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Abstract

This paperis a retrospectiveaccountof someof the development¢éeadingup to, andensuingfrom, the analysis
of the complexity of somepolynomial network consistencyalgorithmsfor constraintsatisfactionproblems.

1 Historical Context

In 1970 one of us (AKM) worked on an implementationof Huffman-Clowes[1] labeling
of line drawings. This exploited the consequencesf a deceptivelysimple constrainton the
visual world of planarobjects: the three-dimensionainterpretationof a line as an edgemust
be the sameat both ends. Unfortunately, he observedthat standardbreadth-firstand depth-
first searchtechniquessuffered from severecombinatorialexplosions.About the sametime the
otherone of us (ECF) shareda graduatestudentoffice in the M.I.T. Al Lab with David Waltz,
who was also working on a programto interpretline drawings. Waltz designeda filtering
processto removeinconsistentnterpretationsduring the analysisof a scene[21], making the
combinatorialexplosionmanageableWaltz observedexperimentallythat the effort requiredfor
this filtering processwas “roughly” linear in the size of the scene.A heuristicagumentbased
on the semanticf his domainsupportedthe plausibility of this behavior.

Sincethis techniqueappearedo havepromise,AKM describeda classof network consis-
tency algorithms[10], abstractecaway from the applications,which contains,amongstothers,
the algorithmsdescribedby Waltz [21] and Ugo Montanari[16]. Incidentally, one of the ref-
ereesof [10] suggestedurther complexity analysisof the problemsand the algorithmscould
be done. BernardMeltzer, the founding editor of Artificial Intelligence agreedbut did not re-
quire it for publication. He suggestedt as a topic for a sequelas, indeed,it became. John
Gaschnigsubsequentlyaisedsomedoubtaboutthe linear behaviorof filtering [8]; however,he
was careful not to draw any firm conclusionsfrom the limited data,andthe complexity of the
processremainedan openissue.

Both of ussolvedthis problem,independentlyin 1981. RaimundSeidel,a studenin AKM’s
graduatecourse hadachieveda nice new algorithm[18]. In the courseof discussionwith ECF,
Seidelrealizedwe (AKM and ECF) eachhadthe sameresult. We joined forcesand eventually
the paperappeared11].



2 Complexity and Network Consistency

Oneoutcomeof our 1985 paper[11] wasa resolutionof the openissue. Heuristicintuition
and experimentaldatacould not, by their nature,hopeto achievea completeresolutionof the
guestion. We used formal analytical techniquesto prove that the filtering processcould be
carriedout in linear time for any application.

The proof relied on our analysisof an abstractionof the visual filtering processcalled arc
consistency Arc consistencyis a basictool in what has cometo be called constraint-based
reasoning Constraint-basedeasoninghasbeenwidely usedin artificial intelligence:in vision,
language planning,diagnosis,scheduling configuration,design,temporalreasoningdefeasible
reasoningtruth maintenancegqualitative physics,logic programmingand expertsystems.The
analysisof techniquedike arc consistencycanthusleadto tractability resultsin many areasof
artificial intelligence.

A constraintsatisfactiorproblem (CSP)involvesfinding valuesfor asetof problemvariables
which simultaneouslyatisfya setof restrictiongconstrainty on which combinationf variables
areacceptabldconsistent The Huffman-Clowes-Viltz scenelabeling problemis a Finite CSP
(FCSP)sincethevariabledomainsarediscreteandfinite. Ourcomplexityresultswerefor FCSPs.

One of the key insightsof arc consistencyfor FCSPscan be found in Fikes’ paperin the
very first issueof Atrtificial Intelligence[6]; in particular,if a value,c, for one problemvariable
is inconsistentwith all valuesfor someother problemvariable,thenc will neverparticipatein
a completesolution to the problemand can be eliminatedfrom all further consideration.The
obvious algorithm for removing all suchinconsistenciesAC-1, hasan O(n3d3) complexity
bound,for an FCSPwith n variableseachwith d possiblevalues. AC-3, a simplerand more
generalversion of the Waltz filtering algorithm AC-2, was shown in our paperto have an
O(n2d*) bound.

That bound can be expressedas O (ed3), wheree is the numberof constraints,or edges
in a constraintgraph, whose vertices correspondto variablesand whose edgescorrespond
to constraintsbetweenvariables. (We will restrict our attention here to binary constraints,
which involve only two variables;analogousnethodsareavailablefor dealingwith higherorder
constraints.)Sincescenedabeling problemshaveplanarconstraintgraphs,andfor planargraphs
thenumberof edgess linearin thenumberof vertices we wereableto showthatarcconsistency
for the scenelabeling problemis linear in the numberof problemvariables. We also showed
that path consistencya generalizationof arc consistencycould be achievedin time cubic in
the numberof variables.

The complexity of arc consistencyhassincebeenrefinedfurther. Mohr andHendersorj15]
found an arc consistencyalgorithm, AC-4, which has a theoretically optimal O(ed2) bound.
(In retrospectwe regretthat this did not fall out in our paper;optimality was within our grasp
— only a factor of d away!) This broughtthe complexity of scenelabeling filtering down to



O(ndQ). However,betterboundshave beenfound for arc consistencyfor restrictedclassesof
problems.In particular,Perlin[17] hasidentified a classof problemsthatincludesscendabeling
for which arc consistencycanbe obtainedin time linearin d. Thusarc consistencycan,in fact,
be obtainedfor scenelabelingin time that is linear in both the numberof variablesand the
numberof valuespervariable. Thereareevencasesvhereit canbe obtainedin O(e logd) [12].
This may be the endof that story, but thereare otherstoriesto tell, too manyfor this shortnote.

3 Tractable Problem Classes

It is importantto realizethat the varying forms of consistencyalgorithmscan be seenas
approximationalgorithms,in thatthey imposenecessanput not alwayssuficient conditionsfor
the existenceof a solutionon a CSP.Eachof themcanbe thoughtof asa low-orderpolynomial
algorithmfor exactly solving a relaxedversionof an FCSPwhosesolution set containsthe set
of solutionsto the FCSP.The more effort one putsinto finding the approximationthe smaller
the discrepancybetweenthe approximatingsolution setand the exactsolution set.

SinceFCSPsare so hard (NP-complete)as a generalclass,it becamemportantto identify
specificclassesof problemswhich admit tractablesolutiontechniques.Tradeofs canbe made
betweenrepresentationahnd computationalcomplexity, trading representationatomplexity to
remain within the comfortable computationalconfinesof a tractable problem class. These
tractableclassescan also be usedto assistin the solution of more generalproblems. One
way to identify theseclassesis to look for restrictedFCSP classeswhere the approximation
algorithmsare exact namely, where the consistencyconditions are necessaryand sufficient.
Theseclassesanbe characterizedby restrictionson the topologyof the constraintgraph,on the
size of the domainsor on the natureof the constraints.We pointedout this possibility, giving
one concreteexampleand leaving it as an openissueto identify others.

FCSPswith tree-structuredconstraint graphs were the first such tractable classto be
identified, and provide a good illustration of theseissues. Our paper provided an O(nd3)
boundon the complexity of tree-structuregroblems(improvedto an optimal O(nd2) in [3]).
Tambeand Rosenbloomusedtheseresultsto boundthe complexity of productionrule pattern
matchingby restrictingto tree structureq19]. Dechter,PearlandMeiri havedemonstratethow
tree-structuredsubstructureor superstructurecan assistin the solution of non tree-structured
problems[3,4,2,14]. Complexity boundshave beenobtainedfor “higher-level” tree structures,
whereeachlevel tradesincreasedepresentationgbower for increaseccomplexity [7].

Oneof the practicalconsequencesf our resultswasthatthe designerandimplementerof
constraint-basedrogrammindanguagesouldfeel comfortablencluding consistencylgorithms
asprimitives in the languagg6,10]. Ideally, a languageprimitive shouldrequireconstanttime;
but, failing that, it is comforting to know that it will terminatein linear time. The constraint
logic programminganguageCHIP [20] wasthe first to exploit this potentialfully by providing
an arc consistencybasedinferenceengine.



Progresscontinuesto be made on finding efficient ways to solve important classesof
problems.e.g. Deville andVan Hentenryck’'sO(ed) algorithmfor a successoto CHIP [5], and
on identifying the trade-ofs betweenrepresentationahdequacyand computationakomplexity,
e.g. Meiri’s clarification of the effort requiredto answerconsistencyguestionsfor classesof
temporalreasoningproblems[13].

Anotherinterestingfollow-on resultwasthat althougharc consistencys achievablan linear
sequentialtime there is apparentlyno polylogarithmic time parallel algorithm in the general
case:it is log-spacecompletefor P [9] and, hence,unlikely to bein NC. (Thereare, though,
well-behavedparallel and distributed algorithmsfor some specialcases[22].) This negative
resultstrucksomeas counter-intuitive.Algorithm AC-1, which haspoor sequentiacomplexity,
hasa high degreeof intrinsic parallelism(but potentialserial datadependencies)vhereasach
AC-p (p>1) hasbeenoptimizedfor a single processorln fact, variousgeneralization®f AC-1
havebeenproposedor neuralnetworks. But the gloomy theoreticalresulthasnot deterredthe
designersof AC VLSI chips or other intrepid experimentalists.

4 Conclusion

The developmenbf constraintsatisfactionalgorithmswasoriginally motivatedby concerns
for efficiency. The subsequerdanalysisof the complexityof boththe problemsandthealgorithms
further stimulatedthe developmenbf practicaltools andthe identificationof significanttractable
problem classes. So the history of the topic is a tale of intimate interactionamongsttheory,
implementationexperimentand applicationcharacteristiof artificial intelligenceresearch.
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