an integratedintelligent agent for dynamic
environments.Thecurrentversionof thecontrollercanonly
playadequatelyin one-on-onesoccer.Evenin this restricted
taskdomain,therearemanyunresolvedproblems.Thereare
severalimportantissuesthatneedto be furtheraddressedin
building robot agents,suchas:

Real-timedecisionmaking— Reasoningabouttheworld
andselectingappropriateactionsin real-time.
Planning— Efficiently computingmotionplans,predict-
ing futureworld states,andreasoningaboutactionsin an
uncertainworld.
Plan recognition — Identifying the goals, actions and
plansof other agents.
Modeling— Acquiring implicit or explicit modelsof the
robot and the environment.
Learning— Changingbehaviourat manylevelsthrough
tuning modelsand refining actionsusing objectiveper-
formancecriteria.
Multi-agent theory — Determininghow agentscan co-
operateto accomplishgroup tasks.
Robotarchitectures— Integratingall of the abovecom-
ponentsin new organizationalforms.

We haveshownthat the Dynamite testbedis a useful
abstractionof thesoccerdomainthatcanbeusedto testand
developmany theories. However, it hasa significant lim-
itation. Off-board perceptionthroughan overheadcamera
leadsto the pervasiveuseof world coordinates.The con-
venienceof usinga world modelbypassesmany important
issuesin robotvisionandsensoryrobotics.Forsoccerexper-
imentsto addresstheseissuesin situatedperception,a new
testbedwith on-boardsensingwill haveto be developed.

6 Conclusions

Soccerhasbeenproposedasa taskfor thedevelopmentand
unification of divergent theories in Artificial Intelligence.
Soccercapturesa numberof essentialpropertiesof the real
world includingdynamics,real-timerequirements,andcog-
nitive functions. To perform experimentswith soccer,the
Dynamitetestbedhasbeenconstructedwith supportfor mul-
tiple mobile robots. A theoryof robot architecture,reactive
deliberation,has beenapplied to the soccerdomain using

the Dynamite testbedwith demonstratedsuccess.The re-
sults suggestthat a wide rangeof theoriesfrom decision
theoryto robot control needfurther developmentto be suc-
cessfulin domainslike this. This papercan be viewed as
a challengeto researchersto apply their theoriesto the soc-
cer domainto determinewhoseteamof agentswill win the
Robot SoccerWorld Cup.

The questionposedin the title, “Can SituatedRobots
Play Soccer?”has at least four possibleanswers: “Yes”,
“No”, “Don’t Know”, and“Don’t Care”. We claim to have
provided evidencefor “Yes”. But, one could argue for
“No” basedon the limitations of our experimentsor our
theories. “Don’t Know” now seemsinappropriate.“Don’t
Care” is a responsethat ignoresthe currenttheoreticaland
experimentalneedsof thefield. Not only cansituatedrobots
play soccerbut they also should!
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