

Design and Implementation of a
Voice-Driven Animation System

by

Zhijin Wang

B.Sc., Peking University, 2003

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

February 2006

© Zhijin Wang, 2006

Abstract

This thesis presents a novel multimodal interface for directing the actions of computer

animated characters and camera movements. Our system can recognize human voice input

combined with mouse pointing to generate desired character animation based on motion

capture data. We compare our voice-driven system with a button-driven animation interface

that has equivalent capabilities. An informal user study has indicated that our voice-user

interface (VUI) is faster and simpler for the users than traditional graphical user interface

(GUI). The advantage of VUI is more obvious when creating complex and high-detailed

character animation. Applications for our system include creating computer character

animation in short movies, directing characters in video games, storyboarding for film or

theatre, and scene reconstruction.

 ii

Table of Contents

Abstract ..ii

Table of Contents ... iii

List of Figures ...vi

Acknowledgements ..vii

1. Introduction ..1

1.1. Animation Processes..1

1.2. Motivation ...2

1.3. System Features ...3

1.4. An Example ...4

1.5. Contributions ...6

1.6. Thesis Organization ...6

2. Previous Work...7

2.1. History of Voice Recognition...7

2.2. Directing for Video and Film...9

2.2.1 Types of Shots..9

2.2.2. Camera Angle ..10

2.2.3. Moving Camera Shots ...12

2.3. Voice-driven Animation...13

2.4. Summary..15

 iii

3. System Overview...16

3.1. System Organization..16

3.2. Microsoft Speech API..18

3.2.1. API Overview ..19

3.2.2. Context-Free Grammar ..20

3.2.3. Grammar Rule Example ..21

3.3. Motion Capture Process...22

3.4. The Character Model ...25

4. Implementation ...28

4.1. User Interface ..28

4.2. Complete Voice Commands...29

4.3. Motions and Motion Transition ...31

4.4. Path Planning Algorithm..32

4.4.1 Obstacle Avoidance..32

4.4.2 Following Strategy...34

4.5. Camera Control..35

4.6. Action Record and Replay...36

4.7. Sound Controller..36

4.8. Summary..37

5. Results..38

5.1. Voice-Driven Animation Examples ...38

5.1.1 Individual Motion Examples ...38

5.1.2 Online Animation Example ...40

5.1.3 Off-line Animation Example..42

5.1.4 Storyboarding Example ...45

5.2. Comparison between GUI and VUI...47

 iv

6. Conclusions ...50

6.1. Limitations...50

6.2. Future Work ...51

Bibliography...53

 v

List of Figures

Figure 1.1 Example of animation created using our system……..………………………. 5

Figure 3.1 The architecture of the Voice-Driven Animation System…..…………….…..17

Figure 3.2 SAPI Engines Layout………………………..…...……………………….….19

Figure 3.3 Grammar rule example……………………………………………………….21

Figure 3.4 Capture Space Configuration……...………….……..23

Figure 3.5 Placement of cameras…………….…………………………………………..24

Figure 3.6 The character hierarchy and joint symbol table………………………………26

Figure 3.7 The calibrated subject…………….……..27

Figure 4.1 Interface of our system…………….…………………………………………29

Figure 4.2 Voice commands list…………….……………………………………………30

Figure 4.3 Motion Transition Graph…………….……………………………………….31

Figure 4.4 Collision detection examples…………….…………………………………...33

Figure 4.5 Path planning examples…………….………………………………………...34

Figure 4.6 Following example…………….……………………………………………..34

Figure 5.1 Sitting down on the floor…………….……………………………………….39

Figure 5.2 Pushing the other character…………….……………………………………..39

Figure 5.3 Online animation example…………….……………………………………...41

Figure 5.4 Off-line animation example…………….…………………………………….44

Figure 5.5 Storyboarding example………………………………………….……………47

Figure 5.6 Average time of creating online animation using both interfaces……………48

Figure 5.7 Average time of creating off-line animation using both interfaces………...…49

 vi

Acknowledgements

I would like to express my gratitude to all those who gave me the possibility to complete this

thesis. The first person I would like to thank is my supervisor, Michiel van de Panne, for

providing this excellent research opportunity. His inspiration, his encouragement, and his

expertise in computer character animation were very helpful to me during the whole project

and the thesis-writing. I could not have completed all the work without his invaluable

guidance and support.

I would also like to thank Robert Bridson, who gave me very good suggestions and

useful comments on how to improve my thesis.

I am very grateful to Kangkang Yin, who spent a lot of time teaching me and working

with me on the Vicon Motion Capture System. I also wish to thank Dana Sharon and Kevin

Loken for making the motion capture sessions a lot of fun to me.

Finally, I am forever indebted to my parents and my wife Tong Li for their understanding,

encouragement, and endless love.

 vii

Chapter 1

Introduction

By definition, animation is the simulation of movement created by displaying a series of

pictures, or frames [1]. To create the illusion of movement, a picture is displayed on the

screen then quickly replaced by a new picture similar to the previous one, but shifted or

changed slightly. In the past when animation was created by hand, this process required a

great deal of time, manpower, and recording equipment. However, today the animation

process has become dramatically simpler. What was once done with pencils, sheets, and

paints by a group of animators can now be accomplished by a single person with a personal

computer. Not only has it become easier for people to create animation using computers, the

application of computer animation has also spread into many aspects of our lives including

advertising, architecture, education, industrial training, motion pictures, video games, and

scientific visualization.

1.1. Animation Processes

Broadly speaking, there are three types of processes to create computer animation:

keyframing, physics-based simulation and motion capture. Keyframing is a popular method

for animating articulated figures because it allows for artistic expressiveness by providing

unlimited control to the animator. The animator defines a set of keyframes in which the

properties of the character such as its position, orientation, and joint angles, are described at

specific instants in time. The motion is then obtained by simply interpolating the property

values between these keyframes, typically with cubic splines. The drawback of this process is

that it requires significant time and effort for the animator. Defining a movement often

 1

requires a high level of detail to ensure that the interpolation curves induce the desired

collision-free motion. This is time consuming and generating new motions must happen

offline.

 Physics-based simulation involves using mathematical equations to model natural

phenomena and then using numerical methods to compute an efficient and accurate solution

to the equations in order to create realistic passive motions. One class of physics-based

animation uses forward-dynamic simulation and it has been used to analyze and reconstruct

active human motions such as running, falling, diving and so on. An alternative technique is

that of “spacetime constraints”, which optimizes a complete motion trajectory to

automatically generate the movements of physically simulated characters. However,

specifying the right control to achieve a desired result remains a difficult problem.

 Motion capture is the process of capturing the movement of a real object or person and

mapping it onto a computer generated object or person to create natural looking animation.

For character animation, motion capture systems are used to capture the motions of human

actors by placing markers at various key points on the actors. Multiple cameras are used to

observe and reconstruct the position of those markers in real time, and their motions are then

used to reconstruct the motion of the underlying skeleton. An advantage of motion capture

over traditional animation techniques such as keyframing and simulation is the capability of

real-time visualization and the high quality of the generated animation. However, there is no

easy way to modify the captured data to interactively generate new motions for different

characters or for different environments.

1.2. Motivation

No matter which one of the above methods is used to produce the animation, user interaction

is always an important part of an interactive computer animation system. Without a good

interface, even an otherwise powerful system cannot enable the creation of good animation.

 2

Unfortunately, many current computer animation systems have complex interfaces and as a

result, require extensive training or reading of manuals in order to learn how to use the system.

There are usually a large number of buttons on various panels, and many keyboard shortcuts

for an animator to select desired motions or to create diverse animation effects. The animator

must use a mouse and keyboard to specify the path along which the character is moving as

well as the specific types of motions to be carried at. This is time-consuming even when

creating fairly generic motions. For example, if a character is to perform a slow walk,

followed by running at normal speed, and then followed by fast walking while waving a hand,

it is necessary to look for specific buttons among multiple panels in order to select the correct

options. This kind of visual search is inefficient and distracting for an animator trying to focus

on the animation.

To improve user interaction and simplify the animation process, we present a novel

voice-driven interface for computer animation systems. This has strong parallels with

filmmaking, where there is a director in charge of filming, directing the actions of actors and

the placement of cameras. If the director is not satisfied with a particular scene, he can either

re-shoot the scene again or edit the footage in post-processing. The direction is often

conducted through oral communication, which is the most natural way for both director and

actors. In our system, the user becomes the director of the animation. He can instruct the

movement of the characters and cameras using his voice, much like a movie director, albeit

with a more limited vocabulary. Thus, we attempt to directly implement the director-actor

metaphor for an animation system.

1.3. System Features

To enable the voice-driven feature, our animation system uses Microsoft Speech API as the

voice recognition engine. We define a set of grammar rules for recognizable voice commands.

All speech from the microphone is processed by the system. If the spoken words match one of

 3

the grammar rules, it can be recognized as a voice command that then triggers a motion for

the character, a camera motion, or a system function.

 Our pre-defined voice commands are divided into three classes. The first class of voice

commands allows users to control the actions of the characters. Our characters can perform

simple actions such as walking, running, hand waving, as well as more abstract actions such

as following another character or walking to a specified location while avoiding obstacles.

The second class of voice commands allows for the control of camera movement. The user,

who is the director of the animation, can make use of different classical film camera angles

such as an “over the shoulder shot”, “panning shot”, “zoom in” and “zoom out”. The third

class of voice commands relates to global functions such as opening and saving animation

files, resetting the scene and so forth.

 Our system can be used both online and off-line. During online use, the characters and

cameras react in real-time according to the instructions they receive from the user. To create

off-line animation, the user gives a series of instructions followed by an “action” command to

indicate the start of the animation, analogous to what a film director might do.

 Our system is also able to record and playback spoken dialogue. This is a useful feature

for directly adding scripted dialogue to a storyboard or animation. This is treated as a special

mode where the voice recognition process is temporarily disabled in order to avoid any

potential false recognition by the speech engine.

1.4. An Example

Figure 1.1 shows an example of creating animation using our voice-driven animation system.

The user directs the movement of the character by speaking into the microphone connected to

the computer. The speech engine of our system will then analyze the speech input. If any of

the voice commands is recognized, the animation engine will find the corresponding motion

clip in our motion capture database. Spoken dialogue can be added and additional mouse

 4

input may be provided by the user to specify certain locations. The desired animation will

then be generated and displayed on the screen as a visual feedback to the user.

More specific and detailed examples are given in Chapter 5.

Speech

Engine

Animation

Engine

Speech Input

Animation

Voice
Commands Spoken

Dialogue

Mouse
Input

Motion Capture

Database

Figure 1.1: Example of animation created using our system

 5

1.5. Contributions

The primary contribution of this thesis is to provide a method for the multimodal interactive

control of 3D computer animation using spoken commands in order to approximate the

director-actor metaphor. Specifically, we present a voice-driven interface for creating

character animation based on motion capture data. This interface is able to accept voice

commands and pointing input, which allows a user with little knowledge of computer

animation techniques to quickly create character animations.

 We develop a system that implements this voice-driven interface as well as a

functionally equivalent GUI-based interface. We qualitatively and quantitatively compare the

performance of creating computer animation using this voice-driven interface with that of the

GUI-based interface. Our system demonstrates the feasibility of directing computer animation

using only spoken directives, as well as the potential advantages of voice-driven interaction

over the traditional mouse and keyboard interaction.

1.6. Thesis Organization

The remainder of this thesis is structured as follows. After reviewing previous related work in

Chapter 2, we provide an overview of our system in Chapter 3. Chapter 4 describes the

components of our interface and explains the details of our implementation. Chapter 5

demonstrates a variety of results obtained using our interface. Finally, conclusions and future

work are presented in Chapter 6.

 6

Chapter 2

Previous Work

Voice recognition technology has evolved rapidly over the past decades. It is now being

widely used in user interfaces to allow the user to provide input to an application with his or

her own voice, typically as a substitute for typing on a keyboard or clicking a mouse. In this

chapter, we first provide a brief historical overview of voice recognition technology. We then

give a short introduction to directing for video and film. Lastly, we review work in animation

that relates to the use of voice and natural language.

2.1. History of Voice Recognition

Interestingly, a toy company logged the first success story in the field of voice recognition

many decades before major research in the area was considered. The "Radio Rex" from 1920

was a celluloid dog that responded to its spoken name. Lacking the computation power that

drives recognition devices today, Radio Rex was a simple electromechanical device. The dog

was held within its house by an electromagnet. As current flowed through a circuit bridge, the

magnet was energized. The acoustic energy of the vowel sound of the word “Rex” caused the

bridge to vibrate, breaking the electrical circuit, and allowing a spring to push Rex out of his

house. While Radio Rex was not a commercial success, the toy was an important first

demonstration of voice recognition [2].

 During the 1940s and 1950s the US Department of Defense (DOD) and MIT became the

largest contributors to the speech recognition field. The US DOD was driven by an interest in

automatic interception and translation of Russian radio transmissions. The actual output their

devices generated from Russian statements was more amusing than accurate however, and the

 7

project was deemed a dismal failure [3].

 Speech research was hamstrung because systems were designed that acknowledged only

complete words and sentences. They would attempt to statistically guess the words following

another word. But they took no account of the sounds used in the formation of the words

themselves. These word formation elements are called phonemes and are sounds such as TH,

PH, etc. Work at IBM derived the first statistical correlations between phenome sounds and

the words they ultimately formed [4]. This was to prove the cornerstone of future research.

 By 1975, Jim Baker from Carnegie Mellon had developed his revolutionary Dragon

speech recognition model. IBM continued to pioneer their statistical approach to speech

recognition, adapting many algorithms from information theory. By 1985 they had developed

a system capable of discerning 5000 different words and phrases [5].

 Although much speech research took place over the next ten years, little in the way of

commercially-viable voice recognition-related products materialized. Then in 1995, IBM,

who had conducted intensive research for 50 years but had released nothing commercially,

finally entered into the consumer marketplace with VoiceType® and later ViaVoice®. In April

of 1997, Dragon Systems countered, introducing Naturally Speaking®, the first large

vocabulary continuous speech software available.

The development of voice recognition technology has facilitated the design of

multimodal interactions. One of the earliest multimodal interfaces was built in 1980 by

Richard Bolt [6]. The “Put-That-There” system used basic speech recognition and equipment

that could track where the user was pointing. This simple system allowed users to move

colored shapes around on a screen. It was able to allow the free use of pronouns and figure

out which object the user was talking about. The system also allowed users to give objects

names, and then use those names to refer to the objects. The system was a first attempt at

creating a more natural user interface.

 8

2.2. Directing for Video and Film

Video and film directors are artists who can take a completed script and imaginatively

transform it into exciting sounds and images. Directors creatively organize many facets of

production to produce works of art. They know how and when to use different types of

camera shots and have mastered the use of composition, image qualities, transition devices,

and relations of time and space. Directors know when and how to use different types of sound

and how to control sound and image interaction. By using all of their creative powers,

directors are able to produce films and video programs that have lasting value [7].

Directors prepare a shooting script by indicating specific types of images and sounds to

be recorded within each scene. In order to record the different scenes and sequences described

in the script, the director must organize the activities of many different people who are

involved in production. The director must be able to communicate precisely and quickly with

cast and crew. A specific communication system and language must be understood and

followed by each person as a command is directed at them.

2.2.1 Types of Shots

A director's ability to select and control visual images begins with an understanding of

specific types of shots. The camera can be close to or far away from the subject. It can remain

stationary or move during a shot. The shots commonly used in video and film production can

be described in terms of camera-to-subject distance, camera angle, camera movement, and

shot duration.

Long Shot (LS)

The long shot orients the audience to subjects, objects, and settings by viewing them from a

distance; this term is sometimes used synonymously with the terms establishing shot, wide

 9

shot, or full shot. An establishing shot (ES) generally locates the camera at a sufficient

distance to establish the setting. Place and time are clearly depicted. A full shot (FS) provides

a full frame (head-to-toe) view of a human subject or subjects.

Medium Shot (MS)

A medium shot provides approximately a three-quarter (knee-to-head) view of the subject.

The extremes in terms of camera-to-subject distance within this type of shot are sometimes

referred to as a medium long shot (MLS) and a medium close-up (MCU). The terms two-shot

and three-shot define medium shots in which two or three subjects, respectively, appear in the

same frame.

Close Shot (CS) or Close-Up (CU)

The terms close shot and close-up are often used synonymously. A close-up refers to the

isolation of elements in the shot and normally indicates the head and shoulders of a person.

When someone is making an important or revealing statement or facial gesture, a close-up

will draw the audience’s attention to that event. Close-ups focus and direct attention and

create dramatic emphasis. When they are overused, however, their dramatic impact is

severely reduced. A very close camera position is sometimes called an extreme close-up

(ECU).

2.2.2. Camera Angle

The camera angle is frequently used to establish a specific viewpoint, such as to involve the

audience in sharing a particular character’s perspective on the action. The goal may be to

enhance identification with that person’s psychological or philosophical point of view.

 10

Point-of-View Shot (POV Shot)

A point-of-view shot places the camera in the approximate spatial positioning of a specific

character. It is often preceded by a shot of a character looking in a particular direction, which

establishes the character’s spatial point of view within the setting, followed by a shot of that

same character’s reaction to what he or she has seen. The latter shot is sometimes called a

reaction shot. A closely related shot is the over-the-shoulder shot (OS). The camera is

positioned so that the shoulder of one subject appears in the foreground and the face or body

of another is in the background. Another variation on the point-of-view shot is the subjective

shot, which shows us what the person is looking at or thinking about. Like point-of-view

shots, subjective shots offer a nonobjective viewpoint on actions and events, and can enhance

audience identification with more subjective points of view.

Reverse-Angle Shot

A reverse-angle shot places the camera in exactly the opposite direction of the previous shot.

The camera is moved in a 180-degree arc from the shot immediately preceding it.

Low-Angle Shot

A low-angle shot places the camera closer to the floor than the normal camera height, which

is usually at eye level. A low angle tends to exaggerate the size and importance of the subject.

High-Angle Shot

A high-angle shot places the camera high above the subject and tends to reduce its size and

importance.

Overhead Shot

An overhead shot places the camera directly overhead and creates a unique perspective on the

action. This can sometimes be accomplished by a set of periscope mirrors, and overhead track,

or by attaching the camera to an airplane, helicopter, or crane.

 11

2.2.3. Moving Camera Shots

A moving camera adds new information to the frame and often alters spatial perspective. A

moving camera shot can maintain viewer interest for a longer period of time than a stationary

camera shot.

Pan Shot

A camera can be panned by simply pivoting it from side to side on a fixed tripod or panning

device. This shot is often used to follow action without having to move the camera from its

fixed floor position.

Tilt Shot

A camera tilt is accomplished by moving the camera up and down on a swivel or tilting

device. This shot is also used to follow action, such as a person standing up or sitting down. It

can also be used to follow and accentuate the apparent height of a building, object, or person.

Pedestal Shot

A camera can be physically moved up and down on a pedestal dolly. A hydraulic lift moves

the camera vertically up and down within the shot, such as when a performer gets up from a

chair or sits down. A pedestal shot allows the camera to remain consistently at the same

height as the performer, unlike a tilt shot, where the camera height usually remains unchanged.

Pedestal shots are rare, but a pedestal is often used to adjust the height of the camera between

shots.

Zoom Shot

A zoom can be effected by changing the focal length of a variable focal-length lens in

midshot. A zoom shot differs from a dolly shot in that a dolly shot alters spatial perspective by

actually changing the spatial positioning of objects within the frame. During a zoom shot the

 12

apparent distance between objects appears to change because objects are enlarged or

contracted in size at different rates. During a zoom-in objects appear to get farther apart, and

during a zoom-out they seem to get closer together.

Dolly Shot

A dolly shot is a shot in which the camera moves toward or away from the subject while

secured to a movable platform on wheels. It is often needed to follow long or complicated

movements of performers, or to bring us gradually closer to or farther away from a person or

object.

Trucking Shot

In a trucking shot, the camera is moved laterally (from side to side) on a wheeled dolly. The

camera may truck with a moving subject to keep it in frame. If the dolly moves in a

semicircular direction, the shot is sometimes referred to as an arc or camera arc.

Tracking Shot

A tracking shot uses tracks laid over rough surfaces to provide a means of making smooth

camera moves in otherwise impossible locations.

Crane or Boom Shot

The camera can be secured to a crane or boom so that it can be raised and lowered or moved

from side to side on a pivoting arm. This type of shot can create a dramatic effect when it

places the subject in the context of a large interior space or a broad exterior vista.

2.3. Voice-driven Animation

Voice recognition technology is currently used in automobiles, telephones, personal digital

 13

assistants (PDAs), medical records, e-commerce, text dictation and editing. Like the mouse,

keyboard, and the trackball, voice recognition can enhance the control of a computer and

improve communication. We discuss three animation systems which resemble our own work

by making use of voice recognition technology.

 The interactive movie system [8] has the capability of creating a virtual world with

various kinds of realistic scenes and computer characters. People can enter cyberspace and

experience the stories of the virtual world through interactions with the characters and the

environments of the world. The interactions include voice and gesture recognition. However,

only exaggerated gestures rather than minute gestures could be recognized because of low

lighting in the area where the system played. As a result, the system ran almost exclusively on

voice recognition and players were limited to available modalities that allowed only simple

interaction. This system differs from ours in that the progress of the story is pre-defined and

mostly controlled by the system; the user is only acting as a participant who can interact with

the system at some branch points, where the results from voice or gesture recognition will

determine the future development of the story. In our system the user takes the role of the

director and controls the entire storyline of the animation.

 VIRTUAL THEATER [9] provides a collaborative virtual environment for industrial

tele-training. Instead of working with physical objects, these are represented by virtual objects

that can then be placed in a virtual environment accessible to many users. The users,

represented by avatars, can manipulate and interact with the objects as in the real world,

gaining valuable experience and training before using the real equipment. The environment

can be fully controlled in a wireless fashion where speech commands and user gestures are

used as input, allowing for a more comfortable interaction between the human participants.

For example, the user may simply say pre-defined commands such as "Go to the table" for the

avatar to perform, or may change views by saying "Table Top View", and so on. However, the

system is limited to a particular use, e.g. training operators of ATM switching equipment in

this case. The pre-defined high level actions make it impossible to create any free-style

animation with this system.

 14

 Perhaps the most closely related work to ours is that of [10]. This presents the design and

development of a Voice User Interface (VUI), which maps predefined voice commands to a

set of behavioral motions for humanoid avatars using Extensible 3D (X3D) graphics. It uses

Virtual Reality Modeling Language (VRML), Humanoid Animation (H-Anim) Standard and

Java Speech API. The VUI maps between human voice commands and a set of animations of

the avatar, thus providing voice access to the animation application. Graphical User Interface

(GUI) is also provided as an alternative interaction. Their work demonstrates the possibility

of integrating speech-recognition technology into Networked Virtual Environments

(Net-VEs). However, it cannot record voice dialogues, and the avatar is restricted to do only a

small number of actions, such as standing, walking, and jumping. There is no control over the

camera shots either.

2.4. Summary

In this chapter we have provided an overview of voice recognition technology, directing, and

previous work in animation based on these. Our system shares the same motivation as most

applications in this category: to speed up and simplify the human-computer interaction using

natural spoken languages. We have developed a computer animation system with a number of

unique features, which will be described in the following chapters.

 15

Chapter 3

System Overview

Our voice-driven animation system is divided into a number of functional blocks: speech

recognition, voice command analysis, motion controller, and camera controller. The role of

each component is elaborated in this chapter.

3.1. System Organization

The organization of our animation system and the path of user input and workflow through

the system are illustrated in Figure 3.1.

Speech Recognition

The Microsoft Speech API is integrated into our system as the speech recognition engine. It

takes and processes the user speech from the microphone. If the speech matches one of the

pre-defined grammar rules, the speech engine will trigger a recognition event and pass the

recognized rule id to the analysis module.

Voice Command Analysis

This module analyzes the recognized voice command received from the speech recognition

engine and then extracts the associated parameters, such as the walking speed of the character,

and the zooming distance of the camera. These parameters are then passed to different

controllers according to the type of the voice commands.

 16

Speech Input

Speech Recognition

Motion Capture
Database

Voice Command
Analysis

Motion
Controller

Camera
Controller

Sound
Controller

Figure 3.1: The architecture of the Voice-Driven Animation System

otion Controller

determines which motion the character will be performing and then

M

The motion controller

loads the corresponding motion data from the motion capture database. The controller is also

responsible for the transition of consecutive motions to make the animation as smooth as

possible. Additional mouse input may be provided by the user to indicate the destination of

some movement which cannot easily be explained by speech input.

Path Planner

Mouse Input Voice Input

Character Animation

 17

Path Planner

 and the destination have been decided by the motion controller, the path

amera Controller

 supported by our system is implemented by the camera controller.

ound Controller

s of the sound recorder and sound player. The sound recorder records

3.2. Microsoft Speech API

We evaluated two mainstream voice recognition products that are currently readily available.

After the motion

planner takes into account the location of obstacles, and generates a collision-free path to the

destination along which the character will be moving. When a character is asked to follow

another character, the path planner is also used to find out the shortest path to perform the

following action.

C

Each camera movement

The controller makes the necessary changes of the position and shooting directions of the

camera whenever a camera-related voice command is issued by the user. A timer is used in

the controller to produce the continuous zoom in/out effect as well as the pan shot over a

specific point in the scene.

S

This controller consist

any voice input from the user other than the voice commands. The recorded sound is played

back as the voice of the character by the sound player during the animation in order to create

an audible dialogue between the virtual characters.

IBM ViaVoice Dictation SDK, based on many years of development by IBM, and the

Microsoft Speech API, also known as SAPI. Both of them provide speech recognition and

speech synthesis engines, as well as a complete development toolkit and documentations.

They each also have their unique features, such as the OLE automation support from

 18

Microsoft, and the specialized vocabularies support from IBM. Our only requirement was that

of being able to recognize a set of voice commands made up by common words. We chose to

use the Microsoft Speech API as our voice recognition system in this project because of its

functionality and because it is freely available.

3.2.1. API Overview

The Microsoft Speech API (SAPI) provides a high-level interface between an application and

types of SAPI engines are text-to-speech (TTS) systems and speech

reco

speech engines for recognition and synthesis. SAPI implements all the low-level details

needed to control and manage the real-time operations of various speech engines, and thereby

reduces the code overhead required for an application to use speech recognition and

text-to-speech. This makes the speech technology more accessible and robust for a wide range

of applications [11].

The two basic

gnizers. TTS systems accept text strings and synthesize spoken audio using synthetic

voices. Speech recognizers convert human spoken audio into text strings and files.

Figure 3.2: SAPI Engines Layout [11]

 In our system, we only use the Speech gnition Engine. There are two types of

ter

 Reco

ut ances to be recognized by the Speech Engine. The first one is dictation, which means the

 19

Speech Engine will attempt to recognize whatever the user is saying to the microphone. The

speech recognition on such large vocabularies is extremely hard without a lot of training from

the user, because the computer doesn't know what to expect from the user's speech without

any given context.

The other type of recognizable utterance is referred to as “command and control

gram

3.2.2. Context-Free Grammar

The command and control features of SAPI 5 are implemented as context-free grammars

xte

words it

 inability of textual grammars, by providing constructs for reusable text

 nslation of recognized speech into application actions. This is made easier by

mar”, which means the application can tell the engine in advance what kinds of voice

commands are expected. The speech engine will then try to match the speech with one of

those commands during run time of the application. This is the approach we have adopted

because it requires less user training while it has a higher recognition rate than dictation.

(CFGs). A CFG is a structure that defines a specific set of words, and the combinations of

these words that can be used. In basic terms, a CFG defines the sentences that are valid, and

in SAPI 5, defines the sentences that are valid for recognition by a speech recognition engine.

 The CFG format in SAPI 5 defines the structure of grammars and grammar rules using

E nsible Markup Language (XML). The XML format is an "expert–only–readable"

declaration of a grammar that a speech application uses to accomplish the following:

 Improve recognition accuracy by restricting and indicating to an engine what

should expect.

Improve mainta

components (internal and external rule references), phrase lists, and string and numeric

identifiers.

Improve tra

providing "semantic tags," (property name, and value associations) to words or phrases

declared inside the grammar.

 20

The CFG/Grammar compiler transforms the XML tags defining the grammar elements

into

3.2.3. Grammar Rule Example

Figure 3.3 shows an example of the grammar rules used in our system, defined in XML.

<RULE ID="VID_TurnCommand" TOPLEVEL="ACTIVE">
O>turn</O>

 rection"/>

/O>

" >
PID="VID_Direction" >

ft</P>
/P>

<RULE ID="VID_Degree" >
PID="VID_Degree" >

 >ten</P>
enty</P>

P>

/P>

Figure 3.3: Grammar rule example

a binary format used by SAPI 5-compliant speech recognition engines. This compiling

process can be performed either before or during application run time. Since our system does

not need to modify the grammar at run time, the compiled binary format is loaded statically

before the application run time in order to get the best performance.

 <
 <RULEREF REFID="VID_Direction" PROPID="VID_Di

 <O>by</O>
 <O><RULEREF REFID="VID_Degree" PROPID="VID_Degree"/><
 <O>degrees</O>
 </RULE>
 <RULE ID="VID_Direction
 <L PRO
 <P VAL="VID_Left">le
 <P VAL="VID_Right">right<
 <P VAL="VID_Around">around</P>

</L>
 </RULE>

 <L PRO
 <P VAL="VID_Ten"

 <P VAL="VID_Twenty">tw
 <P VAL="VID_Thirty">thirty</
 <P VAL="VID_Forty">forty</P>
 <P VAL="VID_Forty_Five">forty-five<
 <P VAL="VID_Fifty">fifty</P>
 <P VAL="VID_Sixty">sixty</P>
 <P VAL="VID_Seventy">seventy</P>
 <P VAL="VID_Eighty">eighty</P>
 <P VAL="VID_Ninety">ninety</P>
 </L>
 </RULE>

 21

 According to this gram ht by 70 degrees", then the

 above degrees that are involved in the turning

tio

3.3. Motion Capture Process

Motion capture is the recording of 3D movement by an array of video cameras in order to

 PC

t network connection

ables

d marker kit

The first step of motion capture is to determine the capture volume - the space in which

e s

mar rule, if the user says "turn rig

speech engine will indicate the application that rule name "VID_TurnCommand" has been

recognized, with the property of child rule “VID_Direction” being "right", and the property of

child rule “VID_Degree” being "seventy". The recognized information is then collected by

the system to generate the desired animation.

 Right now our system only supports the

ac ns. These are the most common degrees for an ordinary user. More special degrees can

be easily added to the grammar rules if necessary.

reproduce it in a digital environment. We have built our motion library by capturing motions

using a Vicon V6 Motion Capture System. The Vicon system consists of the following:

• Vicon DATASTATION

• A host WORKSTATION

• A 100 base T TCP/IP Etherne

• 6 camera units mounted on tripods with interfacing c

• System and analysis software

• Dynacal calibration object

• Motion capture body suit an

th ubject will move. The capture volume can be calculated based on the size of the space we

have available, the kind of movements going to be captured, and the number and type of

cameras we have in the system. The space of our motion capture studio is about 9*9*6 meters,

with 6 cameras placed in the corners and borders of the room. The type of the cameras we use

 22

is MCam 2 with 17mm lens operating at 120Hz, which has 48.62 degrees in the horizontal

field of view and 36.7 degrees in the vertical field of view, according to [12]. Therefore, the

capture volume is approximately 3.5*3.5*2 meters, as shown in Figure 3.4.

Figure 3.4: Capture Space Configuration

The capture volume is three-dimensional but in practice is more readily judged by its

boun

ion process. There are two

main

daries marked out on the floor. The area marked out is central to the capture space and at

the bottom of each camera’s field of view to maximize the volume we are able to capture. To

obtain good results for human movements, cameras are placed above the maximum height of

any marker we wish to capture and point down. For example if the subject will be jumping

then cameras would need to be higher than the highest head or hand markers at the peak of

the jump. Cameras placed in this manner reduce the likelihood of a marker passing in front of

the image of another cameras strobe, as shown in Figure 3.5.

Camera calibration is another important step of the preparat

 steps to calibration. Static calibration calculates the origin or centre of the capture

volume and determines the orientation of the 3D Workspace. Dynamic calibration involves

movement of a calibration wand throughout the whole volume and allows the system to

calculate the relative positions and orientations of the cameras. It also linearizes the cameras.

3.5 * 3.5 * 2 m

Capture Volume

MCam 2
17mm lens

120Hz

3.8 m

 23

Figure 3.5: Placement of cameras [13]

At the beginning of the motion capture process, the actor with attached markers is asked

to perform a Range of Motion for the purpose of subject calibration. The subject calibration

analyses the labeled range of motion captured from this particular actor, and automatically

works out where the kinematic segments/joints should be in relation to the range of motion,

using the kinematic model defined by the subject template. It also scales the template to fit

the actor’s proportion, and calculates statistics for joint constraints and marker covariances.

The result of this process is a calibrated subject skeleton which can then be fit to captured

maker motion data.

During the capture of the motion, the actor moves around the capture space which is

surrounded by 6 high-resolution cameras. Each camera has a ring of LED strobe lights fixed

around the lens. The actor, whose motion is to be captured, has a number of retro-reflective

markers attached to their body in well-defined positions. As the actor moves through the

capture volume, light from the strobe is reflected back into the camera lens and strikes a light

sensitive plate creating a video signal [14]. The Vicon Datastation controls the cameras and

strobes and also collects these signals, along with any other recorded data such as sound and

 24

digital video. It then passes them to a computer on which the Vicon software suite is installed

for 3D reconstruction.

3.4. The Character Model

We use Vicon iQ software for the post-processing of the data. We define a subject template to

describe the underlying kinematic model, which represents the type of subject we have

captured, and how the market set is associated to the kinematic model. The definition of the

subject template contains the following elements [15]:

• A hierarchical skeletal definition of the subject being captured.

• Skeletal topology, limb length and proportion, in relation to segments and marker

associations.

• A kinematic definition of the skeleton (constraints and degrees of freedom).

• Simple marker definitions, name, color etc.

• Complex marker definitions, and their association with the skeleton (individual segments)

• Marker properties, the definition of how markers move in relation to associated segments.

• Bounding boxes (visual aid to determine segment position and orientation)

• Sticks (visual aid drawn between pairs of markers)

• Parameter definitions, which are used to define associated segments and markers from each

other, to aid in the convergence of the best calibrated model during the calibration process

Our subject template has 42 markers and 44 degrees of freedom in total. It consists of 25

segments, arranged hierarchically as shown in Figure 3.6. Motions are exported as joint

angles time series, with Euler angles being used to represent 3 DOF joints.

 25

O +Δ

O

Δ
Head

Neck

Thorax LClav LHume

−
LRads

+
LHand

Δ
LFin

□
Pelvis

O
LHip

−
LTibia

O
LAnkle

−
LToes

Δ
LToend

O
Lumbar

+
RClav

O
RHume

−
RRads

+
RHand

Δ
RFin

O
RHip

−
RTibia

O
RAnkle

−
RToes

Δ
RToend

Symbol Joint Type Degrees of Freedom
□ Free Joint 6
O Ball Joint 3
+ Hardy-Spicer Joint 2
− Hinge Joint 1
Δ Rigid Joint 0

Figure 3.6: The character hierarchy and joint symbol table

 26

The subject template is calibrated based on the range of motion captured from the real

actor. This calibration process is fully automated and produces a calibrated subject, which is

specific to our particular real world actor, as shown in Figure 3.7.

Figure 3.7: The calibrated subject

The calibrated subject can then be used to perform tasks such as labeling, gap filling, and

producing skeletal animation from captured and processed optical marker data.

 27

Chapter 4

Implementation

Details of our implementation are provided in this chapter. Our voice-driven animation

system is developed under Microsoft Visual C++ .Net IDE (Integrated Development

Environment). We use MFC (Microsoft Foundation Class library) to build the interface of our

system and OpenGL for the rendering of the animation.

4.1. User Interface

Figure 4.1 shows the interface of our animation system. On the left, a window displays the

animation being created. On the right is a panel with several groups of GUI buttons, one for

each possible action. At the top of the button panel is a text box used for displaying the

recognized voice commands, which is useful for the user to check whether the voice

recognition engine is working properly.

 The action buttons are used to provide a point of comparison for our voice-driven

interface. Each action button on the interface has its corresponding voice command, but not

every voice command has the equivalent action button, because otherwise it would take

excessive space to house all action buttons on a single panel, which makes the interface more

complicated.

 Many of the action buttons are used to directly trigger a specific motion of the character,

while some of them have associated parameter to define a certain attribute of the action, such

as the speed of the walking action, and the degree of the turning action. These parameters are

selected using radio buttons, check box or drop-down list controls. As we can see from the

interface, the more detailed an action is, the more parameters and visual controls have to be

 28

associated with the action button.

Figure 4.1: Interface of our system

4.2. Complete Voice Commands

Figure 4.2 gives the complete voice commands list that is supported in our system. There are

a total of 23 character actions, 5 styles of camera movement, and 10 system commands. Some

of the voice commands have optional modifiers, given in square brackets. These words

correspond to optional parameters of the action, or allow for redundancy in the voice

commands. For example, the user can say “left 20” instead of “turn left by 20 degrees”. By

omitting the optional words, the former utterance is faster for the speech engine to recognize.

 29

[Character Action Commands]
walk [straight/fast/slowly]
[fast/slow] backwards
run [fast/slowly]
jump [fast/slowly]
[turn] left/right [by] [10-180] [degrees]
turn around
left/right curve [sharp/shallow]
wave [your hand]
stop waving/put down [your hand]
push
pick up
put down
pass
throw
sit down
stand up
shake hands
applaud
wander around here
follow him

[Camera Action Commands]
front/side/top [cam]
close/medium/long shot
zoom in/out [to close/medium/long shot]
[over] shoulder cam/shot [on character
one/two]
panning cam/shot [on character one/two]

[System Commands]
draw box/obstacle/block
box/obstacle/block finish
[select] character one/two
both [characters]
action
start/end recording
replay
reset
save file
open file

don't follow/stop following
walk/run/jump [fast/slowly] to here [and say/pick up/sit down…]
when you get there, say…
walk to there and talk to him…

Figure 4.2: Voice commands list

Voice commands can be expanded by creating new grammar rules for the speech engine,

adding new motions into the motion capture database, and mapping the new voice commands

with the corresponding new motions. Similarly, more tunings and controls over the existing

motions can be added to our system, as long as the variations of the motions are also imported

into the motion capture database. While the adding of new motions may require significant

change and redesign of the graphical user interface, its impact on the voice-driven interface is

much smaller, and the change is visually transparent to the users.

 30

4.3. Motions and Motion Transition

The motions of character in our system are animated directly from the motion capture data. We

captured our own motions using Vicon V6 Motion Capture System. The capture rate was 120

frames per second, and there are a total of 44 degrees of freedom in our character model.

By default, the animated character is displayed in the rest pose. Transitions between different

actions may pass through this rest pose, or it may be a straight cut to the new action, depending on

the types of the original and the target action. The allowable transitions are illustrated using the

graph shown in Figure 4.3.

Walk
Run
Jump

Backwards

Rest Pose

Pick Up
Put Down

Pass
Throw

Sit Down
Stand Up

Shake Hands
Applaud

Talk

Turn
Wave

+
+

+
+

+
Continuous
Actions

Discrete
Actions

Transition between different
types of action

+ Adding compatible actions

Figure 4.3: Motion Transition Graph

In Figure 4.3, we divide the actions into several groups according to their attributes. Actions

such as walk and run belong to continuous actions. Transition among these actions is done by a

 31

straight cut, which may result in a visible discontinuity in the motion. This choice was made to

simplify our implementation and could be replaced by blending techniques.

Actions such as pick-up, put-down are called discrete actions. These actions cannot be

interrupted. Transition among these actions is straight forward, because every action needs to

complete before the next one can begin. Transition between continuous actions and discrete

actions must go through the rest pose, which serves as a connecting point in the transition.

Several additional actions such as talk, turn, and wave, can be added to the current actions

where they are compatible with each other. For example, talking can be added to the character

while he is performing any action, and turning can be added to any continuous actions since it

only changes the orientation of the character over the time. Waving is another action that can be

added to the continuous actions because it only changes the motion of the arm, while the motion

of other parts of the body remains unchanged. A special motion clip is dedicated to blending the

transition to and from the waving arm, which makes the motion less discontinuous and more

realistic.

4.4. Path Planning Algorithm

The character can perform two high level actions, namely walking to a destination while avoiding

any obstacles, and following another character as it moves through out the space. These features

are implemented by using simple path planning algorithms, as described below.

4.4.1 Obstacle Avoidance

In our system, obstacles are rectangular blocks in 3D space. The size and locations of the blocks

are specified by the user and are given to the path planner. At each time step, the path planner

checks the positions of the characters and detects whether there is a potential future collision with

 32

the blocks. If there is any, then the path planner will compute another path for the characters to

avoid hitting the obstacles.

Since all the obstacles are assumed to be rectangular blocks, the collision detection is very

straight forward. The path planner only needs to check whether the character is within a certain

distance from the boundaries of the blocks and whether the character is moving

Figure 4.4: Collision detection examples

towards the blocks. A collision is detected only when these two conditions are both satisfied.

Figure 4.4 illustrates an obstacle as a shaded rectangle, and the collision area as a dashed

rectangle. The small shapes represent characters and the arrows represent their respective

directions of motion. In this case, only the character represented by the circle is considered having

a collision with the block because it is the only one that meets the two collision conditions.

 When a potential future collision is detected, the path planner adjusts the direction of the

walking or running motion of the character according to the current position of the character and

the destination. The character will move along the boundary of the block towards the destination,

until it reaches a corner. If there is no obstacle between the character and the destination, the

character will move directly towards the destination. Otherwise, it will move onto the next corner,

until it can reach the destination directly. Figure 4.5 shows examples of these two cases. The

circles represent the characters and the diamonds represent the destinations. Note that the moving

direction of the character needs to be updated only when the collision is detected or the character

has reached a corner of the blocks.

 33

Figure 4.5: Path planning examples

4.4.2 Following Strategy

Another high level action that the character can perform is to follow another character in the

3D space. At each time step, the path planner computes the relative angle between the current

heading of the pursuer and the direction to the character, as shown in Figure 4.6. If θ is greater

than a pre-defined threshold, the character will make a corrective turn to follow the target

character.

θ

(x1, y1)

(x2, y2)

Figure 4.6: Following example

If the other character has changed his action during the movement, say, from walking to

running, the following character will also make the same change to catch up with him. The

character follows the path along which the other character is moving, and also enacts the same

action during the movement.

 34

4.5. Camera Control

The camera movements in our system modify the camera position and the look-at point. There are

three kinds of static cameras available, including the front camera, the side camera and the top

camera. Each of them can be used in one of three settings, including the long shot, the medium

shot, and the close shot. While each setting has its own camera position, the look-at point of the

static camera is always on the center of the space.

 There are three types of moving camera shots in our system. The first is the

over-the-shoulder shot, where the camera is positioned behind a character so that the shoulder of

the character appears in the foreground and the world he is facing is in the background. The

look-at point is fixed on the front of the character, and the camera moves with the character to

keep a constant camera-to-shoulder distance.

 The second moving camera shot provides a panning shot. With a fixed look-at point on the

character, the camera slowly orbits around the character to show the different perspectives of the

character. Regardless of whether or not the character is moving, the camera is always located on a

circle centered on the character.

The last moving shot is the zoom shot (including zoom in and zoom out), where the camera’s

field of view is shrunk or enlarged gradually over the time with a fixed look-at point on either the

character or the center of the space. A zoom shot can be combined with over shoulder shot or

panning shot simply by gradually changing the field of view of the camera during those two

moving shots.

The other types of camera shots that we discussed in Chapter 2 are not implemented in the

current version of our system. We have only implemented the above camera shots because they

are the most common ones used in movie and video directing, and they should be enough for

ordinary users of our system.

 35

4.6. Action Record and Replay

Our system can be used in online and off-line modes. When creating an online animation, the user

simply says a voice command to control the character or camera, and then our system will try to

recognize this voice command and make the appropriate change to the character’s action or the

camera movement in real-time according to the instruction from the user.

When creating an animation in off-line mode, the user gives a series of instructions followed

by an “action” command to indicate the start of the animation. We use a structure called an

“action point” to store information related to each of these instructions, such as the type and

location of the action. Each time a new action point is created, it is places onto a queue. When the

animation is started, the system will dequeue the action points one by one, and the character will

act according to the information stored in each action point.

 The animation created in online or off-line mode can also be recorded and replayed at a later

time. During recording, we use a structure called record point to store the type and starting frame

of each action being recorded. The difference between a record point and an action point is that a

record point can be used to store the information of online actions, and it contains the starting

frame but not the location of each action. If some part of the animation is created off-line, the

corresponding action points will be linked to the current record point. All the record points are put

into a queue. Once the recording is done, the animation can be replayed by taking out and

accessing the record points from the queue again. Since the record points are designed to be

serializable objects, they can also be stored in a file and opened to replay the animation in the

future.

4.7. Sound Controller

We have integrated the Wave Player & Recorder Library [16] into our system as the sound

controller. This allows spoken dialogue to be added to an animation, as may be useful for

 36

storyboarding applications. The use starts recording his or other people’s sound using a spoken

“talk” or “say” command. Each recorded sound clip is attached to the current action of the

character. During the recording of the sound, the voice recognition process is temporarily disabled

in order to avoid any potential false recognition by the speech engine. When the recording is done,

the user clicks a button on the interface panel to stop the recording, and then voice commands will

be accepted again.

4.8. Summary

In this chapter we have presented implementation details of our system. The character motions in

our system are animated directly from the motion capture data. Transitions between different

motions may pass through the rest pose, or it may be a straight cut to the new motion, depending

on the types of the original and the target action. Path planning algorithm is used in obstacle

avoidance and the following action of the character. Online and off-line animation can be created

and stored in different data structures. Finally, spoken dialogue can be added to an animation via

sound controllers in our system.

 In the following chapter, we will present voice-driven animation examples created using our

system, and compare the results with a traditional graphical user interface.

 37

Chapter 5

Results

This chapter presents a selection of results generated with our voice-driven animation system,

including some of the individual motions, and two short animation examples created using the

online and off-line modes. In order to illustrate the animation clearly, we use figures to show

discrete character poses that are not equally spaced in time.

 A comparison between our voice-driven interface and a GUI-based interface is also given at

the end of this chapter.

5.1. Voice-Driven Animation Examples

The animation examples below are created using voice as the only input, with one exception

which is the off-line animation, where the user has to use extra mouse input to draw the block and

specify the destinations of the movement of the character.

5.1.1 Individual Motion Examples

Figure 5.1 and 5.2 illustrate two character motions available in our system, i.e., sitting down on

the floor, and pushing another character, respectively. The voice commands for these two motions

are simply “sit down” and “push him”. For the pushing motion, if the two characters are not close

to each other at first, they will both walk to a midpoint and keep a certain distance between them

before one of them starts to push the other one.

 38

Figure 5.1: Sitting down on the floor

Figure 5.2: Pushing the other character

 39

5.1.2 Online Animation Example

Figure 5.3 illustrates an animation example created online by using our system. The phrase below

each screenshot is the voice command spoken by the user. When a voice command is recognized,

the action of the character is changed immediately according to the command, which can be seen

in the example images below.

“Walk” “Turn right”

“Wave” “Turn left”

 40

“Stop waving” “Turn around”

“Run” “Turn left by 120 degrees”

“Jump” “Stop”

Figure 5.3: Online animation example

 41

5.1.3 Off-line Animation Example

Figure 5.4 shows an example of creating off-line animation combined with online camera controls.

During the off-line mode, the camera is switched to the top cam viewing from the above, and

additional mouse input is needed to specify the locations of the block and the action points. Each

action point is associated with at least one off-line motion specified by the voice command. When

the “Action” command is recognized, the animation is generated by going through the action

points one by one. At the same time the user can use voice to direct the movement of the camera,

which is illustrated in Figure 5.4.

“Draw Block” “Block Finished”

“Walk to here and pick it up” “Then run to here and throw it”

 42

“Action” “Shoulder Cam”

 “Panning Shot”

 43

“Zoom Out”

Figure 5.4: Off-line animation example

 44

5.1.4 Storyboarding Example

Figure 5.5 shows an example of using our system as an animation storyboarding tool. In this

example, the user wants to act out a short skit, where two people meet and greet each other, and

then one of them asks the other person to follow him to the destination. At first they are walking.

After a while the leading person thinks they should hurry up, so they both start running together.

Finally they arrive at the destination after going through all the bricks and walls on the way along.

Instead of spending a lot more time on drawing a set of static storyboard pictures to describe the

short skit to others, the user of our system can use his voice to create the equivalent animation in

less than a minute, which is more illustrative and more convenient.

 Unlike the previous examples, the voice commands that are used to create this example are

not displayed here. The sentences below some of the figures in this example are spoken dialogues

which are added to the animation by the user.

 “Nice to meet you!”

 “Nice to meet you too!”

 45

“Come with me please. I will show you the way

 to the destination”

“Hurry up! Let’s run!”

 46

“Here we are!”

Figure 5.5: Storyboarding example

5.2. Comparison between GUI and VUI

We have conducted an informal user study on a group of ten people to compare our voice user

interface (VUI) with the traditional graphical user interface (GUI). None of the users have

experience in using voice interface before, but all of them have at least five years experience with

graphical user interface.

 Before using our system for the first time, the users need to take a 10-minute training session

by reading three paragraphs of text to train the speech engine to recognize his or her speech

patterns. Once the training is over, the users are given 10 minutes to get familiar with the voice

user interface by creating short animation using voice commands. Then they have another 10

minutes to get familiar with the graphical user interface. After that, each of them is asked to create

one online and one off-line animation using both interfaces according to the scripts that are given

to them. The scripts consist of a series of actions which are listed along the X axis of Figure 5.5

and 5.6. Cumulative time is recorded as the user creates each action in the script using GUI and

VUI. The average time of all the users performing the same task is plotted on Figure 5.6 for the

online animation and Figure 5.7 for the off-line animation.

 47

Figure 5.6: Average time of creating online animation using both interfaces

As we can see from the two figures, using voice user interface (VUI) costs less time than

using graphical user interface (GUI) to create the same animation, whether online or off-line. We

can also note that, when using GUI to create complex actions, such as “Turn right by 120 degrees”

in Figure 5.5 and “Walk fast to here and pick it up” in Figure 5.6, it takes considerably more time

than creating simple actions such as “Wave” and “Draw Box”, due to the fact that complex

actions involve searching and clicking more buttons in the graphical user interface. While using

voice commands to create the same animation, it doesn’t make much difference on the time taken

between simple and complex actions, because one voice command is enough for either simple or

complex action.

 48

Figure 5.7: Average time of creating off-line animation using both interfaces

 When making the above comparison between GUI and VUI, we have not taken into account

the extra time spent in the voice recognition training session. Although it takes more initial time

than using graphical user interface, the training session is needed only once for a new user, and

the time will be well compensated by using the faster and more convenient voice user interface in

the long run.

 49

Chapter 6

Conclusions

We have presented a voice-driven interface for creating character animation based on motion

capture data. The current implementation of our system has simplified and improved the

traditional graphical user interface and provides a starting point for further exploration of

voice-driven animation system. Our system can help users with little knowledge of animation to

create realistic character animation in a short time.

 As this research is still in its first stage, our system has a number of limitations and directions

for future work.

6.1. Limitations

The use of voice recognition technology has brought some limitations to our animation system.

First of all, each user needs to take a training session for the speech engine to memorize his or her

personal vocal characteristics before using our system for the first time. Although it is feasible for

someone to use our system without taking the training session, it will be harder for the speech

engine to recognize his or her speech and thus results in lower recognition rate.

 A constraint of using any voice recognition system is that our system is best to be used in a

quiet environment. Any background noise may cause false recognition of the speech engine and

generates unpredictable results to the character animation being created.

 Currently our system only has a small number of motions available in our motion capture

database. While capturing and adding new motions to the database is a straightforward process, it

will require a more sophisticated motion controller, especially for motions that require interactions

between multiple characters. Some of the interactions may not be easy to express only in spoken

 50

language. In these cases, a vision-driven system with graphical user interface may be a better

choice for the users.

 The transition between several actions in our system is now done by a straight cut, which

may result in a visible discontinuity in the motion. It can be replaced by using blending techniques

to make the transition more smooth and realistic.

 Presently, the environment in our system only contains flat terrain and rectangular blocks as

obstacles, and the character is animated as a skeleton for the sake of simplicity. More types of

objects could be added to the environment in the future to reconstruct a life-like setting, and

skinning could be added to the skeleton to make the character more realistic.

6.2. Future Work

One straightforward direction for future work is to add new motions to the existing motion

capture database to enrich the capability of our animation system. It would be interesting to add

new motions of characters interacting with other characters or objects in a more complex

environment. As there are more complicated motions available, there might also be a need to

redesign the grammar rules for the voice commands, so that the user can direct the movement of

the character more efficiently.

 Our current system implements a simple path planning algorithm for collision detection and

obstacle avoidance based on the assumption that all the obstacles are rectangular blocks in the 3D

space. With the addition of new objects of various shapes in the future, we will also need to

employ more sophisticated path planning algorithm, such as potential field method and level-set

method.

 Another possible direction for future work is towards using the timeline as another

dimension of the motion. When creating an animation, the user would be able to tell the character

exactly when an action should happen. It could be in an explicit form, e.g. “Walk for 5 seconds”;

or in an implicit form, e.g. “Run until you see the other character coming”. The addition of

 51

timeline will make the animation more flexible and is a way of attributing additional

“intelligence” to the characters, which can simplify the required directives.

 52

Bibliography

[1] Online Computer Dictionary for Computer and Internet Terms and Definitions.

 http://www.webopedia.com

[2] Maurer, J., “History of Speech Recognition” 2002

 http://www.stanford.edu/~jmaurer/history.htm

[3] Golomb, J., Speech Recognition History, 2001

 http://florin.stanford.edu/~t361/Fall2000/jgolomb/YYSpeechHistoryWB.htm

[4] Spectrographic Voice Recognition, 25th February 2001

[5] History of speech recognition http://www.netbytel.com/literature/e-gram/technical3.htm

[6] Bolt, R. "Put-That-There": Voice and Gesture at the Graphics Interface, Computer Graphics,

14(3):262--270, 1980. Proceedings of Siggraph 1980

[7] Kindem, G., Musburger, R.B., Introduction to Media Production: From Analog to Digital,

Focal Press Publications, 2001

[8] Nakatsu, R etc. Interactive movie system with multi-person participation and anytime

interaction capabilities, Proceedings of the sixth ACM international conference on Multi-

media: Technologies for interactive movies, Bristol, United Kingdom, Pages: 2 - 10, 1998

[9] Oliveira, J.C. etc., Virtual Theater for Industrial Training: A Collaborative Virtual

Environment, Proceedings of 4th World Multiconference on Circuits, Systems,

Communications & Computers (CSCC 2000), Greece, July 2000

[10] Apaydin, O., Networked Humanoid Animation Driven by Human Voice Using Extensible 3D

(X3D), H-anim and Java Speech Open Standards, Master’s Thesis at Naval Postgraduate

School, Monterey, California, 2002

[11] Microsoft Speech SDK 5.1 Documentation, 2004

[12] Vicon V6 Manual, Vicon Motion Systems Limited, 2002

[13] Vicon Manual – Preparation V1.2, Vicon Motion Systems Limited, 2002

[14] Vicon Manual V1.2, Vicon Motion Systems Limited, 2002

 53

http://www.webopedia.com/
http://www.stanford.edu/%7Ejmaurer/history.htm
http://florin.stanford.edu/%7Et361/Fall2000/jgolomb/YYSpeechHistoryWB.htm
http://www.netbytel.com/literature/e-gram/technical3.htm

[15] Vicon iQ 1.5 Tutorial 1: Subject Calibration, Vicon Motion Systems Limited, 2004

[16] Beletsky, A. etc., Wave Player & Recorder Library

http://www. codeguru.com/Cpp/G-M/multimedia/audio/article.php/c9305/

 54

http://www.%20codeguru.com/Cpp/G-M/multimedia/audio/article.php/c9305/

	Abstract
	Table of Contents
	List of Figures
	Acknowledgements
	Introduction
	1.1. Animation Processes
	1.2. Motivation
	1.3. System Features
	1.4. An Example
	1.5. Contributions
	1.6. Thesis Organization

	Previous Work
	2.1. History of Voice Recognition
	2.2. Directing for Video and Film
	2.2.1 Types of Shots
	2.2.2. Camera Angle
	2.2.3. Moving Camera Shots

	2.3. Voice-driven Animation
	2.4. Summary

	System Overview
	3.1. System Organization
	3.2. Microsoft Speech API
	3.2.1. API Overview
	3.2.2. Context-Free Grammar
	3.2.3. Grammar Rule Example

	3.3. Motion Capture Process
	3.4. The Character Model

	Implementation
	4.1. User Interface
	4.2. Complete Voice Commands
	4.3. Motions and Motion Transition
	4.4. Path Planning Algorithm
	4.4.1 Obstacle Avoidance
	4.4.2 Following Strategy

	4.5. Camera Control
	4.6. Action Record and Replay
	4.7. Sound Controller
	4.8. Summary

	Results
	5.1. Voice-Driven Animation Examples
	5.1.1 Individual Motion Examples
	5.1.2 Online Animation Example
	5.1.3 Off-line Animation Example
	5.1.4 Storyboarding Example

	5.2. Comparison between GUI and VUI

	Conclusions
	6.1. Limitations
	6.2. Future Work

	Bibliography

