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Abstract

Multiplexing is a common technique for encoding high-
dimensional image data into a single, two-dimensional im-
age. Examples of spatial multiplexing include Bayer pat-
terns to capture color channels, and integral images to en-
code light fields. In the Fourier domain, optical heterodyn-
ing has been used to acquire light fields.

In this paper, we develop a general theory of multiplex-
ing the dimensions of the plenoptic function onto an im-
age sensor. Our theory enables a principled comparison
of plenoptic multiplexing schemes, including noise analysis,
as well as the development of a generic reconstruction al-
gorithm. The framework also aides in the identification and
optimization of novel multiplexed imaging applications.

1. Introduction

Two-dimensional images are the primary means by
which humans represent the three-dimensional world sur-
rounding them. The introduction of photography resulted
in unprecedented levels of realism in these representations.
From the earliest works of color and integral imaging, an
often-stated goal in photography has been to increase the
amount of visual information that can be acquired.

In fact the “ultimate” camera would capture the full
plenoptic function [2]. That is, within the limits of the
uncertainty principle it would acquire the position, direc-
tion, wavelength, and time of arrival of each individual pho-
ton incident on the image sensor. From this information it
would then be possible to extract different styles of images
using computation. A practical challenge to achieving this
goal is that real world image sensors always integrate over
a finite area, incident angle, wavelength, and time.

The most common solution to this problem is to trade
spatial resolution for an encoding of additional dimensions
into the image plane. This plenoptic multiplexing can be
achieved with something as simple as a color filter array
like the Bayer pattern [7], or a more complicated encod-
ing of multiple dimensions using Assorted Pixels [24]. An
encoding of light fields can, for instance, be achieved by
multiplexing directional light variation into different spatial
frequency bands using optical heterodyning [32].

In this paper, we introduce a general theory for describ-
ing and analyzing plenoptic multiplexing systems. This

theory allows us to cast a large variety of existing multi-
plexed imaging approaches into a common framework for
reconstruction, performance comparisons, and noise anal-
ysis. The framework also allows us to explore the space
of multiplexed imaging systems in a principled way, and to
derive new multiplexing schemes optimized for given tasks.
Our specific contributions are:

• A mathematical framework for multiplexed imaging,
which subsumes both spatial and Fourier reconstruc-
tion methods proposed in the literature.

• A spatial reconstruction method for Fourier multi-
plexed data, which can significantly increase the re-
sulting image quality using our framework.

• A discussion of case studies using many existing mul-
tiplexing systems for color filter arrays and light fields.

• A comparative noise analysis of competing methods
for color imaging and light field photography, which is
enabled by our framework.

2. Background and Related Work

Image sensors integrate over a finite range along each
dimension of the plenoptic function. In order to capture
multiple samples along any of the non-spatial dimensions,
three fundamental approaches are available.

Multi-Sensor Capture refers to an approach where multi-
ple image sensors simultaneously capture different samples
of the plenoptic function. Examples of this approach in-
clude multi-camera systems for capturing light fields and
related information [35], as well as 3-chip cameras, which
have a separate image sensor for the red, green, and blue
channel of a color image. A similar approach is available
for HDR imaging [3, 22].

Time Sequential Capture can be used when the hardware
requirements of multi-sensor capture would be prohibitive.
For example, light fields can also be captured by moving a
single camera to different positions [18, 11]. Color images
can be acquired sequentially by applying different color fil-
ters (e.g. [33]), which is particularly attractive when a large
number of color channels is desired, for example in mi-
croscopy. HDR images can be acquired by sequentially
capturing different exposures [9, 23], or using generalized
image mosaicing [28].
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A downside of time-sequential capture is of course the
difficulty of capturing dynamic environments and videos. If
neither multi-sensor, nor time sequential capture are feasi-
ble, one can employ the third approach:
Multiplexed Imaging refers to the encoding of multiple
images into a single image/sensor plane. In effect, this ap-
proach trades spatial resolution for the ability to simulta-
neously capture multiple slices of the plenoptic function.
Multiplexing can either be performed in the spatial domain
or in the Fourier domain.

In spatial multiplexing, the pixels in a local neighbor-
hood of the image sensor represent samples from different
slices of the plenoptic function. Most often, the image is
comprised of repeating tiles, which we call super-pixels.
Corresponding pixels in each super-pixel come from the
same slice of the plenoptic function. The most common
example of spatial image multiplexing is the use of color
filter arrays (CFAs) such as the Bayer pattern [7], in order
to capture a color image in a single photograph. General
filter arrays can be used to capture high dynamic range or
multi-spectral images [24]. Integral and light field photog-
raphy can be seen as multiplexing the light field onto a 2D
image plane [20, 1, 25]. Here, the super-pixels correspond
to different viewpoints, while corresponding points within
each super-pixel correspond to the same viewing direction.

Fourier-space multiplexing is closely related to spatial
multiplexing, but the spatial layout of corresponding mod-
ulation masks is optimized to achieve certain properties in
the Fourier domain. In particular, spatial patterns are chosen
such that the different slices of the plenoptic function are en-
coded into different frequency bands. In computer graphics,
this optical heterodyne approach has so far been used for
capturing light fields [32, 31], occluder information [14],
and high dynamic range color photographs [34]. Spatially
encoded light fields were recently analyzed in Fourier space
and it was demonstrated that Fourier reconstruction algo-
rithms apply as well [10]. In color imaging, a similar ap-
proach has been used to analyze filter patterns for Bayer-
style color mosaics [6].

More exotic light field camera designs include the fo-
cused plenoptic camera [21], which captures the light field
at a higher spatial, but lower angular resolution at a specific
depth plane. Furthermore, light field reconstruction with
priors can be formulated in a Bayesian framework [15, 17],
which was demonstrated to achieve super-resolution [8].

Various other methods have been proposed that employ
combined mask or lens-based optical light modulation and
computational reconstruction. These approaches demon-
strate how to capture images and scene depth [16] as well
as light fields [13] or light fields and temporal light varia-
tion [4] using coded apertures, remove motion blur from a
single photograph [26] and video sequences [5], or remove
veiling glare from photographs [27, 30].

3. Plenoptic Multiplexing

Standard light sensing devices integrate over all dimen-
sions of the plenoptic function [2]. These include spatial ~x,

directional ~θ and temporal t variation as well as the color
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Figure 1. Illustration of the Cartesian product between spatial and
plenoptic basis in case of a one-dimensional sensor with a spectral
filter basis (left) and with an array of finite apertures (right).

spectrum λ incident on the sensor surface. The most com-
mon approach to acquire parts or all of this visual infor-
mation with a single photograph is to perform an optical
pre-modulation of the captured light. For this purpose, we
introduce a general plenoptic modulator m that is capable
of multiplexing different slices of the plenoptic function,
such as color channels, onto the sensor image. A recon-
struction can then be performed by interpolating each slice
to every position; an example for this is color demosaick-
ing. Reconstruction algorithms commonly assume that the
acquired signal is spatially band-limited, which is in prac-
tice implemented using optical anti-aliasing filters [12].

A continuous, linearized, noise-free sensor image i can
be modeled as

i (~x) =

∫

P

m (~x, ~p) lλ (~x, ~p) d~p, (1)

where ~x consists of the spatial dimensions on the image
sensor, and ~p contains the remaining parameters (direc-
tion, wavelength and time) of the plenoptic domain P .
The plenoptic function lλ, returning spectral radiance, is
defined on the sensor plane. It is usually a non-linearly
distorted version of the plenoptic function in world space

lλ(~x, ~p) = lworld
λ ◦ g−1 (~x, ~p), where the distortion g−1 is

introduced by the optics of the camera’s refractive elements.
In this paper, we focus on multiplexing and demultiplexing
the plenoptic function on the sensor. This approach sepa-
rates the geometric optics changes in ray direction from the
modulation function, which represents terms such as a finite
aperture and, for real-world lens systems, any photometric
terms. This separation is common practice in the optics lit-
erature. Note, however, that we also show in a supplemental
document how our multiplexing theory can be directly ap-
plied to certain classes of refractive optical elements.

Our theory is based on the separation of the plenoptic
modulator into a sum of mutually independent spatial and
plenoptic basis functions:

m (~x, ~p) =
∑

j

σj (~x) × πj (~p) . (2)

A visualization of this separation is shown in Figure 1. In
Section 4 we show how many modulators that correspond
to state-of-the-art acquisition systems can be decomposed
in this way.



Real-world imaging systems can only acquire a dis-
crete subset of the plenoptic slices. Therefore, we intro-
duce a set of j = 1 . . . N plenoptic coefficients ρj (~x) =
∫

πj (~p) lλ(~x, ~p)d~p, which describe a projection of the
plenoptic function into the spatially constant plenoptic ba-
sis. Combining Equations 1 and 2 yields

i (~x) =

N
∑

j=1

σj (~x)

∫

P

πj (~p) lλ(~x, ~p)d~p

=
N

∑

j=1

σj (~x)ρj (~x) . (3)

The spatial basis σ(~x) is required to multiplex the different
plenoptic coefficients into a 2D sensor image. Specifically,
σj(~x) describes the sampling pattern for a single plenoptic
basis function πj(~p). In the case of imaging through a color
filter array, the spatial basis defines the layout of the indi-
vidual color filters. We assume the spatial basis functions
to be super-pixel periodic so that the visual information is
uniformly sampled over the sensor.

In summary, a captured sensor image i(~x) contains mea-
surements of all plenoptic coefficients ρj (~x). Their sam-

pling layout is determined by the spatial basis σ(~x). Note
that the spatial basis functions σj can have overlapping sup-
port. Therefore, a measured image value may represent
linear combinations of all plenoptic coefficients at that lo-
cation. Each pixel within a super-pixel samples a differ-
ent linear combination of plenoptic coefficients, while cor-
responding pixels located in different super-pixels sample
the same linear combination. We introduce the notation
ck =

∑

j σ k
j ρj (~x) for each of these different linear combi-

nations of plenoptic coefficients, where σ k
j is the kth value

of the discretized periodic spatial basis function σj(~x). A
sensor image directly samples each of these measurement
channels at a different location within a super-pixel.

3.1. Spatial Reconstruction

In order to perform a spatial reconstruction, all measure-
ment channels ck need to be estimated at each spatial loca-
tion ~x (see Fig. 2, upper center). Initially, only one sample
of each measurement channel per super-pixel is recorded
by the sensor. An intuitive example is that of color demo-
saicking, where different color channels of a raw sensor im-
age need to be interpolated to each position of the resulting
color image. Under the assumption of an underlying spa-
tially band-limited signal, this is a standard reconstruction
(or interpolation) problem. We express this concept as

Theorem 1 (Plenoptic Spatial Multiplexing, PSM). The in-
terpolated measurement channels at a particular location ~x
are locally related to the plenoptic function as

~c(~x) = Σ~ρ(~x) = ΣΠ
T ~lλ(~x). (4)

Here, the matrix Σ encodes the spatial basis functions σj in

its columns and the matrix Π
T encodes the plenoptic bases
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Figure 2. Overview of multiplexed image reconstruction. The
plenoptic function can be reconstructed by interpolating all mea-
surement channels and performing a local decorrelation in the spa-
tial domain (upper row). Alternatively, it can be reconstructed
in the Fourier domain by cropping and locally decorrelating the
Fourier channels created by the plenoptic modulator (lower row).

πj(~p) in its rows. Vector ~c(~x) contains the N measure-
ment channels interpolated to a common position, ~ρ(~x) the

corresponding plenoptic coefficients and~lλ(~x) the plenop-
tic function. In many multiplexing applications, Equation 4
is a square, well-conditioned system, and can be solved di-
rectly. However, in some cases matrices may be non-square
or singular, for example because the same plenoptic coef-
ficients are encoded using different spatial basis functions
(e.g. the Bayer pattern encodes the green channel at two dif-
ferent locations). In this case, a least squared error solution
to Equation 4 is given using the matrices’ pseudo-inverses:
~lλ(~x) = (ΠT )+Σ

+~c(~x). This reconstruction corresponds
to the upper row of Figure 2.

The PSM theorem shows that we can reconstruct the
plenoptic function~lλ(~x) from sensor samples i(~x) by per-
forming a local decorrelation on the interpolated measure-
ment channels ck(~x). However, Theorem 1 not only shows
that the correlation between the measured channels is spa-
tially local, but also that the correlation is in fact a linear
operator, yielding

Corollary 1 Any linear filter can be applied to the mea-
surement channels ck(~x) prior to decorrelation while yield-
ing equivalent results to application after the decorrelation.

Image processing operations such as upsampling, edge de-
tection, blurring, sharpening, etc. can thus be performed on
the correlated image without affecting the end result. Al-
though this only applies to linear filters in theory, we show
in supplemental material that non-linear filters can achieve
high-quality reconstruction results in practice. Non-linear
filters are already the preferred choice for color demosaick-
ing; we show that these can also be applied to light field
reconstruction.



3.2. Fourier Reconstruction

In recent literature, multiplexing strategies have often
been discussed in the Fourier domain [32, 31, 14, 10]. For
this reason we provide the dual Fourier view of plenoptic
multiplexing and reconstruction in the following.

By applying the convolution theorem, the Fourier trans-
form of an acquired image (Eq. 3) is given as

Fx {i} = Fx







N
∑

j=1

σj(~x)ρj(~x)







=

N
∑

j=1

σ̂j (~ωx)⊗ρ̂j (~ωx) ,

(5)
where ˆ denotes the Fourier transformed version of a quan-
tity, and ~ωx are the spatial frequencies.

The Poisson summation formula dictates that the Fourier
transform of a periodic function is a weighted set of Dirac
peaks. Thus, the Fourier transform of the spatial basis func-
tions is given by

σ̂j (~ωx) =
N

∑

k=1

σ̂
k
j δ (~ωx − k∆~ωx) , (6)

where ∆~ωx is the frequency offset or distance between suc-

cessive Dirac peaks1 and the values σ̂
k
j are the Fourier

weights for basis function j. These weights correspond to
the Fourier transform of a single period of that specific basis
function. Combining Equations 5 and 6 as

Fx {i} =

N
∑

k=1



δ (~ωx − k∆~ωx) ⊗

N
∑

j=1

σ̂
k
j ρ̂j (~ωx)



 (7)

shows that N different linear combinations of Fourier trans-
formed plenoptic coefficients ρ̂j , which we refer to as

Fourier channels ĉk(~ωx) =
∑

j σ̂
k
j ρ̂j(~ωx), are created in

the frequency domain. Given the same band-limitation re-
quirements on the original signal as in the spatial case, the
Fourier channels do not overlap and a single linear combi-
nation of Fourier plenoptic coefficients ρ̂j is measured in
each of the channels (see Fig. 2, bottom left). In the follow-
ing we consider the Fourier channels to be cropped from the
multiplexed sensor image (Fig. 2, bottom center). To ac-
count for the reduced resolution of a channel compared to
the full multiplexed image we introduce a new set of spatial
frequencies ~ω′

x. Similar to the spatial case, the correlation
of the Fourier channels is local in the spatial frequencies
~ω′

x. In analogy to the PSM theorem, Equation 4, we can
therefore state the following

Theorem 2 (Plenoptic Fourier Multiplexing, PFM). The
Fourier channels at a particular spatial frequency ~ω′

x are
locally related to the Fourier transform of the plenoptic
function as

~̂c(~ω′
x) = Σ̂ ~̂ρ (~ω′

x) = Σ̂Π
T ~̂

lλ(~ω′
x). (8)

1For a 2D sensor image the bases are periodic in both spatial dimen-
sions, but we will omit the second one in our notation of k for clarity.

The correlation matrix Σ̂jk = σ̂
k
j is determined by the

Fourier weights of the spatial basis which can be written

as Σ̂ = FΣ in matrix form. The plenoptic basis functions

encoded in Π
T remain unchanged because of their inde-

pendence of ~x (see Equation 2). A least-squared decorrela-
tion in the Fourier domain can again be performed using the

matrices’ pseudo-inverses as
~̂
lλ(~ω′

x) = (ΠT )+Σ̂
+~̂c(~ω′

x),
which is illustrated in the lower row of Figure 2.

In summary, the PSM theorem leads to a generic re-
construction algorithm in the spatial domain by interpolat-
ing all spatially correlated image channels and decorrelat-
ing them locally. The PFM theorem, on the other hand,
shows that previously proposed Fourier reconstruction tech-
niques [32, 31, 14, 10] are a special case of this method. The
cropping operation in Fourier space is a multiplication with
a rect function, which is equivalent to a spatial sinc filter.
Therefore, all previously proposed Fourier reconstruction
methods use a fixed spatial reconstruction filter, which is a
sinc. We will see in the next section that this choice nega-
tively affects the quality of the demultiplexing operation.

Another consequence of our analysis is that both spatial
and Fourier multiplexing schemes have nominally the same
band-limitation requirements. However, spatial reconstruc-
tion can be made more resilient to residual high frequencies
than Fourier reconstructions, where the high frequencies get
directly transferred into other channels.

4. Case Studies

In the following we analyze two important methods of
plenoptic multiplexing and show that they are closely re-
lated. Imaging with color filter arrays is well-understood
and serves as an intuitive example for our general frame-
work. This is then extended to light field multiplexing,
which has recently gained a lot of interest in the vision and
graphics community. We propose a novel reconstruction
approach for Fourier multiplexed light fields in the spatial
domain and show that it yields higher quality results than
previous approaches.

4.1. Imaging through Color Filter Arrays

Color filter arrays (CFAs) are spectral filters placed in
front of individual sensor elements in a super-pixel like lay-
out as considered in Section 3.1. The most widely used CFA
is the Bayer pattern [7]. It consists of a 2× 2 pixel-periodic
pattern containing two green color filters, as well as a red
and a blue one.

Expressed in our multiplexing framework, the plenoptic
dimensions reduce to the color spectrum ~p = (λ). Dis-
regarding the wavelength dependency of the sensor, the
plenoptic basis functions π = {πr,πg,πb} are the spec-
tral responses of the individual color filters. These are usu-
ally chosen so that a transformation into standardized color
spaces such as sRGB or XYZ are easily possible. In this
application it is not necessary to further process the plenop-
tic coefficients ρ{r,g,b}(~x) in order to extract estimates of

the spectral distribution lλ(~x, λ) of the light, because they
already represent the desired plenoptic quantities.



Figure 3. Raw sensor image with magnified part and correspond-
ing CFA (upper left). Fourier transform with channel correla-
tions illustrated for the entire image and the magnified CFA (upper
right). Reconstruction of the non-perfectly bandlimited signal in
the spatial (lower left) and Fourier (lower right) domain reveal dif-
ferent aliasing artifacts.

The spatial basis functions σj (~x) are in this case dif-
ferently shifted Dirac peaks. Their specific position de-
pends on the actual CFA, but the most common layout is
shown in Figure 3 (upper left). Although the color channels
are uncorrelated in the spatial domain, each of the Fourier
channels contains differently weighted contributions from

all color channels. The Fourier weights σ̂
k
j for the Bayer

pattern are illustrated in Figure 3 (upper right), with their
sum being color coded in the magnification.

A reconstruction of the original signal can thus be per-
formed in either the spatial or the Fourier domain, which is
known for the case of CFA imaging [19]. Many high quality
image color priors exist that can be integrated into a spatial
reconstruction and yield superior quality. Figure 3 shows
the result of spatial reconstruction (lower left) compared
to a cropping of the different copies followed by a chan-
nel decorrelation in the Fourier domain (lower right). This
corresponds to applying least-squares reconstructions using
the PSM (Eq. 4) and the PFM (Eq. 8) theorems, respec-
tively. As the original signal is not properly band-limited,
the reconstruction shows different aliasing artifacts. A spa-
tial reconstruction produces much better results in this case.

4.2. Light Field Acquisition

We now show that many light field acquisition ap-
proaches that aim at capturing directional light variation can
be seamlessly integrated into our framework. For simplic-
ity of notation and without loss of generality, we restrict the
discussion in this subsection to the 1D case of imaging a 2D
light field. We reparameterize the light field by replacing the
angular dimension θ by a spatial position v = tan(θ) on a
plane at unit distance (see Fig. 4, left). With these nota-
tional simplifications, our dimensional vectors are ~x = (x)
and ~p = (v).

4.2.1 General Non-Refractive Modulators

Attenuation masks that do not include refractive optical el-
ements have recently been popularized for light field ac-
quisition [32, 31, 14]. All of these approaches are associ-
ated with a reconstruction in the Fourier domain (see Sec-
tion 3.2). Here, we show that the employed periodic atten-
uation masks can be separated into a spatial and a plenop-
tic basis. This allows the aforementioned acquisition tech-
niques to be expressed in our unifying framework, which
enables a spatial reconstruction with a superior quality.

As illustrated in Figure 4 (left), the plenoptic modulator
for an attenuation mask at a distance z to a sensor is given
by reparameterizing its spatial dimension and including the
attenuation pattern as m(x, v) = m(x − zv). This mod-
els light transport in free space in front of the sensor and
serves as a physical means for achieving linearly combined
modulators on the sensor plane. By substituting m(x, v) in
Equation 1 with the inverse of its Fourier transform, we can
separate it into a spatial and a plenoptic part:

i(x) =

∫

v

lλ(x, v)m(x − zv)dv

=

∫

v

lλ(x, v)

∫

ωx

m̂(ωx)e2πi(x−zv)ωxdωxdv (9)

=

∫

ωx

m̂(ωx)e2πixωx

∫

v

lλ(x, v)e−2πizvωxdvdωx.

Discretizing the integrals as i = F−1M̂F lλ, with M̂ =
diag(m̂j), allows us to choose differently weighted inverse

Fourier basis functions as the spatial basis Σ = F−1M̂ ,

and the Fourier basis as the plenoptic basis Π
T = F . This

is also illustrated in Figure 4 (center right column).
A spatial reconstruction can therefore be performed

by applying a least-squares solution to the PSM theorem
(Eq. 4). The spatial reconstruction is performed by upsam-
pling the captured image as outlined in Section 3.1, which
allows filters other than a sinc to be applied. The upsampled
measurement channels ~c(~x) are then decorrelated as

~lλ(~x) = (ΠT )+Σ
+~c(~x) = F−1M̂

−1
F~c(~x). (10)

This is a deconvolution along the directional dimension,
which is independently performed for each spatial position.
This result shows that deconvolution for sum-of-sinusoids
patterns, as employed for instance by Veeraraghavan et
al. [32], represents a high-pass filter. Unfortunately, this de-
creases the signal-to-noise ratio (SNR) of the reconstructed
light field significantly as we will show in Section 5.

A Fourier-based reconstruction, as previously proposed,
can be performed by directly applying the least-squares so-
lution to the PFM theorem (Eq. 8):

~̂
lλ(~ω′

x) = (ΠT )+Σ̂
+~̂c(~ω′

x) = F−1M̂
−1~̂c(~ω′

x). (11)

Equation 11 shows that the Fourier channels ~̂c(~ω′
x) need to

be re-weighted according to the applied mask and inverse



General Periodic Attenuation Mask Lenslet at Focal LengthPinhole MaskLight−Field Parameterization

Figure 4. A light field can be parameterized with an x-plane and a v-plane at unit distance (left). Columns 2 to 4 illustrate different plenoptic
camera configurations (upper left), corresponding integration surfaces in light field space for the individual sensor pixels (lower left), and
the spatial and plenoptic basis functions (right). The convolution of a periodic attenuation mask can be separated into a spatial and plenoptic
part using the Fourier basis (column 3, right). Integration surfaces for refractive optical elements already include the mapping g

−1 from
sensor space to camera or world space on the microlens plane.

Fourier transformed in order to invert the plenoptic basis.
Another inverse Fourier transform needs to be performed to

get the desired plenoptic samples~lλ(~x) from
~̂
lλ(~ω′

x), which
is equivalent to the previously proposed inverse 4D Fourier
transform of cropped and stacked Fourier tiles in 2D light
fields [32, 31, 14].

Figure 5. Comparison of reconstruction quality for Cones data set
(Veeraraghavan et al. [2007]) and Mannequin data set (Lanman
et al. [2008]). All results are three-times upsampled during re-
construction. Top row: upsampling by zero-padding the 4D in-
verse FFT. Middle row: low resolution 4D inverse FFT followed
by bicubic upsampling. Bottom row: bicubic up-sampling of cor-
related measurement channels followed by local decorrelation.

We have shown in Section 3.2 that the 4D inverse Fourier
transform uses a spatial sinc reconstruction filter. A spa-
tial reconstruction based on our theory, on the other hand,
can benefit from more sophisticated interpolation schemes.
A comparison of reconstructions obtained with the inverse
Fourier transform and with our local reconstruction algo-
rithm is shown in Figure 5. Even with a simple spatial
interpolation scheme such as cubic interpolation, common
ringing artifacts associated with Fourier-based techniques
can be avoided. Advanced interpolation methods as com-
monly applied in demosaicking techniques for color filter

arrays can further increase the fidelity of the reconstructed
imagery as demonstrated in the supplemental material.

4.2.2 Lens-Based and Pinhole Modulators

The combined spatial and plenoptic basis functions for a
pinhole attenuation mask and a lens-based plenoptic cam-
era design are shown in Figure 4. The pinhole case and the
standard plenoptic camera case, where the lenslets are fo-
cused at infinity are trivial, because uncorrelated directional
samples of the plenoptic function are directly measured by
each sensor element. Therefore, the combined discrete spa-
tial and plenoptic basis is the identity matrix. The two cases
differ in light transmission and depth-of-field effects due to
large aperture of the microlenses. A similar angular resolu-
tion for both cases can be achieved with pinholes that have
the size of a sensor pixel.

5. Reconstruction Noise Analysis

Our theory, specifically the PSM theorem (Eq. 4), allows
us to perform a reconstruction noise analysis and a compar-
ison of alternative plenoptic multiplexing schemes. To the
best knowledge of the authors, this is the first time that the
reconstruction noise of Fourier multiplexed light fields can
be analyzed and the performance of Fourier multiplexing
schemes can be directly compared to their spatial alterna-
tives.

We employ a noise model that is commonly applied in
computer vision applications [36, 29]. The total noise vari-
ance ς2 of a camera image is modeled as the combination
of a signal independent additive term ς2

c that includes dark
current and amplifier noise as well as a signal dependent
photon shot noise term i(~x)ς2

p. The image intensity can
be approximated by the mean light transmission τ of the
plenoptic modulator, yielding the following noise variance
in the captured image:

ς2 = ς2
c + τς2

p. (12)

In order to compare alternative plenoptic modulators,
we need to propagate the sensor noise ς of a spe-
cific setup to the demultiplexed reconstruction. For this
purpose, we define a noise amplification term α =
√

1
N

trace(ΠΣ
T
ΣΠ

T )−1. The signal-to-noise ratio in
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Figure 6. A SNR comparison of various alternative CFA patterns
to the Bayer pattern (left). SNR comparison of different light field
capture setups (right). The vertical lines indicate χ

2 values for
several machine vision cameras tested by Schechner et al. [2007].
All cameras are operating in the gain region of the filters, i.e.
gSNR > 0. Note, however, that the lines can be moved left and
right along the χ

2-axis by increasing and decreasing the gain set-
ting of a camera, respectively.

the demultiplexed plenoptic function requires expressions
for the signal and for the noise term. Assuming that
∫

lλ(~x, ~p)d~p = 1 and that all plenoptic bases are orthog-
onal, the signal term in the demultiplexed signal can be ap-
proximated by 1/N . The reconstruction noise term is the
standard deviation of the propagated sensor noise ας , re-
sulting in an SNR of

SNR = 10 log10





1

Nα
√

ς2
c + τς2

p



 . (13)

We define the SNR in dB. The gain of SNR for this demul-
tiplexed signal compared to a reference signal is then

gSNR = SNR − SNRref = 10 log10

(

αref ςref

ας

)

. (14)

A plot of SNR gain for a standard Bayer CFA filter com-
pared to some of the alternatives is shown in Fig. 6 (left).
The figure shows that all alternative filters produce a slightly
better SNR than the Bayer pattern when the additive noise
term dominates (left part of the plot). However, perfor-
mance drops below that of the Bayer pattern once photon
shot noise becomes dominant. The CYMG design performs
best with a gain of ≈ 0.6 dB. We employ the notation in-
troduced in [36], where a parameter χ = ςp/ςc describes
the ratio of signal-dependent and signal-independent noise
variance. This makes it more convenient for plotting the
performance of a multiplexing scheme for different camera
noise parameters up to a global scale as seen in Figure 6.
Based on the plot we can see that, from the perspective of
SNR gain, alternative CFA patterns are not an effective tool
to obtain better noise performance for color cameras with
modern sensors, where the noise is dominated by photon
shot noise. Note that decreased camera gain settings, i.e.
operation in well lit scenes, move the camera curves indi-
cated in Fig. 6 towards the right.

Similarly, we compare the noise performance of various
light field acquisition approaches, where the pinhole atten-
uation mask serves as the reference. Sensor quantization
and other non-linearities are disregarded. For this plot we

used attenuation masks that have a resolution of 11 × 11
for each super-pixel and a similar sensor resolution. The
plot in Figure 6 (right) shows that lenslets always perform
best in terms of SNR. Among the non-refractive multiplex-
ing methods, MURA-based attenuation masks perform very
well for a dominating additive noise term, i.e. at high cam-
era gain settings in low-light conditions. Their SNR gain
drops below that of a pinhole for an increasingly dom-
inating photon noise term. Sum-of-sinusoids masks, as
employed by Dappled Photography [32], always perform
worse than a pinhole. The same result can be inferred from
Figure 7, where we simulated the acquisition of a light field
with different plenoptic cameras. The exposure times are
equivalent and the chosen sensor noise characteristics cor-
respond to those of the PG Dragonfly in Figure 6 (right),
i.e. log(χ2) = −0.93. As expected, the lenslet-based de-
sign has the best noise performance, with the MURA at-
tenuation pattern being very close in this case and the sum-
of-sinusoids mask not performing very well. The dataset
shows golgi stained neurons captured with a light field mi-
croscope (lightfield.stanford.edu).

Figure 7. Light field acquisition with different plenoptic cameras.
The left column shows simulated sensor images with contrast
enhanced close-ups. Individual views of the reconstructed light
fields from noisy sensor images are shown in the right column.
Noise amplification is in this case marginal for MURA attenuation
masks, while sum-of-sinusoids perform worse than pinholes.

6. Discussion and Conclusions

In this paper, we have derived a new theoretical frame-
work for analyzing plenoptic multiplexing techniques. We
demonstrate in particular a close relationship between
spatially- and Fourier-multiplexed patterns. General spa-
tial patterns such as the Bayer pattern can be reconstructed



with a Fourier-space algorithm, while patterns derived for
Fourier space can also be reconstructed by spatial interpo-
lation, followed by a local decorrelation of the individual
channels. In particular, we show the Fourier reconstruc-
tion to be equivalent to spatial reconstruction with a sinc
filter kernel, resulting in well-known ringing artifacts. We
demonstrate that even simple spatial filters such as cubic
interpolation can improve the reconstructions significantly.
Our theory also allows us to apply edge preserving and
other non-linear filters, which further improve the recon-
structions.

We use our unified framework for a direct comparison of
the noise characteristics of different multiplexing methods.
With this analysis, it is for the first time possible to com-
pare in a principled way methods such as light field photog-
raphy with lens arrays, pinholes, dappled photography, and
MURA patterns. In the future, it will be possible to derive
optimal multiplexing masks for a given task using the same
theoretical framework.

Finally, and maybe most interestingly, our theoretical
framework has explicitly enumerated a number of vari-
ables controlling plenoptic multiplexing approaches. With
this analysis we can now begin to develop and analyze
novel multiplexing schemes involving other plenoptic di-
mensions, or possibly combinations of plenoptic dimen-
sions that have not been explored so far.
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