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Figure 1: Gesture3D: gesture drawings (b,e) of an input character model (a); estimated 2D skeleton projections (c,f) and new poses auto-
matically computed from the drawings (d,g).

Abstract

Artists routinely use gesture drawings to communicate ideated
character poses for storyboarding and other digital media. Dur-
ing subsequent posing of the 3D character models, they use these
drawing as a reference, and perform the posing itself using 3D in-
terfaces which require time and expert 3D knowledge to operate.
We propose the first method for automatically posing 3D characters
directly using gesture drawings as an input, sidestepping the man-
ual 3D posing step. We observe that artists are skilled at quickly
and effectively conveying poses using such drawings, and design
them to facilitate a single perceptually consistent pose interpreta-
tion by viewers. Our algorithm leverages perceptual cues to parse
the drawings and recover the artist-intended poses. It takes as input
a vector-format rough gesture drawing and a rigged 3D character
model, and plausibly poses the character to conform to the depicted
pose. No other input is required. Our contribution is two-fold:
we first analyze and formulate the pose cues encoded in gesture
drawings; we then employ these cues to compute a plausible image
space projection of the conveyed pose and to imbue it with depth.
Our framework is designed to robustly overcome errors and inaccu-
racies frequent in typical gesture drawings. We exhibit a wide vari-
ety of character models posed by our method created from gesture
drawings of complex poses, including poses with occlusions and
foreshortening. We validate our approach via result comparisons to
artist-posed models generated from the same reference drawings,
via studies that confirm that our results agree with viewer percep-
tion, and via comparison to algorithmic alternatives.
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1 Introduction

Gesture drawings - rough, yet expressive, contour drawings of
posed characters (Figure 1b,e) - are routinely used by artists to
quickly convey the action, form, and pose of a character figure

[Blair 1994; Hampton 2009; Nicolades 1975]. Artists are trained
to create descriptive gesture drawings which unambiguously con-
vey a character’s pose in just a few minutes [Leland 2006], and
use them ubiquitously when conceiving character poses and mo-
tion key-frames for storyboarding. In digital media production,
artists subsequently apply these envisioned poses to 3D character
models. In current practice, posing is performed separately, using
the drawings as a reference only, and requires additional, often sig-
nificant, user interaction (Section 2). We seamlessly connect the
ideation and modeling steps by introducing the first method for 3D
character posing which poses the characters algorithmically using
gesture drawings as input, allowing artists to directly communicate
their ideas using drawings and sidestepping the mental overhead of
interacting with a complex software interface. As demonstrated,
our method plausibly poses 3D characters using quickly generated,
rough, vectorized gesture drawings and rigged character models,
provided in a neutral bind pose, as the only input; no manual input
or additional markup is required. It successfully handles complex
poses with varying and significant part foreshortening, occlusions,
and drawing inaccuracies (Figure 1).

The advantage of gesture drawings over other types of 2D inputs ex-
plored by previous posing approaches (Section 2) is the lack of per-
ceptual ambiguity. Unlike stick-figures, lines of action, and outer
silhouettes (Figure 2), gesture drawings allow artists to unambigu-
ously convey poses to human observers. By identifying and lever-
aging the perceptual pose cues used by artists when creating these
drawings, we are able to automatically recover character poses that
are consistent with artist intent.

Our framework centers around analysis of the stroke curves form-
ing the gesture drawings (Section 4). Like many other line draw-
ings, gesture drawings are dominated by contour curves, conveying
the occlusion contours of the depicted characters. However, since
gesture drawings focus on conveying pose rather than shape, they
typically only depict approximate, abstracted, character anatomy.
In particular, artists typically use simple low-curvature stroke seg-
ments to outline body parts and use higher-curvature sections to de-
pict their connecting joints [Hampton 2009]. These high-curvature
anatomical landmarks assist observers in parsing the drawings. The
abstracted contour strokes of a gesture drawing are designed to con-
vey largely smooth 3D character geometry. As observed by [Bess-
meltsev et al. 2015] in such scenarios the contours of both individ-
ual body parts and part chains are usually continuous; thus adjacent
contour stroke segments always outline adjacent body parts, and
adjacent body part outlines are typically depicted using one shared
stroke, or multiple Gestalt continuous [Koffka 1955] strokes. We



also observe that body part contours are consistently oriented with
respect to the parts’ skeletal bone and rarely cross the bone’s 2D
projection. Combined together, these three contour consistency
cues allows observers to identify poses with globally consistent
joint and bone locations. Generic projected contours allow mul-
tiple depth interpretations, thus artists are trained to use drawing
cues to reduce ambiguity. When estimating depth from 2D draw-
ings, viewers prefer less foreshortened interpretations of the ob-
served shapes, thus to best convey the intended poses artists seek to
select viewpoints with smaller foreshortening [Hogarth 1996]. We
also observe that in gesture drawings artists prominently use local,
suggestive, occlusions to convey changes in depth and to specify
depth order between adjacent joints. Gestalt psychology [Koffka
1955; Attneave and Frost 1969] points to a persistent viewer pref-
erence for simple drawing interpretations. In the context of gesture
drawings, we believe that viewers use two types of simplicity cues:
in cases where drawings are ambiguous, viewers prefer more nat-
ural poses, or ones with angles closer to those in the input bind
pose; viewers also visually complete hidden body parts and cor-
rect drawing inaccuracies by using regularity cues, such as pose
symmetry [Bessmeltsev et al. 2015]. Finally, we note that while
human observers can clearly parse professional gesture drawings,
reliance on the drawing to accurately depict character proportions
and projected joint locations must be qualified: drawings are typi-
cally inexact, as even experts depict foreshortened objects inaccu-
rately [Schmidt et al. 2009] and fail to correctly account for per-
spective [Xu et al. 2014].

Overview. We use these observations to pose the input 3D rigged
character model into the artist intended pose conveyed by the in-
put gesture drawing. We first match skeletal elements against cor-
responding contour stroke segments, placing joints next to their
matching contours. We formulate joint placement as a discrete 2D
embedding that matches joints to corresponding contour samples
and is dominated by contour consistency and anatomical landmark
matching considerations. We then compute the desired embedding
by casting it as a variation of the tree-structured Markov Random
Field (MRF) problem (Figure 9b, Section 5). We extend our so-
lution to 3D by leveraging the depth order implied by occlusion
contours, and the observations about viewer preference for simple
and less foreshortened poses. To overcome drawing inaccuracy, we
formulate 3D embedding as an energy minimization problem which
balances landmark-implied 2D joint placement against the simplic-
ity and foreshortening cues (Figure 9d, Section 7).

Contribution. Our contribution is two-fold: we formulate the
properties of effective gesture drawings, bringing together insights
from multiple sources in the areas of psychology, art, and computer
graphics, highlighting key perceptual cues which enable viewers to
perceive the artist intended character poses; we then use these ob-
servations to introduce the first gesture drawing based algorithm for
posing 3D characters. Our method enables artists to directly con-
vert their ideated posed character drawings into 3D character poses,
and supports complex drawings with occlusions, variable body part
foreshortening, and drawing inaccuracies.

Validation. We exhibit a gallery of character poses obtained auto-
matically from gesture drawings of a range of 3D characters (Sec-
tion 9) and validate our algorithm in a number of ways (Section 8).
We evaluate our results against ground truth data, by first render-
ing projected contours of posed character models, then using these
contours as input to our method and comparing our results against
original poses; we compare our algorithm’s results with characters
posed by artists given the same drawings as input; we compare
the character-contour correspondences computed by our method
against manual annotation by human observers; and we collect
qualitative result evaluations by experts and non-experts alike. Fi-
nally, we compare our method against prior work and algorithmic
alternatives. These validations confirm that the poses we compute

(a) (b) (c) (d) (e)

Figure 2: Stick figure drawings (a), lines of action (b), and outer
silhouettes (c) allow for multiple perceptually valid pose interpre-
tations. (d) Poor view selection results in highly foreshortened con-
tours leading to loss of pose information (e.g bends on the left arm
or the curved spine). Gesture drawings, consciously drawn from
descriptive views (e) effectively convey the intended pose.

are consistent with viewer perception and artist intent.

Limitations. Our method assumes vectorized input drawings, con-
sistent with sketch-based modeling papers such as [Bessmeltsev
et al. 2015; Karpenko and Hughes 2006; Shtof et al. 2013]. We do
not attempt to address the problem of generating vectorized inputs
in this paper, and assume that they are either manually generated
or automatically produced using a state-of-the-art algorithm such
as [Favreau et al. 2016]. Our current implementation requires be-
tween 3 and 4 minutes to produce a pose from a sketch; this means
that it is most suitable for applying to existing assets such as sto-
ryboard drawings, and that significant optimization work would be
needed for an interactive application.

2 Related Work

We build on prior work in several domains: sketch based character
modeling, pose reconstruction from images, and character posing.

Sketch Based Modeling Posing from gesture drawings faces
some of the same challenges as single-view sketch-based charac-
ter modeling. As pointed out by Bessmeltsev et al. [2015], mod-
eling a posed character given a single contour sketch is inherently
ambiguous, as the contours alone allow multiple perceptually plau-
sible interpretations. To generate the user-desired models, existing
methods either rely on incremental contour drawing order [Cher-
lin et al. 2005], employ primitive-based annotation [Cherlin et al.
2005; Gingold et al. 2009; Shtof et al. 2013], require users to pro-
vide a matching posed 3D skeleton [Bessmeltsev et al. 2015], or
enforce a range of strong simplifying assumptions [Cordier et al.
2011; Buchanan et al. 2013; Karpenko and Hughes 2006] - for in-
stance, Cordier et al. [2011] only handle mirror-symmetric poses,
while other methods assume that the 3D generators of the drawn
contours are planar and near-parallel to the view plane [Buchanan
et al. 2013; Karpenko and Hughes 2006; Bai et al. 2016], an as-
sumption that does not hold for most character poses [Bessmeltsev
et al. 2015]. Our work addresses generic gesture drawings with no
such limitations (Figure 1), solving an essentially inverse problem
to that of [Bessmeltsev et al. 2015]: instead of computing a charac-
ter geometry given a sketch and a 3D pose, we compute a character
pose given a gesture drawing and a character model.

Rather than creating a model from scratch, methods such
as [Kraevoy et al. 2009] deform a 3D character template to fit a
contour drawing. They either expect the template and drawn poses
to be aligned, or expect users to manually specify coarse template-
drawing correspondences. They then use local shape compatibility
between the input outlines and the corresponding 3D geometry to
obtain dense correspondences. Since contours in gesture drawings
are approximate and highly abstracted, local shape compatibility



cannot be used as a reliable criterion in our setup. Despite this ex-
tra challenge, our method does not require manual correspondences
nor expects the drawn pose to resemble the input bind one.

Pose Reconstruction From Images Gesture posing is related to
the classical computer vision problem of pose reconstruction from
monocular images and video; see [Tekin et al. 2015] and the ref-
erences therein. Reconstruction from video aims to capture a con-
tinuous motion, where the pose in each frame is very close to a
previously reconstructed pose in the preceding frame, and heavily
relies both on this existing previous pose and on fine image-level
correspondences between frames (e.g. [de Aguiar et al. 2008; Gall
et al. 2009; Tekin et al. 2015].) Gesture posing has more in common
with pose estimation from a single frame, where no such priors are
available (e.g. [Gall et al. 2010; Sapp et al. 2010; Chen et al. 2011;
Ionescu et al. 2014]). Both outlines and incidental-view occlusion
contours (Figure 2c,d) are insufficient to deduce a pose; single-
frame pose estimation methods therefore frequently combine this
information with textural and shading cues which are unavailable
in our setup. Recent posing approaches (e.g. [Ionescu et al. 2014])
predict the most likely 3D pose by learning from large databases
of real and synthetic human motion data. Such databases bias the
results toward more frequent poses and can be difficult to obtain
for non-humanoid or non-realistic characters, or for extreme/non-
physical poses. Our framework overcomes the lack of extensive
anatomic pose priors, and allows recovery of atypical poses by
leveraging the descriptive cues artists provide when creating ges-
ture drawings.

Character Posing Interfaces In most industry setups, charac-
ters are posed via 3D skeleton manipulation. Users either manually
adjust joint angles, or use Inverse Kinematics (IK) based tools to
place bone end-points at specific locations [Zhao and Badler 1994].
While IK-based frameworks relieve some of the tedium of adjust-
ing individual joints, they still require experience with 3D modeling
systems and non-trivial posing time. As Grochow et al.[2004] point
out, posing a character using only handle constraints is inherently
ambiguous as specified handle locations often allow multiple inter-
nal joint configurations. They resolve this ambiguity by building an
IK system based on a learned model of human poses. Their method
requires training data from motion capture that is similar to the pose
envisioned by the artist. When artists ideate their desired poses they
prefer to use pen and paper, avoiding this mentally cumbersome 3D
machinery. Using these ideation drawings as-is to create 3D poses
saves artists time and effort.

Hahn et al. [2015] and Guay et al. [2013] propose incremental,
multi-view, sketch-based posing interfaces. Lines of action, imag-
inary lines running down a character’s spine or other major bone
chains (Figure 2b) are used by artists for coarse pose communi-
cation [Guay et al. 2013]. Guay et al. use line-of-action strokes
to pose characters by placing user-specified corresponding bone-
chains along these strokes. This input allows multiple pose inter-
pretations for body parts not directly present on the line of action or
its continuation, and requires an incremental multi-view interface
to pose non-coplanar bone-chains. Hahn et al. [2015] propose an
interface where a user poses characters one limb at a time, by first
drawing a stroke along a limb in the current pose and then drawing a
corresponding stroke depicting its new pose. The system then poses
the limbs by aligning them to the strokes. It assumes uniform fore-
shortening along the posed limbs, and requires multiple stroke pairs
and view changes to generate complex poses. Our work comple-
ments these approaches by providing a single-view drawing-based
posing mechanism, allowing artists to directly use their gesture and
keyframe drawings for character posing.

A number of recent methods use stick-figures [Hecker and Perlin
1992; Davis et al. 2003; Mao et al. 2005; Lin et al. 2010] - 2D pro-

jections of the desired 3D skeleton of the posed character (Figure
2a) - to compute a corresponding 3D skeletal pose As the authors
acknowledge, stick-figures are inherently ambiguous and allow for
multiple geometrically valid and perceptually plausible 3D inter-
pretations. Hecker and Perlin [1992] and Mao et al. [2005] propose
users to encode the relative depth of bones and joints via pen pres-
sure or stroke width. Such interfaces become unwieldy for typical
characters (e.g. Figure 1) which have dozens of bones. Davis et
al. [2003] resolve ambiguities through user annotation, followed
by users selecting the desired character pose from multiple plausi-
ble solutions. Lin et al. [2010] use stick-figures to pose characters
sitting in a chair, and reduce ambiguities by using specific priors rel-
evant only for sitting characters. Jain et al. [2012] manually place
stick figure joint locations and bounding boxes on multiple frames
of an input animation, and then manually select motion capture data
similar to the input animation frames to resolve depth ambiguities.
Wei et al. [2011] and Choi et al. [2012] use drawn stick-figures
to query a database of human poses. Such databases can be dif-
ficult to obtain for custom skeletons, especially of non-humanoid
or non-realistic characters. Reliance on databases inherently biases
the reconstructed poses toward more frequent database instances.
In contrast to stick figures, gesture drawings are unambiguous to
human observers, motivating our approach. At the same time while
matching 2D stick figures to 3D skeletons is straightforward up to
inherent ambiguity between symmetric limbs, matching characters
to gesture drawings is an open and challenging problems we suc-
cessfully address for the first time.

Small inaccuracies in 2D stick-figures can lead to large changes in
the recovered 3D pose [Davis et al. 2003]. To improve accuracy
Davis et al. [2003] advise artists to first draw a gesture or bubble
sketch of the target posed character, and then use it to assist in posi-
tioning the stick-figure (Figure 21). Our work operates directly on
gesture drawings and robustly overcomes artist inaccuracies by bal-
ancing image conformity against other perceptual cues (Figure 15).

3 Parsing Gesture Drawings

Gesture drawings are ubiquitously used by artists to clearly con-
vey complex 3D poses.To understand and formulate the properties
that make them effective, we combine observations from drawing
tutorials, modeling research, and perception studies.

Anatomical Landmarks In a typical character drawing, most
strokes depict projected contours, i.e. curves along which the nor-
mal to the posed character’s body lies in the image plane. Un-
like detailed drawings of geometric shapes, gesture drawings fo-
cus on depicting pose and motion; hence their contour strokes
are often highly abstracted and only approximate the shape of
the actual 3D contours. We note that gesture drawings em-
ploy idealized character anatomy, well described by a union
of approximately cylindrical body parts connected by spherical
joints [Hampton 2009; Blair 1994; Hogarth 1996] (see inset).

Figure 3: Portion of
a gesture drawing with
annotated joint (blue)
and part (red) con-
tours.

Consequently, contours of body-parts sur-
rounding skeletal bones are typically dom-
inated by low-curvature lines. In contrast,
joint contours in all views are well ap-
proximated by circular arcs whose radii are
roughly equal to the body radius around
the joints. These higher curvature joint
contour arcs are most prominent next to
bent or terminal (single bone) joints. As
a consequence of this curvature difference,
we speculate that humans can easily dis-
cern the likely locations of such prominent

joints, or anatomical landmarks, in a gesture drawing, and use those
to anchor the overall character pose. Since artists seek to commu-
nicate their target pose, they typically select views where multiple



(a) (b) (c) (d)

Figure 5: Implausible bone locations that violate (a) adjacency, (b)
orientation, or (c) crossing cues; consistent placements (d).

anatomical landmarks are visible and clearly depicted [Hale and
Coyle 1991]. Clearly not all high-curvature contour segments cor-
respond to joints (see the skirt “corners” in Figure 1); many drawn
joints are not bent and therefore not easy to pinpoint; and multiple
joints may have the same radii, making them hard to distinguish.
Our algorithmic challenge is to discern the relevant markers on the
drawing and to associate them with their corresponding joints.

Figure 4: Contour-
skeleton correspondences,
with Gestalt continuous
contours connected by
dashed lines.

Contour Consistency. As noted by
Bessmeltsev et al. [2015], absent oc-
clusions a typical character’s contour is
a single closed curve; each body part
around a terminal bone (bone with a ter-
minal joint) is outlined by a single con-
tour segment, while parts around inte-
rior, or non-terminal, bones define two
outline segments, one on each side of
the bone; and adjacent segments along

the contour correspond to adjacent skeletal bones (see inset). In the
presence of occlusions, the Gestalt continuation principle [Koffka
1955] indicates that viewers complete the drawing by mentally con-
necting pairs of end-points of partially occluded curves (T-junction
stems) by invisible contour sections if they can be smoothly con-
nected (Figure 4). In this scenario, the properties above continue
to hold once these invisible contour sections are taken into account.
In this general case, terminal bones correspond to a single sequence
of (one or more) Gestalt continuous curves, and interior bones cor-
respond to two such sequences - one on the left and one on the
right. Adjacent segments along the same contour stroke still corre-
spond to adjacent bones, while bones joined by a valence two joint
correspond to either immediately adjacent, or Gestalt-continuous,
left and right contour segments. In addition to reflecting skeletal
adjacencies, body part contours are consistently oriented with re-
spect to their corresponding skeletal bones - a body’s surface and
consequently its contours clearly separate inside from outside (Fig-
ure 5b). Since body mass typically surrounds the bones, contours
rarely cross 2D bone projections (Figure 5c). Viewers are known
to rely on domain priors when deciphering drawings, and therefore
we expect them to indirectly leverage this set of contour-bone con-
sistency expectations when parsing gesture drawing and matching
joints to landmarks.

Simplicity Previous graphics research (e.g. [Xu et al. 2014]) had
heavily relied on insights from Gestalt psychology [Koffka 1955]
which points to a viewer preference for simple or regular drawing
interpretations. While some of these works (e.g. [Xu et al. 2014])
focus on generic regularities such as symmetry or parallelism, oth-
ers (e.g. [Bessmeltsev et al. 2015]) highlight domain-specific sim-
plicity priors. We speculate that viewers leverage both regular-
ity and naturality when interpreting gesture drawings: they choose
more likely or natural character poses among those consistent with
the drawn contours (Figure 8), and use regularity cues, particularly
symmetry, when presented with different ambiguous inputs (for in-
stance when mentally completing partially occluded poses, such as
the hands of the character in Figure 8, or the fetal pose in Figure 14,

(a) (b) (c)

Figure 8: Less natural (b) and more natural (c) interpretations of
a drawn pose (a) (leg bent sideways vs forward).

top row).

(a) (b) (c)
front view side views

Figure 6: Depth ambi-
guity

Depth In general, an infinite number of
3D geometries have the same 2D projec-
tion. However, for each individual bone
of a known length, if the 2D positions of
its end-joints are known, the z-difference
between the bone end-points is fully de-

termined; what needs to be determined is their depth order (see
inset).

inter-part

intra-part

Figure 7: Oc-
clusion types.

While the simplicity priors discussed above often
help viewers to resolve order ambiguities, con-
tours of posed characters taken from a poor view-
point (Figure 2d) remain ambiguous. Conse-
quently, artists are consistently advised to strate-
gically select descriptive views [Eissen and Steur
2011], and specifically to avoid views with large
uneven foreshortening. Our observation of artist-
generated gesture drawings suggests that in se-
lecting views they also strategically use occlu-
sions to clarify depth ordering, and add suggestive

local, intra-part, occlusion contours (see inset) to further clarify lo-
cal depth order.

Inaccuracy Experiments [Schmidt et al. 2009] show that even
trained artists fail to correctly draw foreshortened shapes and fre-
quently exaggerate perspective scaling effects. As indicated by
prior work on interpreting design sketches [Xu et al. 2014], view-
ers are adept at mentally correcting such errors by biasing the en-
visioned solutions toward more simple and less foreshortened in-
terpretations. In the context of gesture drawings, we observe that
while viewers use landmarks to anchor the envisioned pose, they
mentally tweak the locations of these landmarks in favor of such
simpler pose interpretations.

4 Framework Overview

The input to our method is a rigged and skinned character model, in
a bind pose, and a roughly same scale vectorized gesture drawing.
As artists typically create the gesture drawings using the charac-
ter as a reference, scale similarity is easy for them to satisfy; al-
ternately, manually scaling drawings generated independently from
the character model takes seconds for both experts and amateurs.
As is typical of skeletal posing systems, the pose of a rigged char-
acter is fully determined by the positions of its joints. We compute
the joint positions that best reflect the depicted pose using the fol-
lowing steps (Figure 9).

Joint-Contour Matching We first match drawn contours against
the body parts they describe, and place a projected character skele-
ton in the image plane so that its surrounding body contours roughly
align with their matched drawn ones. We formulate the matching



(a) (b) (c) (d)

Figure 9: Overview: (a) algorithm input; (b) discrete 2D joint em-
bedding; (c) optimized 2D embedding; (d) 3D skeleton (color visu-
alizes depth) and posed model.

as a computation of optimal joint locations along the contours. As
the continuous solution space of all possible joint locations is too
large to operate on efficiently, we discretize the problem by consid-
ering only a finite set of potential joint locations on the 2D draw-
ing. We associate each possible joint location with an unary as-
signment probability derived from our anatomical landmark prior
(Section 5.1), and associate binary and ternary probabilities for as-
signments of adjacent pairs and triplets of joints based on consis-
tency, simplicity, and low foreshortening priors (Section 5.3). The
resulting discrete optimization problem can be cast as a High-Order
Tree-Structured Markov Random Field (MRF) problem [Koller
and Friedman 2009]. We then minimize this combined cost func-
tion subject to additional global constraints imposed by the drawing
(Section 5.4). Adding these constraints makes the general assign-
ment problem NP-hard; however, as we demonstrate, our greedy
solution framework works well in practice (Section 5.5).

2D Pose Optimization Our discrete solution considers only a fi-
nite set of possible joint locations; accordingly while it provides a
good estimate of the joint locations and joint contour correspon-
dences, the final joint placement may be locally sub-optimal. We
consequently use continuous location optimization to further im-
prove this solution and compute joint locations that best capture the
artist intent (Figure 9b-c).

Full Pose Estimation. We proceed to fully pose the character by
assigning 3D positions to its joints, further adjusting the joint 2D
positions when necessary. We note that exact 2D joint locations are
more sensitive to artist errors than bone directions and lengths, and
consequently rely on the latter when recovering the full pose. We
seek poses that satisfy the ordering cues provided by occluding con-
tours in the gesture drawing, and which balance preservation of the
bone directions and 2D lengths, estimated from the drawing, against
our expectations of simplicity and foreshortening minimization.

We formulate joint positioning as a constrained energy minimiza-
tion problem, then obtain the minimum by recasting the energy in
term of twist variables [Bregler et al. 2004] and using a Newton-
type solution method that follows the approach of [Gall et al. 2010].

5 Character-Contour Correspondence

Initialization To evaluate anatomical landmark correspondences,
we need to associate a likely contour arc radius for each character
joint. To compute the radius we use a variation on the method of
Thierry et al. [2013] to fit a sphere to the region on the character
mesh surrounding the joint. While many joints are well approxi-
mated by spheres, some parts of a character, such as the palm of the
hand, are more elliptical and consequently have a range of plausi-
ble contour arc radii. Given the extracted mesh region around each
joint we therefore use PCA to obtain the maximum and minimum
radii by computing a bone-aligned bounding box of the mesh re-
gion next to the joint, and using its non-bone-aligned dimensions
as minimum and maximum radii values, and use a discrete set of
joint radii with a step of ε within this range in subsequent compu-

(a) (b) (c)

head elbow torso

Figure 10: Joint cost visualization. Here the color shows the
matching cost on a scale from red (poor match) to blue (good).

tations. We set ε to 2% of the drawing bounding box and use it as
the default discretization density throughout the discrete solution.

To facilitate the computation and evaluation of contour consistency
in the presence of occlusions, we preprocess the contours to detect
Gestalt continuous strokes. We use the continuity test described
in [Bessmeltsev et al. 2015]: given each pair of strokes, we connect
their end-points with a straight line and measure the angles between
this line and the stroke tangents. A pair of strokes is classified as
Gestalt Continuous if both angles are below the 18◦ threshold iden-
tified in perception literature [Hess and Field 1999]. For each pair
of drawing strokes we test all four end-point configurations. When
strokes are deemed continuous we retain the connecting line as a
Gestalt bridge between them. We consider each pair of strokes con-
nected by a bridge as a single bridged contour.

5.1 Solution Space

As previously noted, artists approximate the contours surrounding
joints as circular arcs centered at the joints whose radius reflects
the distance from the character joint to the surrounding surface.
We therefore expect joints with visible contours to be located ap-
proximately a radius distance away from these contours along the
contour normal (Figure 10). We use this observation to generate
potential locations for joints with visible contours. We uniformly
sample the input drawing contours at ε-intervals, and treat the sam-
ples as potential tangential contact points for joint circle placement.
For each sample point we consider the options of placing the circle
on either side of its contour, conceptually duplicating all samples
into left and right instances. We compute potential joint locations
by placing each joint along the normal to the contour at the sample
at an offset equivalent to it’s circle radius (Figure 10).

Character joints may be entirely occluded (e.g the man’s palms in
Figure 8). To be able to plausibly place such joints, we sample the
bounding box of the drawing using a regular grid with density equal
to ε and add these samples to the discrete solution space.

5.2 Unary Assignment Cost

We compute, for each joint, the likelihood that it is placed at each
potential location. The grid-based locations are assigned the maxi-
mal assignment cost of 1 since, absent information to the contrary,
we expect contours associated with joints to be visible. For tangen-
tial locations, we aim to match appropriate joints to corresponding
anatomical landmarks, and hence prioritize placements where sec-
tions of the contours are well aligned ( in terms of both location and
normal) with the joint’s circle. Since non-terminal joints are often
adjacent to multiple contour segments on different sides of the cir-
cle (Figure 10), our evaluation looks at all contour samples close
to the circle and not just those immediately next to the originating
tangent sample. Since humans rarely draw perfect circular arcs, we
do not expect perfect alignment; to evaluate fit between a joint i and
a potential location P ia we therefore measure the portion of a circle
with radius ri centered around P ia that approximately aligns with



the contours using simple distance and normal thresholds. Specif-
ically, we uniformly sample the circle and count the percentage of
circle sample points sc that have nearby contour samples s with
contour normals ns close to the circle sample point normals:

T (P ia) = {sc : |‖sc − s‖ < min(ε,
ri
2
) and ∠(sc − P ia, ns) < α}

C(i, P ia) = 1− ‖T (P ia)‖/N (1)

HereN is the number of samples on the circle. The angle threshold
α is set empirically to 15◦. When a contour matching a terminal
joint is visible in the drawing, we expect a non-negligible portion
of the contour to closely align with the joint’s circle. We found this
threshold based solution to work better than using a falloff function
that depends on how close the contours are to the circle. We con-
sider terminal joint locations to be reliable if at least 15% of their
osculating cycle is matched by the contours, and assign the maxi-
mal cost of 1 to locations that do not pass this threshold. For each
joint i and a potential assigned location P ia , in addition to the cost
we store the originating contour sample sia and the set of all contour
samples Sia that satisfy the alignment threshold.

Position Consolidation. Near high-curvature regions on the
contours, we typically encounter several potential low cost joint
locations for a given joint which have nearly identical sets of well-
aligned contour points. To reduce the solution space during compu-
tation we consolidate these potential joint locations into one, select-
ing the location whose originating sample lies closest to the stroke’s
curvature extremum.

5.3 Assignment Compatibility

Our compatibility term is designed to promote contour consistency,
and to weakly encourage less foreshortened and more natural solu-
tions.

Bone Contours. Each pair of position assignments for the
end-joints of a bone indirectly defines the contour segments
corresponding to this bone (Figure 4). Given a pair of
such assignments, we compute the potential bone contour seg-
ments defined by these assignments as follows (see inset).

We consider all pairs of well aligned samples, where
each sample is associated with a different end-joint. If
the two samples lie on the same contour, or on con-
tours connected via bridges, we associate the contour
segment or segment chain between them with the bone.
We trim the segments by selecting the two samples,
one in each joint’s set, that are closest to one another
along this shared contour as segment end points. We
use the computed bone segments to assess the compat-
ibility of the bone’s end-joint assignments. Note that

occlusions or poor assignments may lead to bones with no corre-
sponding contours.

Consistency. We explicitly prohibit inconsistent assignments
where a bone’s end-joints lie on opposite sides of the bone’s con-
tour, violating our orientation prior. Since a bone is expected to
be inside the body part it anchors, it typically should not cross its
associated contours. We use a consistency penalty cost Cc, which
is set to 1 if a bone’s 2D projection intersects any of its associated
contour segments, and is 0 otherwise. We use a penalty instead of
a hard constraint to account for drawing inaccuracies and sampling
artifacts.

We prefer assignments where bones are associated with at least one,

either simple or bridged, contour segment. Moreover, we aim for
adjacent bones to be associated with the same continuous contour.
We encode both preferences by focusing on the contour associated
with the originating samples of the end-joint assigned locations: we
leave the consistency cost Cc unchanged if a pair of end-joints of
a bone are assigned locations with the same originating single or
bridged contour, and set it to 1 otherwise.

Bone Contour Conformity We expect the contour segments as-
sociated with bones to have relatively low-curvature (see inset).
To evaluate contour conformity, we measure the ratio between

(a)

(b)

the length of each bone segment and the Euclidean dis-
tance between its endpoints:

Ccf (i, j) = 1− e−(1−Lc/L)/2σ2

,

where Lc is the length of the contour segment and L
is the Euclidean distance between its end-points. We
empirically set σ = 4% of the bounding box diagonal.
If a bone has multiple associated contour segments, we
repeat the cost computation and, to be conservative,
use the lower of the two costs as the conformity cost.
If the joints have no shared bone contours, we set the
cost to 1.

Pose Preferences. We assign a per-bone cost term for each as-
signment of its end-joints to a pair of potential positions, based on
the difference between the bone length and the image-space dis-
tance between the two positions. We expect the artist to select
views where the drawn body parts, and consequently bone projec-
tions, undergo relatively small foreshortening; we therefore weakly
penalize foreshortening when it occurs. While real character bones
do not stretch, artist drawings can contain errors in character pro-
portion description. We therefore tolerate assignments where the
image-space distance is larger than the respective bone length, but
penalize such assignments with a large penalty cost. The combined
cost is:

Cl(i, j) =

{
1− e−(l′ij−lij)

2/2σ2

, if l′ij > lij

1− e−(l′ij−lij)
2/2(σ/3)2 , otherwise .

(2)

where l′ji = ‖P ia − P ja‖ and lij is the bone length. We use the
same σ as for bone conformity. We evaluate the difference between
the two lengths rather than their ratio, since ratio-based costs are
extremely sensitive to artist errors on short bones.

We encode our expectation for simpler, more natural character
poses, depicted from a descriptive view, as a preference for 2D joint
angles in the output pose that are close to their bind pose counter-
parts:

Cn(i, j, k) = 1− e−(γ−γ′)2/2σ2
a

Here γ and γ′ are the current and bind pose angles respectively be-
tween pairs of emanating bones (i, j) and (j, k) at a joint j. We
set σa to π/3 if the 3 involved joints share an originating contour,
and π/6 otherwise, enforcing a stronger preference for the bind
pose angle when there is no clear contour suggesting 2D bone di-
rections, and a weaker preference for bind pose angles when the
adjacent bones follow one continuous contour and the 2D bone di-
rection is well-suggested. These costs are measured for each triplet
of adjacent joints. This term can be replaced by more advanced
anatomical machinery used in prior work for predicting plausible
angles: for instance, if multiple reference poses are provided, one
can look at the smallest angle difference across these poses.



(a) (b) (c)

Figure 11: Full solutions: (a) contains overlaps; (b) poor cover-
age; (c) preferred.

Combined Local Cost Function. Combining the different terms
above, the cost for assigning a pair of bone end-points i and j to a
pair of locations is measured as

E(i, j) = 1−(1−Cl(i, j))(1−Ccf (i, j))(1−WcCc(i, j)). (3)

We empirically set the consistency penalty weight to Wc = 0.9.
The combined energy function encoding all local preferences for a
given assignment of joints to point locations is

Ematch =
∑
i

C(i, P ia) +
∑
i,j

E(i, j) +
∑
ijk

Cn(i, j, k) (4)

where the first term sums the per-joint assignment costs, the sec-
ond sums the per-bone costs and the third considers the joint triplet
costs. All terms have equal weight.

5.4 Global Consistency

In addition to the local criteria above, when evaluating the plausi-
bility of a skeleton embedding we need to evaluate the likelihood of
the overall contour-to-skeleton assignments it imposes (Figure 11).
In addition to the bone-segment correspondence computed earlier,
this task requires a joint-contour correspondence. We compute seg-
ments associated with joints as follows. For terminal joints we con-
sider the longest segment delineated by its aligned samples which
does not overlap the segments associated with its bone. For inte-
rior joints we consider each pair of bones emanating from the joint.
If the bones are associated with segments on the same contour, we
associate the contour segment in-between them with the joint (Fig-
ure 4).

In real life, projected visible contours of different character body
parts can overlap only if the two parts are in contact (i.e. on op-
posite sides of the contour), or if one is both perfectly parallel to
and occluding the other (Figure 14, top row). We therefore test
whether any pair of same-side contour segments associated with
disjoint bones or joints overlap and, if they do, this configuration is
assigned a high penalty score, empirically set to 10 (Figure 11a).

In a drawing that contains only contours of body parts surround-
ing skeletal bones, a valid solution must associate all contours with
some bone or joint. In practice our drawings can and do occasion-
ally contain extra curves, e.g the cat and horse ears in Figure 14.
Thus instead of full coverage, we seek for a sufficient one, requiring
coverage of over 85% percent of the contours (Figure 11b-c). We
note that when the soft non-overlap constraint is satisfied, our local
energy terms implicitly encourage coverage maximization, since
we penalize joints not being matched to contours and discourage
undesirable foreshortening. We incorporate coverage constraints
into our framework as discussed in Section 5.5.

Our local energy does not clearly distinguish between fully or par-
tially symmetric solutions. While hard to penalize locally, partial
symmetries (e.g. left arm and right leg mapped to the same side
of the spine) are easily detected on a complete solution by evalu-
ating the degree of twist the spine must undergo to accommodate

them. While twist can be intentional, we expect it to be clearly in-
dicated by the contours, with the undesired “untwisted” solution in
these cases violating consistency constraints. We differentiate be-
tween fully symmetric solutions by observing that, all things being
equal, artists strongly prefer views where the face of the character
is clearly visible. We similarly use this frontal preference in our
global pose evaluation.

5.5 Solver Mechanism

Optimizing Ematch alone without addressing global preferences
can be cast as a classical tree-structured high-order Markov Ran-
dom Field (MRF) problem by translating our cost terms into proba-
bilities, and optimized efficiently using standard techniques [Koller
and Friedman 2009]. Unfortunately, we are not aware of any stan-
dard mechanism that allows us to incorporate the coverage con-
straints into such frameworks; the general problem of maximal a
posteriori estimation over a Markov Random field is a classical
NP-hard problem [Shimony 1994]. Instead we develop a simple
domain-specific method that works well on all our inputs. We
note that, on typical gesture drawings, for terminal joints our unary
cost computation produces only about a dozen possible assignments
with less than maximal cost; furthermore, our desired assignment is
expected to match most terminals, with the exception of occluded
ones, to one of these below maximum cost placements. Because
of our stringent contour consistency constraints, given the correct
assignment of terminals, using the basic Ematch optimization for
assigning other joints results in the desired global solution. Clearly
we do not a priori know what this correct terminal assignment is;
however, given the small number of terminals (typically six or less)
and the small number of placement choices for them, an exhaustive
search of all possible alternatives is a practical option.

This search can be further sped up by traversing the different al-
ternatives in a strategic order. Specifically, we order all possible
terminal assignments based on the sum of their unary costs, and
then process them in increasing cost order, penalizing assignment
combinations where terminal assignments violate the non-overlap
constraints and placing them at the end of the queue. For each ter-
minal assignment we then optimize Ematch on a reduced set of
joints and with a reduced solution space. Specifically, when a ter-
minal joint has a below maximum cost assignment, we remove this
node from the solved-for joint set and update the unary and binary
costs of its neighboring vertex to reflect the selected assignment.
We let the optimization determine the best assignment for terminal
joints associated with the maximal cost, but remove all assignments
with below maximum cost from their solution space. If the located
solution satisfies all our constraints, and in particular if it produces
over 85% coverage, we stop the iterations.

The same coverage can sometimes be produced by a permutation
of the desired terminal placements; however different permutations
lead to different minima of matching energy Ematch which may
better satisfy our preference for more front facing and less twisted
solutions. We thus process all partially and fully symmetric per-
mutations of the obtained solution, and select the least twisted and
most front facing one from among those solutions that satisfy all
our constraints.

6 2D Pose Optimization

While our discrete solver correctly captures the overall contour-
joint correspondences, it operates on a finite set of potential po-
sitions and thus may end up generating imperfect joint placements
(Figure 9b). Moreover, to enable an efficient solutions, our discrete
formulation assumes all joints are fully flexible. In real models,
many joints have a reduced set of degrees of freedom (DOFs), with
pelvic and shoulder joints typically supporting only rigid transfor-



mations. To address both issues we iterate over the joints to further
optimize their positions and enforce the allowable degrees of free-
dom. For each joint we use a local random walk to find a new loca-
tion that improves the overall matching energy (Equation 4) while
constraining the joint to remain on the same side with respect to
all nearby contours, and disallowing moves that violate consistency
or introduce overlaps. For joints with a reduced DOF set, we then
recompute the positions of the joint and its immediate neighbors
which satisfy the DOF constraints and are maximally close to the
current ones, using an ICP variant. Specifically, given the current
2D locations of a joint and its neighbors, we search for a 3D trans-
formation of these joints in the bind pose that satisfies the DOF con-
straints while maximally aligning the 2D coordinates of each joint
and its current location. We repeat the two steps until convergence.

7 Full Pose Optimization

Once we have generated a 2D skeletal embedding, we associate a
depth value with each joint by leveraging viewer expectations of
simplicity and weak foreshortening. In this process we also refine
image plane joint positions to correct drawing and 2D estimation in-
accuracies. In our computations we assume an orthographic projec-
tion since, as noted by [Xu et al. 2014], estimates of artist intended
perspective are highly unreliable. Our solution is based on three
key observations. First, we note that even small inaccuracies in de-
picting body proportions, due to inexact foreshortening, inaccurate
perspective, and other artifacts, accumulate to form large errors in
2D joint placement. Therefore, rather than minimizing absolute 2D
solution displacement compared to the 2D embedding, we encode
conformity with this embedding in terms of slopes and lengths of
projected bones. Second we note that human observers are know to
underestimate foreshortening in drawings [Schmidt et al. 2009], a
fact that often causes artists to exaggerate it [Hogarth 1996]. Conse-
quently, foreshortening predictions based directly on drawn body-
part lengths may be inaccurate. In our observations, viewers rely on
relative rather than absolute foreshortening when predicting a char-
acter’s pose from a drawing - even when presented with a reference
model. Consequently, when predicting the degree of foreshortening
per bone, we similarly take into account relative foreshortening as
compared to other bones. Our last observation is that while we seek
for natural poses, i.e. those closer to the input bind pose, minimiz-
ing this difference directly is problematic as many drawn poses are
quite far from the input one by design. For this reason, we do not
explicitly consider the distance to the bind pose in our optimization.
Instead we use the bind pose as an initial guess for the solution and
limit the step size in each iteration so that our final pose gradually
evolves from the bind pose. In doing so, we indirectly guide our fi-
nal solution towards a more natural pose by searching for a smooth
motion path from the bind pose to the final one.

Conformity We encode conformity to the estimated 2D skeletal
pose as preservation of 2D bone slopes and lengths:

Ec =
∑

(i,j)∈S

wc(i, j)((P
y
i −P

y
j )−d

y
ij)

2+((P xi −P xj )−dxij)2 (5)

where Pk are joint positions, S is the set of all skeletal bones, and
dxij , d

y
ij are the x and y differences between joint positions in the

2D embedding. To focus on relative rather than absolute bone pro-
jection preservation we set wc(i, j) = 1/l2ij where lij is the length
of the bone (i, j).

Foreshortening When the 2D projected bone lengths l′ij are
fixed, the depth along each bone is fully determined by the dif-
ference between the 3D and 2D projected bone lengths: (dzij =√
l2ij − l′

2
ij). However image space lengths are sensitive to artist

errors, as well as scale mismatches between the character model and
the drawing. Leveraging our previous observations about human
preference for foreshortened interpretations, we consequently com-
bine conformity with a foreshortening minimization term which, to-
gether with the regularity constraints below, aims to mitigate draw-
ing inaccuracies:

Ev =
∑

(i,j)∈S

wv(i, j) · (P zi − P zj )2. (6)

The weights wv(i, j) are determined by the anticipated foreshort-
ening of the bone (i, j):

wv(i, j) =

e−
(fij−favg)

2

2σ2
f , if fi,j < favg

1.0, otherwise
(7)

Here fij = l′ij/lij is bone foreshortening and favg is the average
bone foreshortening for the entire character in the 2D solution. This
weight is a monotonically decreasing function of the 2D-3D length
ratio and is maximized when this ratio is equal to or larger than
the average across the drawing. We view a ratio below 0.6 of the
average as intentional foreshortening and consequently force the
weight of the foreshortening minimization term drop to zero for
such ratios by setting σf = 0.2 using the three-sigma rule.

Regularity Previous work on the interpretation of drawings
(e.g. [Xu et al. 2014; Bessmeltsev et al. 2015]) has discussed nu-
merous domain-specific regularity criteria. In our work we found
four key regularity cues which viewers expect to hold when envi-
sioning drawn poses: parallelism, symmetry, contact, and smooth-
ness. We use the 2D embedding to detect near-regular relation-
ships and then strictly enforce them in 3D. For each pair of bones
(i, j) and (m,n) with roughly parallel 2D projections (within 10◦),
we enforce their 3D bone directions to be the same: Pi − Pj =
lij/lmn(Pm − Pn). Similarly, if two symmetrical limb bones are
nearly symmetric around the spine plane, we force exact symme-
try - since symmetry is detected in 3D, we enforce this constraint
in a post-process step. We also note that human observers expect
close 2D adjacencies, specifically contacts observed in 2D, to be
preserved in 3D. We therefore detect pairs of adjacent 2D joint con-
tour segments and constrain the distance between their correspond-
ing 3D joints. Lastly, we note that gesture drawings typically aim
to convey aesthetic poses [Guay et al. 2013]. Motivated by Guay et
al., we fit a quadratic polynomial spline to each skeletal limb in the
2D embedding; if all joints along the limb are deemed to be close
enough to this spline, i.e. within half each joint’s radius from it, we
add soft constraints attracting them toward corresponding spline lo-
cations.

Joint Ordering. The drawing contours define two types of occlu-
sions, iter- and intra- part (Figure 7). Inter-part occlusions, such as
an arm in front of a body, indicate that at a particular point along
one bone, the body part surrounding this bone is in front of a par-
ticular location on the body part around another bone. We encode
these using relative locations on the participating bones:

P zi tij+P
z
j (1− tij)+Rij(tij) < P zk tkl+P

z
l (1− tkl)−Rkl(tkl)

(8)
Here the two participating bones are (i, j) and (k, l), tij and tkl are
the linear parameters of the occluded and occluder points and Rij
and Rkl are the corresponding body part radii at these points.

Intra-part occlusions, depicted via local contour T-junctions, en-
code pairwise joint ordering between end-joints i and j of individ-
ual bones. The joint associated with the stem of the “T” is expected
to be farther away than the one associated with its top. To enforce



these relationships we add the inequality constraint:

P zi < P zj .

Solver We minimize Ec+Ef subject to the simplicity and order
constraints detailed above. While our posing criteria are for con-
venience expressed via positions, using positions as optimization
variables is problematic, since preserving fixed bone lengths using
a position based formulation requires quadratic constraints, which
are known to be hard to operate on [Gall et al. 2010] . Instead we
follow the standard approach used in kinematics and robotics and
represent our 3D pose in terms of twist coordinates θij [Bregler
et al. 2004]. We then use a solution method advocated by Gall
et al. [2010], who represent vertex positions via twists, and use
a Taylor expansion to linearize the resulting expressions. Using
such linearizion we formulate the optimization of E as a sequence
of constrained quadratic optimizations. We augment the quadratic
function being minimized at each iteration with a stabilization term
aimed at keeping the new solution close to the previous one:

α
∑
ij

(θnij − θn−1
ij )2 (9)

Here the sum is evaluated over all twist variables θij in the cur-
rent n and previous n − 1 iterations. We use a large α = 200 to
avoid introducing unnecessary and unnatural deviations from the
bind pose. Note that since the stabilizer is computed with respect
to the previous solution, this process allows for slow, but arbitrarily
far, deviation from this pose. The resulting quadratic optimization
with ordering constraints is solved at each iteration using the Gurobi
optimizer (www.gurobi.com). Since we have just a few dozen vari-
ables the entire process takes on average 30 seconds.

8 Validation

We validate the key aspects of our method in a number of ways.
The exact questionnaires used in the evaluations are included in our
supplementary material.

Ground Truth and Perception Comparison. We validate our
method on Ground Truth (GT) data, by posing two models into
complex poses (Figure 12) and using retraced projected occlusion
contours as inputs to our method together with the same models in
neutral bind pose. Our results closely resemble the original.

Our method aims to recover the viewer-perceived pose from the
drawings; therefore a more interesting test is to compare our poses
to viewer perceived ones. We performed this test using the same
data, by providing our inputs to two 3D modeling experts and ask-
ing them to pose the models into poses depicted by the drawings.
The result (Figure 12) are visually even more similar to ours than
ground truth. We showed each artists the ground truth models, our
results and the result produced by the other artist, without identify-
ing which output was produced by which method, and asked “How
well do these poses capture the artist intended pose?”. Both as-
sessed all the shown 3D poses as reflective of the drawn one, and
one commented that our result was “the most natural”. The artists
required roughly 15 minutes to pose each model, 5 to 10 times more
than our automatic posing times of 1.5 and 3 minutes.

Perceived 2D Skeletal Embedding. To evaluate consistency
across viewers and to compare our algorithm with viewer percep-
tion, we asked 10 viewers to manually embed skeletons to match
4 gesture drawings. We provide viewers with 2D images of the
models and skeletons in the bind pose, with joints clearly marked,
and with bone chains numbered and colored with different colors

Input curvesGround Truth Our resultArtist 1 Artist 2

Input curvesGround Truth Our resultArtist 1 Artist 2

Figure 12: Comparing our results to GT data and artist modeled
poses. We use as input the projected contours of the posed GT mod-
els combined with their bind posed originals (Figure 14) to auto-
matically create poses qualitatively similar to both GT and artist
results.

Figure 13: Overlays of viewer created skeleton embeddings (lines
removed for clarity) and our results on same inputs.

to facilitate distinction between symmetric limbs. While viewers
found the task conceptually easy, marking locations for all joints
and connecting them took participants 5 to 10 minutes per drawing.
Figure 13 summarizes the resulting embeddings on two complex
inputs, with various user embeddings overlaid to visualize correla-
tions across viewers. The full set of viewer results is included in the
supplementary material. Viewer embeddings are largely consistent
and agree very well with our algorithmic results, confirming that
our method is built on solid perceptual foundations.

Qualitative Evaluation. We asked 3 artists and 6 non-experts to
comment on our results. We showed them each pair of input and
result separately and asked “How well does this 3D character pose
capture the artist intended drawn pose?”. All respondents agreed
that our results successfully capture the drawn poses. Minor dif-
ferences noted by two participants included: variation in geometric
details beyond the control of a skeletal rig, such as extended vs
contracted character belly in the yoga pose, Figure 14, top; and in-
sufficient tightness of the cross-armed pose in Figure 14,bottom.
The latter example is particularly challenging since the artist did
not draw the actual character palms.

9 Results

Throughout the paper we have shown numerous examples of ges-
ture posing using our method. These examples range from rela-
tively simple occlusion-free and relatively flat ones, e.g. Figure 15,
to the karate, cat, and dance poses which exhibit large foreshorten-
ing and complex occlusions (Figures 1, 14, 21). Our results extend
beyond typical humanoid models attempted by previous 2D pos-
ing methods (e.g. [Davis et al. 2003]), to whimsical characters and
animals (Figure 14). Across all examples our method believably
reproduces the drawn poses. It seamlessly overcomes drawing in-
accuracies, clearly visible in inputs such as the gymnastics poses in
Figures 9, 15, 16 where the drawn limbs are consistently longer and



Figure 14: Typical two-stage processing results. Left to right: input
model, drawing, 2D skeleton fitting, output model.

Figure 15: (center) 3D posing using only drawing conformity,
(right) full 3D solution.

skinnier in proportion to its torso than those of the character model.

Workflow. Most of our inputs were created using a traditional
keyframing workflow, where the artists had a model in front of
them and drew the poses with this character in mind (Figures 1, 14).
Artists were given generic instructions to draw a gesture drawing of
a given 3D model, in a pose performing a given action. They cre-
ated their inputs using standard 2D editing tools and received no
information about our system. We also evaluated an inverse work-
flow inspired by legacy drawings - tracing the strokes on existing
gesture drawings and adjusting the character dimensions to roughly
fit those (e.g. the karate sequence in Figure 21). This workflow
can enable non-artists to create compelling poses and animations
by re-using existing material and assets, but is likely to be more
challenging as the character proportions are more likely to differ.

Impact of Design Choices. Figures 5, 8, 11, and 15 demonstrate
the importance of our algorithmic choices, highlighting what can
happen if we omit one or more of the perceptual cues we employ.
Figure 15 demonstrates the effect of our foreshortening and regular-
ity terms on 3D pose reconstruction. Absent these terms, the posed
character better conforms to the input contours, but the 3D pose be-
comes less predictable or natural. Figure 8 further highlights the
distinction between more and less natural interpretations.

Figure 16 shows the impact on our results of using different bind

Figure 16: Impact of different bind poses.

Figure 17: We capture poses consistent with artist intent even when
the gesture drawings contain large errors in character proportions.

poses. As demonstrated the bind pose impacts part orientation for
cases where the drawing does not provide clear pose information,
e.g. the feet of the character, or when the skeletal resolution is not
sufficient to capture orientation details, e.g. the character’s palm
orientation.

Input Quality and Robustness. As noted previously, gesture
drawings frequently depict inaccurate character proportions. Our
inputs are no exception, yet without a ground-truth reference artist
error is essentially impossible to measure. However, if we assume
that our result is consistent with artist intent (as confirmed by our
studies), then the mismatch between the contours of our models and
the drawn strokes provides a good proxy for this error (Figure 17).
We note that drawing errors are most evident for minimally fore-
shortened poses where 2D proportions should match the 3D ones,
yet even for such inputs inspection points to significant artist errors.
For example, while the pose on the left in Figure 17 was drawn by a
professional, the proportions between the arms and legs are signifi-
cantly off when compared to the 3D model. Following the assump-
tion that our result is consistent with artist intent, a good numerical
proxy for artist error is provided by comparing the ratios of limb
skeletal-chain lengths to the lengths of the torso skeletal-chain pro-
jected to the image plane before, and after, full-pose optimization.
For perfect inputs, such as the ground truth results in Figure 12,
the before and after ratios (and lengths) are essentially identical.
For the input freehand drawings, these ratios change by an aver-
age of 15%, indicating significant measurable inaccuracy. We also
note that, for a typical model, the average difference between the
fitted radius of a joint and the actual measured radius of its con-
tour is 15%, and the worst difference is 40%. These evaluations
confirm that our method produces good results even when the input
drawings are inaccurate.

To further test sensitivity to proportion inaccuracy, we modified the
lengths of the dancer’s arms in the drawing in Figure 1,e and re-
posed the model using these modified drawings (Figure 18). We
produced nearly-identical results when the drawn arms were 30%
longer, and the expected foreshortened results (where the arms are
at the same image space angle, but point inward) when the drawn
arms were 30% shorter. To validate that our algorithm remains
robust in the presence of significant occlusions, we removed the
visible toes of the dancer model, making both legs fully hidden;
our method produced a valid solution where the feet of the dancer



(a) (b) (c)

Figure 18: Altering the length of the arms in the dancer example
(a) produces similar results to the original when the arms are 30%
longer (b), and foreshortened results (as expected) when the arms
are 30% shorter (c).

Figure 19: Occlusion test: Even with legs entirely hidden our
method is able to plausibly recover the dancer pose.

touched the hem of the skirt (Figure 19).

Most of our inputs were generated directly in vector format, using
tools such as Adobe Illustrator, either from scratch or by tracing
over existing raster drawings, similar to the inputs used by sketch-
based modeling frameworks (e.g. [Karpenko and Hughes 2006;
Shtof et al. 2013]). We also tested our method on automatically
vectorized raster input, generated using Adobe Illustrator (Fig. 20);
even though the output of this method is not as clean as a manually
vectorized input drawing, our method successfully creates a pose
that reflects the artist’s intent.

Comparison to Prior Art. Figure 21 compares our results
against [Davis et al. 2003], the closest prior work in terms of 2D
posing ability. While both methods recover qualitatively similar
poses, we compute the pose fully automatically, and use only the
drawings and the model in a bind pose as inputs. In contrast Davis
et al. use a much more elaborate and time consuming process -
users first draw a stick figure on top of the drawing, marking all
2D joint locations, then add extra annotations and select between
multiple solutions to resolve input ambiguities. As our user study
shows, while drawing a stick figure is not difficult it is nevertheless
time consuming.

Parameters and Runtimes. All our results were computed with
the default parameters listed in the text. For the multi-component
model ‘wynky’ (Figure 14, bottom row) we disabled the crossing
cost as on this model bones must intersect contours. Our method
takes between 1 to 3 minutes to compute the output pose; roughly
60% of this time is spent on the 2D discrete embedding computa-
tion.

Limitations. Our method is inherently limited by the descriptive-
ness of the drawing (Figure 22). We rely on a combination of draw-
ing and model’s proportions to predict foreshortening. When the
proportions of the drawn and posed characters are drastically dif-
ferent (in Figure 22a-b the drawn arms are much shorter and the

Figure 20: Processing an automatically vectorized raster gesture
drawing from a commercial software package. Left to right: input
bitmap, auto-vectorized input, generated poses.

Figure 21: (right) Davis et al.[2003] trace stick figures over ges-
ture drawings and then pose characters semi-automatically. (left),
We use the original drawings to automatically pose characters.

(a) (c)(b) (d)

Figure 22: Extreme mismatch in proportions between model and
drawing (a) can lead to poor depth reconstruction (b); correcting
the proportions in the drawing (c) corrects the reconstruction. (d)
Ambiguous drawings using highly oblique views can cause our 2D
pose estimation to fail.

drawn legs much longer than their model counterparts), our frame-
work will by necessity misestimate the degree of output foreshort-
ening. Once the drawing proportions are adjusted we correctly re-
cover the intended pose (Figure 22c). Our pose estimation can fail
when a gesture is not evident from the drawing itself, due to e.g.
oblique views (Figures 2c, 22d), but can typically correctly recover
the pose given a more descriptive view (Figure 1).

10 Conclusions

We have presented and validated the first method for character pos-
ing using gesture drawings. Our method leverages a set of observa-
tions about the key properties of gesture drawings that make them
effective at conveying character pose. Using these observations we
are able to first recover a 2D projection of the character’s pose that
matches the drawing, and then imbue it with depth. We are able to
reconstruct convincing 3D poses, confirmed to agree with viewer
expectations, from a single gesture drawing while robustly correct-
ing for drawing inaccuracy.

Our work raises many directions for future research. It is em-
pirically known that in artist drawings “errors of intent are inher-
ent and unavoidable, and furthermore can be of significant mag-
nitude” [Schmidt et al. 2009]. An interesting perceptual question
would therefore be to explore when and where artist intent and
viewer perception diverge, and at which point human observers are
no longer able to correct for artist inaccuracies. The algorithmic
impact of this exploration would provide more strict definitions
of when and how pose recovery should deviate from conformity
constrains. Our framework focuses on drawing cues, and it would
also be interesting to explore how we can combine those cues with
stronger anatomical priors on plausible character poses and other
domain cues.
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