
Project History as a Group Memory:

Learning From the Past

by

DavorČubraníc

M.Sc., University of British Columbia, 1998

B.S., University of Southern Mississippi, 1995

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

The University of British Columbia

December 2004

c© DavorČubraníc, 2004

Abstract

New members of software development teams must come up-to-speed on a large amount of infor-
mation before becoming productive, even if they have previous software development experience.
Often, this knowledge is gained through mentoring: an experienced colleague monitors the new-
comer’s progress on his or her first assigned tasks, and provides feedback and advice. The mentor
is the person the newcomer turns to for help when stuck; these interactions are typically informal
and lightweight, such as quick questions asked over the cubicle divider or at the water cooler.

However, these light-weight channels are not always available in virtual teams, where the mem-
bers of the team are not collocated. Moreover, workers are less likely to help their non-collocated
colleagues, making it even harder for a newcomer to come up to speed on a project.

The thesis of this dissertation is based on the idea that the collection of all artifacts created in
the course of development of a software system implicitly forms a group memory—a repository of
information that a work group can use to benefit from its past experience to respond more effectively
to the present needs. I call this implicitly-formed group memory aproject memoryand make three
claims: (1) that newcomer software developers can use information from the project memory about
past modifications completed on the project to help them effectively perform modification tasks
to the system; (2) that the project memory can be built largely automatically, requiring minimal
adjustments in work practices of software developers; and (3) that the automatically-built group
memory can recommend artifacts useful to the current modification task.

To validate the claims of this thesis, I have developed a project memory model and associated
tool, called Hipikat, that recommends relevant artifacts from the memory during a software modifi-
cation task. This dissertation describes the memory model, the implementation of Hipikat, and its
use in a series of case studies to validate the thesis claims.

ii

Contents

Abstract ii

Contents iii

List of Tables vi

List of Figures vii

Acknowledgements ix

1 Introduction 1
1.1 Difficulties in learning without a mentor. 3

1.1.1 Techniques for improving understanding of the source code. 3
1.1.2 Techniques for improving program documentation. 4
1.1.3 Programming from examples. 8

1.2 An overview of the Hipikat approach. 9
1.2.1 Overview of implicit project memory approach. 10
1.2.2 An introduction to the Hipikat tool. 11

1.3 Summary . 18
1.4 Organization of the dissertation. 19

2 Related work 20
2.1 Group/organizational memory. 20

2.1.1 Memory of experience. 21
2.1.2 Memory of interactions. 22

2.2 Unifying information sources. 23
2.3 Recommender systems. 24
2.4 Mining artifact repositories. 26

3 Hipikat 30
3.1 The principles of the Hipikat approach. 30

3.1.1 Forming the project memory. 31
3.1.2 Making recommendations. 32

iii

3.2 The Hipikat tool. 33
3.2.1 Hipikat client-server protocol. 33
3.2.2 Hipikat Server . 35
3.2.3 Hipikat client(s) . 45

3.3 Hipikat instantiation for Eclipse.org. 48
3.3.1 Artifact update . 49
3.3.2 Identification heuristics. 54
3.3.3 Project memory database. 55
3.3.4 Bugzilla front-end as an Eclipse plug-in. 55

3.4 Summary . 56

4 Validation 59
4.1 The Avid study . 60

4.1.1 Design . 60
4.1.2 Participants and procedures. 64
4.1.3 Results . 68
4.1.4 Conclusion. 72

4.2 The Eclipse study. 72
4.2.1 Design . 74
4.2.2 Participants. 77
4.2.3 Procedures. 78
4.2.4 Data. 79
4.2.5 Analysis . 80
4.2.6 Results . 80
4.2.7 Discussion . 91
4.2.8 Threats to the study validity. 93
4.2.9 Conclusion. 96

4.3 A look at the quality of Hipikat’s recommendations. 96
4.3.1 Selecting the sample. 97
4.3.2 Evaluation criteria . 97
4.3.3 Results . 98
4.3.4 Summary. .103

5 Discussion 105
5.1 Model .105

5.1.1 Unit of recommendation. .106
5.1.2 Better time awareness. .107
5.1.3 Collaborative recommendation. 107
5.1.4 Making sense of the group memory. 108

5.2 Implementation. .109
5.2.1 Presentation of query results. 109

iv

5.2.2 Scaling up .110
5.2.3 Check-in comment and activity-based matching. 110

5.3 Validation .111
5.3.1 The choice of methodology. 111
5.3.2 Types of artifacts most used in the study. 112
5.3.3 Measure of effectiveness. .113

5.4 Impact of extended use of Hipikat. 113
5.5 Hipikat’s applicability. .114

5.5.1 Environmental pre-conditions. 114
5.5.2 Hipikat’s strengths. .115

6 Conclusion 117
6.1 Contribution. .118
6.2 Summary and future work. .119

Bibliography 121

Appendix A Open-source software development 132
A.1 Introduction .132
A.2 Current Practices. .133

A.2.1 Representative Open-Source Projects. 133
A.2.2 Communication and Coordination. 134
A.2.3 Version and Configuration Management. 135
A.2.4 Bug and issue tracking. .136

Appendix B Sample protocol between Hipikat client and server 138
B.1 Acquiring user id .138
B.2 Making the first query. .139
B.3 Making the second query. .140
B.4 Giving a thumbs-up to a recommendation. 141
B.5 Hipikat search. .142

Appendix C Informed consent form used in the Eclipse study 143

Appendix D Participant questionnaire used in the Eclipse study 145

Appendix E Participant instructions used in the Eclipse study 148
E.1 Change Plan. .148

E.1.1 Task. .148
E.2 Performing the change. .149

v

List of Tables

3.1 Construction of artifact keys and names. 34
3.2 Construction of confidence for artifact types.. 36
3.3 Artifact types and data stored about them.. 37
3.4 Identification modules and their artifact types. 39
3.5 Order of selection modules in a recommendation list. 44
3.6 Hipikat query points in Eclipse IDE. 47

4.1 Easy task times. 82
4.2 Easy task correctness criteria.. 83
4.3 Participants’ performance on the easy task.. 84
4.4 Difficult task correctness criteria.. 86
4.5 Participants’ performance on the difficult task.. 87
4.6 Recall and precision summary. 99

vi

List of Figures

1.1 Artifact types and relationships in the Hipikat project memory. 11
1.2 The Eclipse integrated development environment.. 12
1.3 Breakpoint properties dialog.. 13
1.4 Breakpoint hover popup.. 14
1.5 The feature request for the example task.. 14
1.6 Querying Hipikat on the feature request.. 15
1.7 Hipikat’s recommendations for the starting problem report.. 15
1.8 Related problem report recommended by Hipikat.. 16
1.9 Hipikat’s recommendations for the related problem report.. 16
1.10 Viewing a CVS recommendation. 17

3.1 Hipikat project memory model. 32
3.2 XML source of a sample request from Hipikat client.. 34
3.3 A sample response from Hipikat server.. 35
3.4 Hipikat server architecture. 36
3.5 The identification subsystem. 38
3.6 The selection subsystem. 43
3.7 Eclipse search dialog. 45
3.8 Option “Query Hipikat” in a file artifact context menu.. 46
3.9 Hipikat results view. 47
3.10 The context menu in Hipikat Results view.. 48
3.11 The search history menu in Hipikat results view.. 48
3.12 Source of a bug listing.. 50
3.13 Portion of log . 51
3.14 URL paths that are ignored by the crawler.. 53
3.15 Activity matcher example. 55
3.16 Bugzilla search results.. 56
3.17 Bugzilla search dialog.. 57
3.18 Viewing a bug. 58

4.1 The Avid visualizer.. 62
4.2 Hipikat project memory schema used in the exploratory study.. 63

vii

4.3 Related artifacts for task A in the Avid study. 65
4.4 Related artifacts for task B in the Avid study. 66
4.5 Hipikat client used in the study. 67
4.6 Recommendation trail for ”reloading the map”.. 70
4.7 Breakpoint hover pop-up as implemented in Eclipse 2.1.. 75
4.8 The high-level solution to the difficult task.. 76
4.9 A portion of a newcomer’s exploration map.. 81
4.10 Solution of bug 6732.. .102

5.1 Correction of a mislabeled code check-in. 111

viii

Acknowledgements

Every journey must come to an end, and sadly, so does this wild ride called Davor’s PhD. It has
been a wonderful and truly enriching experience, and the credit for that goes to people who helped
me along the way.

First and foremost, I thank my co-supervisors, Gail Murphy and Kellogg Booth. Gail, Kelly:
thank you for your guidance, support, insights, and, not the least, patience. You will be an inspiration
to me the rest of my career. I hope you forgive me for not deciding through all these years on which
side of the software engineering/CSCW fence I sit.

Along with Gail and Kelly, the rest of my supervisory committee helped steer this research
through to its completion, and the examining committee nudged me forward in the homestretch.
Thanks to the supervisory committee members Janice Singer, David Poole, and Norm Hutchinson,
to university examiners Lee Iverson and Ron Rensink, and to the external examiner Andreas Zeller
for their constructive comments that greatly improved the quality of this dissertation. Thanks in
particular to Janice for her advice on experimental design and for her hospitality and help when
I was visiting her at the Institute for Information Technology of the National Research Centre in
Ottawa (IIT-NRC) to do the data analysis of the Eclipse study. Janice, I will not fail to include a
proper control group in every user study that I conduct from now on.

IIT-NRC also provided space and equipment to conduct part of the Eclipse user study, as did
the New Media Interaction Centre in Vancouver (NewMIC). I am grateful to both organizations. I
am also grateful to IBM Ottawa lab, and especially Marcellus Mindel and Jonathan Arthorne, for
letting me be part of their “coop Eclipse bootcamp,” technical advice on developing Eclipse plug-
ins, access to Eclipse developers, and getting me in touch with coop students who then took part in
the Eclipse study. My deepest thanks go to all twelve participants in the Eclipse study, as well as
the participants in the Avid study.

Some of the first ideas for what eventually became Hipikat were inspired by my two research
internships at Fuji-Xerox Palo Alto Lab (FX PAL) in the summers of 1999 and 2000. I thank my
research hosts and mentors, Elizabeth Churchill and Jonathan Trevor, for giving me the opportunity
to be a part of such an amazing place at a uniquely dynamic time.

I would like to acknowledge the two labs of which I was a member during my years at UBC:
Imager, where the very first prototype of Hipikat was written, and the Software Practices Lab
(a.k.a. SPL), an incredible group full of interesting people with exciting ideas that I am very sad
to leave. Rob and Elisa, SPL’s PhD trailblazers, during their time at UBC and since set an example
that I try to follow; I benefitted tremendously from my interactions with Martin, and trying to keep

ix

up with him on our route to completing the doctorate helped me on days (or weeks) when I felt
like my sails were losing wind; Brian is a good friend, and I hope we will be able to continue our
discussions of software engineering and information management practices, politics, and good brew
pubs for many years to come. Over the last two years, several undergrad RA’s and coop students
worked on Hipikat and Bugzilla plugins and made them much better than I ever could have on my
own; my thanks to all of them: Kaili, Derek, Leo, Shawn, Tanya, and Eric, in chronological order.

UBC’s Computer Science is an amazing department, and the more I hear of graduate students’
experiences elsewhere, the more I realize how good we have it here. Among the many great people
I met in the department, I am very glad to consider Doug, Dave, and Alex my friends.

My friends outside the department kept me mostly sane and gave me an appreciation of graduate
student life in other disciplines: Hash, Joy, and Carrie. I hope one day soon we will all find ourselves
established in Vancouver for the long term.

My doctoral studies were financially supported by a University of British Columbia Graduate
Fellowship, by NSERC and IBM as part of the Consortium for Software Engineering Research in
Canada, and by NSERC’s NECTAR research network. I gratefully acknowledge this support.

Just as important was the moral support of my family in Croatia. Tata, mama, and Vera: I miss
you guys and should warn you that I haven’t yet given up on moving you to Canada.

Despite the fact that for the last eight years almost all of our communication has been by email,
Edo is still my best friend, as he has been for many years now. I hope to go back to graduate school
one day for that PhD in Economics that was inspired by so many of our discussions, and shake the
neo-liberal economic order to its foundations.

I was no longer a resident of Green College by the time I began my PhD, but I don’t think one
can ever leave that place behind. Its talks, arts performances, dinners, wine tastings, parties, and of
course the reading room remain a powerful magnet. Even more importantly, friends I met there—in
particular Arnie, Mike, Dale, Xavier, Clive, Randy, and Kate—some of them the very first people I
met when I arrived in Vancouver, are still among my closest friends and I hope will remain so the
rest of our lives.

It is also thanks to Green College that I met Nicole, the love of my life. Nicole, you make my
every day worth living its every second.

And lastly, my thanks to “Azra” and “Zabranjeno Pušenje,” whose music fueled my writing the
critical portions of this dissertation.

Sehen Sie diese Stadt?

Das ist Walter.

DAVOR ČUBRANIĆ

The University of British Columbia
19 December 2004

x

Chapter 1

Introduction

One basic reality of software is that any useful non-trivial software system evolves through its
lifetime in response to changes in its environment and in the needs of its users [9]. For a large and
long-lived system, this evolution may involve the work of dozens, sometimes hundreds of software
engineers, spread across years, if not decades. As time passes and changes accumulate, knowledge
about the system is often forgotten or lost as developers leave the project team and new ones join.

The loss of knowledge makes further maintenance and evolution of the system more difficult.
A software engineer needs to understand the system to change it effectively. Building adequate
understanding can be time-consuming for a developer, especially in the case of a large and complex
software system. Trying to perform a change with an incorrect or incomplete understanding of the
system’s original design concepts leads to what Parnas has calledignorant surgery[84], often caus-
ing degradation in the system’s structure, which in turn increases the effort needed for subsequent
changes. Not fully understanding other relevant aspects of the system, such as implicit constraints
and dependencies in the code or various design decisions, can lead to other problems, such as code
inefficiencies or inconsistency in the user interface.

The challenge of building appropriate knowledge is even more difficult for a software developer
who joins an existing software development team. A newcomer to a project must come up-to-speed
on a large, varied amount of information before becoming productive, even if he or she has previous
software development experience. Sim and Holt, for instance, interviewed newcomers to a project
and found that they had to learn intricacies of the code, the development processes being used, and
the organizational structure surrounding the project, amongst others [110]. In collocated teams, this
knowledge is often gained through mentoring: An existing member of the team works closely with
the newcomers, looking over their shoulders and imparting the oral tradition of the project, as the
newcomers work on their first assigned tasks [110, 29].

As Berlin observed in her study of interactions between newcomers and mentors [10], mentors
use these exchanges to provide a rich array of information, often tangential to the newcomer’s actual
question, but nonetheless crucial for their development into an expert. Initially, this extra informa-
tion includes basic concepts relevant to the problem domain and tips on using the tools effectively.
Over time the focus switches to the system’s design rationale, goals, and trade-offs. Mentors empha-
size hard-to-find information that is typically difficult for the newcomers to acquire on their own,

1

despite having access to the source code: the unwritten design choices, historical quirks, or the
code’s assumptions and interactions between different modules. Mentors also introduce the new-
comer to useful information sources: other teammates’ areas of expertise, relevant documentation
and its reliability, etc.

Most of the time, a newcomer works independently. The mentor is not like a tutor who is there
all of the time, but rather the mentor checks up on the newcomer, perhaps once per day, monitoring
the newcomer’s progress and providing feedback and advice. The mentor is the person the new-
comer turns to for help when stuck; these interactions are typically informal and lightweight, such
as quick questions asked over the cubicle divider or at the water cooler during chance encounters.

Unfortunately, these light-weight interaction channels are not always available invirtual teams,
where the members of the team are not collocated. Moreover, studies show that workers are less
likely to help their non-collocated colleagues [47], making it even harder for a newcomer to come
up to speed on a project in a virtual team.

The hypotheses of this research are premised on the idea that the collection of all artifacts
created in the course of development of a software system implicitly forms a group memory—a
repository of information that a work group can use to benefit from its past experience to respond
more effectively to the present needs [1, 11]. We call this implicitly-formed group memory aproject
memory.1 We make three claims:

1. Newcomer software developers can use information from the project memory about past mod-
ifications completed on the project to help them effectively perform modification tasks to the
system;

2. The project memory can be built largely automatically, requiring minimal adjustments in
current work practices of software developers;

3. The automatically-built group memory can select and recommend useful artifacts—in par-
ticular past modifications—that identify target classes, reusable code, or other information
pertinent to the current change task.

To validate these claims, we have developed a software tool called Hipikat2 that provides devel-
opers efficient and effective access to a project memory. This dissertation describes the design and
implementation of this tool and evaluation of its use in three studies conducted to validate the thesis
claims.

1By “implicitly-formed” we do not mean that this memory contains what Polanyi called tacit knowledge,
which is knowledge that is not ordinarily consciously accessible (or expressible in language). Neither does it
mean that the implicitly-formed group memory containsimplicit memory, which is characterized by lack of
conscious awareness in the act of recollection [103]. Rather, we mean that the project memory is not created
explicitly, because even though the artifacts that form have been formally recorded by the developers, they
are written for different purposes.

2Hipikat means “eyes wide open” in the West African language Wolof.

2

1.1 Difficulties in learning without a mentor

An extreme case of virtual teams in software development is found in open-source projects, which
typically accept source code contributions from anyone on the Internet. With such a low barrier to
participation, the ratio of newcomers to experienced team members is usually very high, making
effective mentorship even more difficult to obtain. Instead, the newcomers are often told simply to
“RTSL” (“read the source [code], Luke”) or “RTFM” (“read the fine manual”). While sometimes
helpful, this rarely substitutes for a real mentor.

1.1.1 Techniques for improving understanding of the source code

Realistically, a programmer does not build his or her understanding of a large software system by
simply reading the source code, but rather just the “relevant” parts (that is, by employing what
Littman et al. [67] call an as-neededstrategy and Singer et al. [111] call just-in-time comprehen-
sion). Unfortunately, when faced with a system containing hundreds of thousands of lines of code,
it may be difficult for a newcomer to know where to evenstart exploring the code, and it may be
equally difficult to know when to stop.

There exist a wide variety ofsource-basedtools, that summarize, visualize, and otherwise
present the information from the source code to help the programmer to explore and better un-
derstand the code.

Program databases

Static properties of the source code—such as module and function names and references between
functions—can be automatically extracted to build a program database. The programmer can use
such a database to discover or explore relationships in the code, for example, to locate all callers
of a certain function. Some thirty years after Interlisp [115] fully a integrated program database
into its development environment, program databases have finally become an essential feature of
mainstream IDE’s.

The typical user interface to a program database is text-oriented, although there are tools, like
the CIA system [22], that can present the results in a graphical form for a better overview of com-
plex relationships. Regardless of these variations in the interface, the basic interaction mechanism
between a user and a program database is organized around single queries on individual program
elements—for example, all uses of a variable. Such an interface is not well-suited for gaining an
overview of a large system because it operates at a very fine granularity of detail, and it is hard for
humans to join together multiple probe-like queries into a coherent picture of overall relationships
and organization of the system. Such an interaction mechanism means that program databases are
most useful for focused exploration of a relatively small section of the code, but makes them inap-
propriate for use by a newcomer who is trying to determine where to start exploring the code as part
of a task.

3

Visualizing the source code

A database of static properties extracted from the source code does not have to be accessed only
through an interface based on queries on individual program elements. The same database can be
used to build graphical visualizations of a program, with the motivation that such graphical pre-
sentations will be more appropriate to give an overview of the organization of a software system
and relationships between its components. Because of the volume of information that needs to
be displayed, most techniques apply some form of abstraction to simplify the graphs that are pro-
duced when analyzing a program. These abstractions typically take advantage of the hierarchical
structure inherent within the programming language, such as packages, classes, and methods in the
case of Java, or even the organization of the source code into files and directories. For example,
Shrimp [113] uses a zoomable interface where the high-level, “zoomed-out” view can simply repre-
sent all files that are in the same directory with a single node in the graph. The tool starts out in the
zoomed-in state and allows the user to interactively cluster and abstract away portions of the graph
based on a variety of criteria. Unfortunately, it is easy for a newcomer to be overwhelmed by the
sheer scale of the initial graph, and it is difficult to know the abstraction criteria that will help him
or her gain an understanding relevant to the current task.

Some visualization tools apply automated clustering techniques to identify higher-level abstrac-
tions without requiring input from the user. Criteria used to drive the clustering can vary widely.
For example, Hutchens and Basili [53] clustered procedures into subsystems based on the amount of
code cohesion between them. Merlo et al. [75] used concepts referred to in the comments and func-
tion names while Maletic and Marcus [69] combined structural and textual similarity to determine
clusters. However, automated techniques typically produce only a limited range of abstractions to
organize the program visualization and present an overview of its structure, and the available meth-
ods may not always be suitable to the given task or the type of understanding that the newcomer is
trying to build.

1.1.2 Techniques for improving program documentation

Program documentation comes in many shapes and forms and can include everything from user
manuals to design specifications to low-level implementation details, such as test plans and notes
on algorithms used in the code.

If reading the source of a large program is hardly an appealing proposition, reading the man-
uals is even less so, beyond getting software installed and running. Almost universally, program
documentation has a reputation for poor reliability. As Lethbridge et al. found in their study of pro-
grammers’ use of documentation [64], this bad reputation is borne out in practice. Documentation
is frequently out of date and often poorly written. It is no surprise then that software engineers do
not trust a considerable fraction of documentation and do not bother consulting it.

Improving the usefulness and maintainability of the documentation has long been a topic of soft-
ware engineering research.3 We present here an overview of relevant work in this area grouped into

3Usefulness and maintainability often go hand-in-hand, as we have seen, because out-of-date documenta-
tion is usually not very useful.

4

three categories: integrating documentation with the text of the source code, providing hypertext-
style documentation, and capturing the rationale behind program design decisions.

Integrating documentation with the source code

In practice, short in-line comments are easy to maintain and programmers often “find them good
enough to greatly assist detailed maintenance work” [64]. A number of approaches build on this
fact and propose to improve program documentation by expanding the amount of information that
is written inside the source code, to the point of blurring the distinction between the documentation
and the source code.

There are two general categories of approaches to integrating documentation with the source
code, although the exact boundary between the two can be a matter of opinion: (1) developers can
follow coding conventionssuch as naming program identifiers according to particular rules or the
placement and organization of in-code comments; or (2) the developers can use tools that allow
them to mix typographic-quality documentation and the source code within a single document, as
in literate programming approaches.

Most large software organizations over time develop their own conventions for writing and
formatting the source code, to make it easier to read it, to navigate through it, or to encode additional
information. For example, Microsoft developers name variables and functions using the so-called
“Hungarian notation,” which embeds the data type in the identifier’s name. To make it easier for
computer tools to find and process documentation located within in-code comments, some coding
standards place the comments in a certain location in the code (e.g., the GNU Foundation’s style
guidelines4), or use special tags for markup. The best known of the latter is Sun Microsystem’s
Javadoc [60], which has become so popular that Javadoc comments are now consideredde rigueur
for all Java code. Similar tools have been written for programming languages other than Java (for
example Doxygen5). Javadoc, however, was explicitly designed to be used for API specification
documentation, rather than application developer documentation [60, page 147]. It is oriented to
low-level documentation (written at the level of methods or individual classes), and is therefore of
limited help to the newcomer trying to build a more general understanding of the code.

Literate programming [58] is the combination of documentation and source together in a fashion
that supports, even encourages, reading by humans. In literate programming systems (for example,
Knuth’s originalWEB), documentation and source code are written interspersed in a single file, from
which literate programming tools can produce either readable, typographic-quality documentation
or compilable program source. Knuth had set out to create a way to turn programs into “works of
literature,” focusing on “explaining tohuman beingswhat we want a computer to do” [58, p 97,
emphasis in the original]. Literate programming systems support this goal through features such
as allowing the program to be written in a flexible order of elaboration (that is, independent of that
required by the compiler), automatic support for browsing (e.g., table of contents, index, and cross
references), and high-quality typeset output (typically using LATEX). Literate programming has not

4http://www.gnu.org/prep/standards.html
5http://www.doxygen.org

5

http://www.gnu.org/prep/standards.html
http://www.doxygen.org

proven itself on larger programs or group projects.
Perhaps a more fundamental problem is that most works of literature are written for linear

reading, from start to finish, and from a single viewpoint. This approach may not work when
writing the documentation of a large software system. Here, a programmer needs information, at
different levels of abstraction, on those aspects of the software that are relevant to his or her current
task. A literate program, on the other hand, provides only a single flow of explanation, which may
or may not be the right one for the task. Therefore, while having an index might help the newcomer
decide where to start reading, finding all the necessary information would require a lot of flipping
back and forth, following cross-references, and backtracking through the literate program. This
is especially the case when concepts span multiple locations in the source code (as in Soloway’s
delocalized plans[112]), something that is difficult to express in a literate programming style.

Hypertext-style documentation

In interviews Lethbridge et al. conducted, software engineers also complained that it can be so
difficult to find useful content in documentation that they often do not even bother to look for it. To
improve the organization of the documentation and make it easier to find relevant content, hypertext-
style documentation systems have been used. Linking and browsing capabilities of hypertext make
it a natural choice of a user interface to program databases. Suchhypercodesystems offer interactive
browsing of the source code with cross-references represented as hyperlinks (e.g., as in CHIME [32]
or the LXR system that is becoming increasingly popular in open-source projects [77]). More
importantly, hypertext allows linking of documents at multiple levels of abstraction and reading
from different points of view. For instance, in systems like SODOS [50] or ISHYS [40], developers
can create “webs” of documents created at all stages of the software lifecycle, from the requirements
and specification to architecture and so on, all the way to the source code. Hypertext can also,
in principle, accommodate documenting delocalized plans: Soloway and colleagues’ proposal for
solving this problem—paper documentation where source code is presented in parallel with pointers
linking the code to other relevant sections of the program and detailing the rationale for different
design and implementation decisions—sounds very much like a vision of hypertext.

Despite potential advantages, hypertext-style documentation has one important drawback: it is
time-consuming to write it well, and fiendishly difficult to maintain it. Links have to be created
foreseeing future navigation needs, and then kept in sync with the documents as they evolve. Link
maintenance does not just mean that the writer has to prevent links from “pointing to nothingness,”
but also that the navigation paths they form still make logical sense, taking into account the changing
content of the documents. Given the difficulties with writing even the plain-text documentation and
keeping it up to date, it is not surprising that true hypertext-style documentation has not been widely
adopted.

Several approaches have attempted to generate links between source code and documentation
automatically, using AI techniques. Statistically-based techniques require minimal additional effort
from the users. For instance, Antoniol et al. [4] built a word model for each item of documentation
(in their case, aman page). To determine the links to the source code, a Bayesian classifier is

6

run on names of identifiers from a source file for all documentation word models to determine
which document is most closely “resembled” by the code in the source file. Similarly, Marcus and
Maletic [70] used Latent Semantic Indexing to find which source files were textually closest to a
piece of documentation. However, links created by both of these examples were for fairly low-
level documentation, essentially a programmer’s reference manual. They have not been tested on
higher-level documentation which is more abstract and ambiguous.

Design rationale

An important ingredient in understanding the code is knowing the reason why the code is there.
This information is not typically captured in the source code for a system, nor can it be recovered
by visualization tools. It is also often neglected in traditional documentation, which tends to focus
on the “what” and “how,” rather than “why.”

Design rationale (DR) approaches explicitly aim to articulate and represent the reasons and the
reasoning processes behind the design and specification of artifacts [18]. Lee and Lai [63] claim
that design rationale can be used to answer questions such as “How did other people deal with this
problem?” and “What can we learn from the past . . . cases?”

Design rationale originated as a technique in policy planning for developing solutions to the
so-called “wicked” design problems, where there are no “right” and “wrong” answers, but rather
only degrees of “better” or “worse” given the existing constraints and trade-offs. The core idea
was that such problems should be approached through an open-ended dialogue of collaboratively
defining and debating issues and alternatives [95]. A number of techniques have subsequently been
developed that implement this “argumentative-style” approach, which all use some form of a semi-
formal graphical notation that expresses the ideas about the task as nodes linked with relations
(e.g., [62, 109]).

These general-purpose design rationale techniques have been applied to the design of software
systems (e.g., [26]); other DR systems, following the same basic idea, have been designed specif-
ically for software development [88]. However, design rationale has had limited success gaining
acceptance in the software engineering community. Even the empirical studies of DR systems’ use
and effects on software development have been fairly rare, and the results of those studies have been
inconclusive about the benefits of using DR. While there are reported instances of recorded design
argumentation that assisted ongoing design work and of access to the record of past decisions be-
ing valuable (e.g., [16, 74, 108]), there are also cases where creating the DR structure impeded the
“real” work (e.g., instances in [74, 108]). Negative effects have also been observed in other domains
when DR was applied [37, 55] including:

• Problems having to divide the knowledge into small discrete chunks and classify them accord-
ing to the model as it is entered into the system. Sometimes ideas are too-tightly intertwined
to be broken up, and even in the best model there will be some information that does not quite
fit it, in which case it may easily fall “between the cracks.” Also, some stages of the design
work may not fit well into the argumentative model of design rationale.

7

• Spending time on detailed DR analysis of peripheral issues where it did not lead to any useful
insight or benefit the project, while taking effort away from more important work.

• Difficulty integrating new contributions, because for the model to be useful and consistent,
all relevant contexts to which new nodes could be linked need to be discovered.

• Difficulty understanding the rationale at a later time, even by the person who created it. This
happens when some context that was highly relevant at the time was not included in the
rationale, perhaps because of its ordinariness or apparent obviousness.

• Capturing every aspect of an issue to make the argumentation clearer, which causes annoy-
ance when those seem to be self-evident at the time of capture or later review.

Given the time constraints facing software developers and the requirement to learn a whole new
graphical language for expressing the reasoning behind design decisions, as well as the extra effort
required to record those decisions as they are made, such approaches are unlikely to encounter
wider adoption by the developers until their effectiveness can be clearly proven, a typical “Catch-
22” problem that often arises in software engineering.

1.1.3 Programming from examples

One of the important coding strategies used by both beginner and expert programmers is to use
existing code as a template while developing a solution to the task at hand (see Pirolli and An-
derson [86] for an example of novices learning programming techniques from code examples, and
Rosson and Carroll [97] and Lange and Moher [61] for studies of code reuse by experts).

This kind of code reuse philosophy is particularly strong in the world of open-source software
and is partly the reason behind the tongue-in-cheek expression “read the source, Luke”: the system’s
source code is, in effect, full of examples of how to access the API, handle errors, and implement
various functionality. Given the scarcity of good documentation and available mentors, developers
in open-source software projects rely on such “examples of usage” from the project’s source code
as perhaps the most useful and trusted source of information. However, as already discussed in
Section1.1.1, it is difficult for a newcomer to build an understanding of a large software system
simply by reading its source code. It is equally difficult to find useful examples in that source code,
since finding (and recognizing) them requires a certain level of understanding of the code. Thus
once the importance of examples in software problem solving was recognized, a number of systems
were proposed to help developers find and understand examples relevant to their current problem.

The first system for example-based programming, by Neal [81], presented examples simply as a
list in a dialog, without any explanations beyond a one-line description, and with no special search
mechanisms. Subsequent systems, such as Rosson and Carroll’sReuse View Matcher(RVM) [98],
included explanations. RVM organized each example in its collection around a set of scenarios
that use a specific class. Each scenario included within its description an animation illustrating the
scenario and details of class usage in the scenario (e.g., relationship to other objects in the scenario,

8

a list of the class’s methods relevant in the scenario, and code samples where those methods were
invoked). As in Neal’s system, RVM’s scenarios had to be created and maintained manually.

Redmiles’sExplainer [89] shifted away somewhat from hand-crafting examples by imposing
a uniform model of an example as a semantic network of concepts. The concepts belonged to
perspectives (points of view on the example), linked within and across perspectives with typed links.
Examples could be shown in multiple views (e.g., code listing, sample execution, and component
diagrams), with equivalent concepts in all views highlighted. Text explanations were created by
formatting concepts through simple patterns to form sentences. Thus, the author of an example
did not have to write every detail by hand, and there was some automated assistance in creating
the semantic network (for example, parsing the concepts from the example Lisp code). Ultimately,
however, creating examples was still a largely manual process, and there was no assistance for
maintaining them as a system evolved.

CodeWeb [76], on the other hand, is entirely automated. The tool applies data mining techniques
on a software library and a collection of existing applications that use it to discover “reuse patterns.”
It presents patterns in the form of association rules, as pairs of library components indicating that
application classes that use one component also tend to use the other. However, information pro-
vided by CodeWeb is too general to be of real help to a newcomer working on a specific change
task. Knowing the likelihood of co-occurrences of class usage and method invocations does not
saywhencertain methods should be used—or when they should not—although it may be useful to
improve a developer’s awareness of the library’s API.

1.2 An overview of the Hipikat approach

Maintaining adequate documentation will likely remain a problem for some time to come because
developers must choose where to put effort when time is a constrained resource. In such situations,
getting the code working is the priority: not everything is written down, and even when it is, it is
laconic and not necessarily written at a level appropriate for a newcomer to understand. The same
argument applies to the example-based tools described in Section1.1.3: building and maintaining
the examples takes time and effort, and will always be seen as less important than writing code and
getting it to run.

Fortunately, the situation is not hopeless. A lot of information that a newcomer typically needs
is available in the archives of the mailing lists, the source code versioning system, and the system for
recording and tracking work on issues such as problem reports and requested features. It could be
argued that the versioning system is an even better source of examples than the current source code
because there the changes implementing specific functionality are isolated in discrete revisions,
usually with a comment describing the purpose of the change!

However, this information is not easily accessible because of its sheer volume, the lack of tools
to search the information effectively, and the difficulty of making connections between logically
related items in disparate repositories. General search engines, such as Google,6 are commonly
used for this purpose, but limit the developer to searching for exact words in documents within a

6http://www.google.com

9

http://www.google.com

single collection (i.e., the web). The developer has to know the right terms to use in the search, and
the search engine cannot take advantage of the different artifact types and relationships between
them which form as a result of the development practices.

In the remainder of this section, we introduce our approach to the problem of building an un-
derstanding of a software system by a newcomer developer to the project. We give its practical
implementation as a developer tool, called Hipikat, that applies it to a real-world large open source
project. We then present an example of using Hipikat on a change task drawn from the development
history of a real, large software system.

1.2.1 Overview of implicit project memory approach

This dissertation presents the Hipikat tool. Hipikat is intended to aid a developer working on a
change to a software system, with special focus on newcomers to the development team. To help a
newcomer in this situation become productive more quickly, Hipikatrecommendsexisting artifacts
from the history of the project that are relevant to a task that the newcomer is trying to perform. In
essence, we consider all of the artifacts that have been produced—the versions of the source, the
bugs, archived electronic communication, web documents—as an implicit group memory.

The tool plays two roles. First, the tool infers links between the artifacts that may have been
apparent at one time to members of the development team but that were not recorded. These links
are determined using heuristics that are to a large extent based on my observations of work con-
ventions and on informal communication with developers in a large open-source software project.
The artifacts and the links together form theproject memory. We call this project memoryimplicit
because it is built automatically, monitoring the course of the development, rather than requiring the
developers on the project to create it explicitly. Second, using the links, the tool, in a role similar to
that of a mentor, suggests possibly relevant parts of the project memory given information about a
task a newcomer is trying to perform.

Figure1.1 shows the schema we use to represent the project memory. There are four types of
artifacts represented in the schema: bug and feature descriptions (e.g., items in Bugzilla), which
form change tasksfor the developers to work on; sourcefile versions(e.g, checked in a CVS source
repository), which implement the changes; messages posted on developer forums (e.g., newsgroups
and mailing lists); and other project documents (e.g., design documents posted on the project’s web
site). These artifacts are created by project members, represented byPerson in the diagram.

Hipikat works as a client-server system. The client, when commanded by the user, issues a
request for suggestions to the server, and displays returned results to the user. The query identifies
(anonymously) the user and the artifact for which related items are sought. The server replies with
a list of matches that the client then formats and presents in human-readable format.

A developer typically uses Hipikat by performing queries to discover past work done that could
be used as an example guiding the current task, or which can provide background information to
help better understand the system and the reasons behind decisions.7 Hipikat becomes another

7In the rest of this dissertation, the term “Hipikat user” is equivalent to “a developer using Hipikat to
access the project memory.”

10

Change
task

Person

File
version

MessageDocument

similar tosimilar to reply to

documents about

writes

implements

check−in package

works on

writes

posts

Figure 1.1: Artifact types in the Hipikat project memory and the relationships between them.

tool in the palette available in modern development environments. Recommendations provided by
Hipikat can become starting points for further investigation, which in turn can inspire other queries,
and so on.

1.2.2 An introduction to the Hipikat tool

To illustrate a typical session using Hipikat, we present a sketch of its use by a software developer
in a representative source change task. A detailed description of Hipikat’s implementation and
functionality is included in Chapter3; the example shown here is meant to give the reader a flavour
of what using Hipikat is like and make descriptions and discussion in the rest of the dissertation
more concrete.

In this sketch, we will follow a fictional software developer who is a relatively new member of a
software project as he is working on a software modification. We are looking at a situation common
in modern software development in which the developer has a written description of the desired
functionality, in this case drawn from a database of bug reports and feature requests submitted by
users. The developer has already had some experience working on the project, but not enough to be
familiar with all aspects of the source code.

11

The setting

Our example developer is working on the Eclipse project.8 Eclipse is an integrated development
environment. It is written in Java and consists of over 1.9 million lines of source code, distributed
over more than 9,000 Java files. Eclipse is developed in an open-source manner (see AppendixA
for a brief summary of the open-source approach to software development), and its extensible ar-
chitecture means that a variety of third-party “plug-ins” have appeared that implement features and
tools for a wide range of programming languages and development techniques. Figure1.2 shows
the main Eclipse application window with the Java development environment active.

Figure 1.2: The Eclipse integrated development environment.

The task

The base Eclipse distribution offers a rich set of features for editing and debugging Java applications.
Breakpoints can be set simply by double-clicking beside the desired source line in the editor.9 The
Eclipse user can set conditions which are evaluated when the execution reaches the breakpoint, and
the execution will be suspended only if the condition evaluates to true. The condition can be set

8www.eclipse.org . We use version 2.0 in this example.
9A breakpoint is a debugging facility that suspends the execution of the program at a certain location in

the code, enabling the developer to investigate the program’s internal state.

12

www.eclipse.org

from the breakpoint properties dialog (see Figure1.3) and includes a boolean Java expression or the
number of times the breakpoint has been reached.

Figure 1.3: Breakpoint properties dialog.

In this scenario, our developer has been asked to modify the feature that displays a popup win-
dow when mouse pointer hovers over a breakpoint indicator in the Java program editor. In version
2.0 of Eclipse, this popup appears only for conditional breakpoints, and displays the line number
and text of the breakpoint’s condition (see Figure1.4). The modification will introduce hover popup
over all breakpoints, even when a breakpoint is unconditional.10

10This is a real request that was implemented for version 2.1 of Eclipse. The request can be seen at the
following URL: https://bugs.eclipse.org/bugs/show bug.cgi?id=6660 .

13

https://bugs.eclipse.org/bugs/show_bug.cgi?id=6660

Figure 1.4: Breakpoint hover popup.

A session with Hipikat

The developer starts work by opening the request in the IDE (figure1.5). He has not worked in this
part of the system before, but is aware that the requested feature is a modification of the existing
functionality in Eclipse, and concludes that finding where the current behaviour is implemented
would be a good starting point. However, the code is large, and it is not obvious how hover pop-
ups are implemented. Unsure of what to do, the developer decides to query Hipikat for artifacts
related to his task. He right-clicks in the request and selects “Query Hipikat” from the context menu
(Figure1.6).

Figure 1.5: The feature request for the example task.

14

Figure 1.6: Querying Hipikat on the feature request.

In response, the Hipikat server sends a list of recommended artifacts from the project memory,
which the client displays in a “Hipikat results” view (see Figure1.7). At the top of the list are
several existing problem reports that were recommended for their textual similarity to the assigned
task. The top recommendation sounds like it is the change task which implemented the current
hover popup functionality for conditional breakpoints. The developer decides to investigate it more
closely and opens the Bugzilla problem report (Figure1.8).

Figure 1.7: Hipikat’s recommendations for the starting problem report.

After reading the recommended artifact, the developer feels he is on the right track and de-
cides to query Hipikat on that report to see how the fix was implemented. The list of recom-
mendations returned by Hipikat contains several file revisions that are marked with high confi-
dence for their relevance (see Figure1.9). There are two .java files—named “JavaBreakpoint” and
“JavaLineBreakpoint”—and a .properties file. The developer opens the file version artifacts to see
their contents. These are displayed in a “diff” view, which highlights the text that changed compared
to the preceding revision (Figure1.10).

The developer can see that code introduced in these versions deals with setting of “attributes”
in “markers.” (The developer can now use the IDE to call up the Javadoc for theMarker class: it

15

Figure 1.8: Related problem report recommended by Hipikat.

Figure 1.9: Hipikat’s recommendations for the related problem report.

16

Figure 1.10: Viewing a CVS recommendation. JavaLineBreakpoint revision that implemented the
fix to problem report 15739.

is a holder for a set of key-value pairs of named attributes, associated with a “resource” in the IDE.)
Apparently, one of the attributes, namedIMarker.message , is set to what looks like the text that
shows up in the hover popup. However, it is not clear how this attribute ends up in the hover, since
none of the code recommended by Hipikat seems to have anything to do with the user interface.
The developer also notices that this attribute is being set only in the constructor and the setters for
the breakpoint’s properties (e.g.,setCondition). It is quite likely then that once this attribute is
set, it is the value that will show up in the hover popup, through some still unknown mechanism.

At this point, the developer can test the hypothesis that markers are used to display popup
hovers in a practical way by hardcoding theIMarker.message attribute to some distinct text
and running the modified code to see whether the text appears in the hover popup. The developer
tries this approach, and the popup indeed shows the hardcoded text. It looks like the hypothesis is
correct. The developer can now try implementing the requested feature, even though he does not
understand fully how the UI system detects and displays a hover. All he needs to do on his end is
work with the attributes of the breakpoint’s marker. Alternatively, he can try using the IDE’s cross-
referencing capabilities to see which classes access theIMarker.message attribute of markers,
and follow the chain to the UI classes.

To summarize, even when a modification is relatively simple to implement, such as this example
from Eclipse of displaying a hover pop-up with breakpoint properties, it may require understanding
of many different subsystems and how they interoperate (in this example, the breakpoints model,
markers in an editor, and the graphical user interface). Newcomers to a software project have to

17

find and understand a large amount of information before they can become effective, which takes
time and effort. But with access to Hipikat recommendations from the project memory, a newcomer
can see examples of past modifications that can be used as a starting point for his task. These
examples will contain the relevant code constructs, show the API usage, sometimes even discuss
design alternatives, trade-offs, and caveats. In this example given in this section, the modification
was almost trivial once Hipikat recommendations were seen. Still, Hipikat did not serve the solution
on a platter, and rarely will. Rather, Hipikat recommendations are there helping newcomers along
on the road which they still need to walk themselves as they make the transition from newcomers to
experienced members of a software project.

1.3 Summary

This chapter gave a brief overview of drawbacks of existing approaches to improving understanding
of a software system when used by developers new to a project. We then introduced our approach
to assist newcomers in such situations—the implicit project memory and the Hipikat tool. We then
presented a sample session of using the tool in a software modification task. The following list
recapitulates the important points of our approach in general and the Hipikat tool in particular:

• Hipikat unites multiple sources of data used in the project. When those sources are kept in
separate archives, it is hard for a user to find logical connections between artifacts of disparate
types.

• The project memory is built automatically and from existing sources of information. Team
members are not required to do additional work that is not going to directly benefit them,
which they are unlikely to do willingly and which is one of the main obstacles to successful
adoption of groupware.

• No predefined taxonomy of the project memory is imposed on the users. A single taxonomy
of group memory is unlikely to work for all users and be relevant in all tasks. As the project
evolves, the taxonomy has to evolve with it, which requires costly maintenance.

• Hipikat works as a recommender, making it easier for a newcomer to navigate around the
system and find relevant pieces of information as he or she builds an understanding of the
project and assigned tasks.

• The query system is essentially point-and-click. Hipikat’s user does not have to learn a com-
plex query language or be intimately familiar with the vocabulary of the project.

• Access to the project memory is integrated into the user’s work environment (in this case, the
IDE), where it is easily invoked from the user’s everyday tools and can become part of the
regular work practices.

18

1.4 Organization of the dissertation

In Chapter2, we review related work. Chapter3 describes the project memory model and the
implementation of the Hipikat tool. In Chapter4 we describe the validation of thesis claims. In
Chapter5 we discuss the main issues that arose during the development and evaluation of Hipikat,
the trade-offs involved, and compare our choices with existing alternatives. Finally, in Chapter6
we review the claims of this research, describe the contributions of our work, and outline future
avenues of research.

19

Chapter 2

Related work

In this chapter we discuss work related to Hipikat’s implicit project memory approach. Several
areas are discussed. First, we describe approaches proposed to help organizations build and use
a collective “memory” that allows them to benefit from past experiences (Section2.1). Next, we
discuss approaches aimed at unifying different information sources to help developers find infor-
mation that will help them understand the source code (Section2.2). Then, we give an overview of
recommender systems and discuss ones that assist users find useful information in situations similar
to Hipikat’s (Section2.3). Finally, we consider approaches that mine artifact repositories for history
data that can be of use to software developers working in the present (Section2.4).

2.1 Group/organizational memory

It has been long recognized by researchers that groups and organizations possess a “collective”
memory that stays even when individual members of the group have left, and that this memory is
an important factor in the success of an organization’s responsiveness to the changes and challenges
of its environment. Walsh and Ungson have given the most comprehensive theory of the organi-
zational memory, which they define as the “stored information from an organization’s history that
can be brought to bear on present decisions” [119, page 61]. In their theory, this memory is not
centrally stored, but distributed across different retention facilities—from individuals and culture to
organizational structures and physical setting.

Walsh and Ungson’s theory of organizational memory, while comprehensive, does not consider
the effect of information technologies on organizational memory. The unique potential impact of
those new technologies on organizational memory and, consequently, decision making was first
recognized by Huber [52]. Huber specifically stresses the role of advanced information technolo-
gies such as information storage and retrieval systems and knowledge-based systems, in creating
more timely, comprehensive, and accurate organizational intelligence and in capturing organization
members’ expertise.

20

2.1.1 Memory of experience

One approach to building computer-based organizational memory is for the experienced members
to do it by externalizing and collecting their knowledge so that everybody can access it.

Ackerman and Malone’sAnswer Gardenwas probably the first computer-based system whose
purpose was to augment an organization’s memory [1]. Answer Garden facilitated development of
collective databases of commonly-asked questions which could grow “organically” as new questions
arose and were answered. In Answer Garden, users browsed the answer database by traversing a tree
of diagnostic questions until they reached an appropriate answer in the leaf node. If they could not
find an answer, users could contact experts, whose answers would eventually get incorporated into
the database. The second version of the system blurred the dichotomy between users and experts,
recognizing that everyone can be expert on some issues and novice on others. Questions in Answer
Garden 2 were first forwarded to public forums (such as a newsgroup), and only brought to the
attention of a smaller group of experts if left unanswered for certain time. Additionally, collected
answers could be collaboratively refined by the user community.

Answer Garden’s approach was primarily useful for tasks following predefined or common
steps, where there is a relatively small set of “paths” in the question tree and a set of “frequently
asked” questions that always seem to come up. Although it was deployed in a variety of settings over
the years, its application in software development has been limited to a help system on programming
for an X window system user interface toolkit.

Terveen et al. [116] introduced a system for recording and disseminating software design knowl-
edge that is usually not written down, or “folklore” as they call it. Their system,Design Assistant,
used an interaction approach similar to Answer Garden, guiding the developer through a sequence
of decisions about design attributes of a particular feature. At the end of the dialogue, the tool pro-
duced advice on using the feature given the developer’s choices. An important component of this
approach was the adjustment to the development process to ensure maintenance and evolution of
the Design Assistant’s knowledge base: the tool’s advice and interaction transcript were treated as
part of the design and included in design review. Conclusions of the design review and experiences
fixing software faults were then fed back into the knowledge base.

Design Assistant is among the rare instances of computerized support for organizational mem-
ory in software development where published reports exist of some success being adopted in a
commercial development (AT&T). However, it was a fairly heavy-weight approach, which required
significant effort for creation, maintenance and evolution of the organizational memory, and was
therefore suited to a style of software development that places large emphasis on well-defined soft-
ware process, into which these activities could be incorporated and accepted by both the manage-
ment and the developers. Hipikat, on the other hand, does not require any change to the development
process and records much of the same “folklore” by unobtrusively capturing developers’ discussions
and actions. Another drawback of the Design Assistant’s approach is the “dialogue tree” model of
interaction with the user. The model is difficult to create because identifying the design attributes
of the target domain is a manual process. Furthermore, complex design decisions often cannot be
expressed as a series of “yes/no” questions; the design dialogue is more likely a graph than a tree

21

because some options may involve trade-offs that affect previous choices. Lastly, some aspects
of design include broad concepts that affect wide areas of the system and cannot be solved with
computer-generated “recipes.”

Carroll et al. [17] proposed an alternative method for lightweight recording and organizing of
informal history and rationale that design teams create and share in the course of their work. Their
Raison d’Etre system provided access to a database of video clips containing stories and personal
perspectives of design team members. The clips could be recorded as the project progressed, giving
an overview of the evolution of the design and personal experiences. However, the database was
stand-alone; there was no way to integrate it with the source code—for example, for seeing the
code as it was when the clip was recorded, or as it evolved afterwards. Also, the videos came
from interviews with the developers that Carroll et al. conducted, and had to be laboriously divided
into clips and appropriately organized. Therefore, the system was more a proof of concept than a
practical solution.

2.1.2 Memory of interactions

An alternative approach to building organizational memories does not require users to explicitly
externalize their knowledge, which, as we have argued in the previous section, carries with it a
number of difficulties. Instead, these approaches aim to leverage existing artifacts and make it as
easy as possible to create the memory. A typical example is the TeamInfo system, created by Berlin
et al. [11], which builds its memory from email messages. Berlin et al. call TeamInfo agroup
memory, a variation of organizational memory that is tailored to the needs of a small group of col-
laborating colleagues. It is more than just an email archive: TeamInfo is intended as a repository of
information of long-term value to the group. Berlin et al. reported that users submitted to TeamInfo
a variety of items that they thought would be useful to the group in the future—from “cc’ing” Team-
Info on interesting discussions, to forwarding useful nuggets of information received over email or
by other means. To make it easier to easier to retrieve information, items in the group memory
were classified to one or more group-defined categories, either automatically using pre-configured
keyword patterns or explicitly by users. In addition, to promote group awareness of the activity in
the group memory, users had the options to receive email notifications of items recently added to
TeamInfo.

Hipikat takes the same approach to light-weight creation of group memory from existing arti-
facts. However, it lowers further the bar on effort needed to build the group memory by monitoring
all activity in public forums, rather than requiring its users to explicitly submit items to the group
repository. On the other hand, our approach has the drawback that there is no way to collect useful
items created outside regular sources of information. For example, an exchange over personal email
could easily be accommodated in TeamInfo by forwarding the email afterwards to TeamInfo’s ad-
dress. The equivalent workaround for Hipikat would require that the email be forwarded to one of
the information sources that are monitored by Hipikat, such as the mailing list; the difference from
TeamInfo is that the forwarded message will add to the list traffic even though its author merely
wanted to have it archived in the project memory for later access.

22

On the related note of minimizing the effort required, Hipikat does not use a taxonomy of
categories to organize the collection, but instead recommends relevant items on a case-by-case basis.
There is another reason for avoiding predefined taxonomy of the group memory: using categories
was actually a significant source of user frustrations and even provoked arguments about the “right”
taxonomy and the “right” classification of individual items. As Berlin et al. discovered, there are
distinct styles of filing the items into the group memory (similar to the styles of managing email
messages in personal folders [122]). Individuals using different filing styles were likely to classify
the same items differently, and would also look for them in different categories, making it harder
to find information in the memory and diminishing its usefulness. Items that were mutually related
could therefore be filed in different categories, losing the connection between them. Given that
these problems surfaced even for the small group using TeamInfo, it is likely that they would be
even more pronounced, and more difficult to manage, for a large open-source project that we were
targeting with Hipikat.

Lastly, and perhaps most significantly, Hipikat goes beyond Berlin et al.’s approach by corre-
lating information from multiple sources, including both the communication and “work” artifacts
(e.g., discussion about a bug with the code implementing the solution).

2.2 Unifying information sources

One of the challenges in using design rationale is that the rationale is recorded and evolves sepa-
rately from the design artifact. This separation causes problems such as difficulty finding the exact
rationale that motivated a particular feature of the evolving artifact, not implementing in the arti-
fact the design decisions that were agreed upon, or discussing design issues that are irrelevant to
the current state of the artifact. Reeves and Shipman recognized that “discussionsaboutthe design
must be embeddedin the design” [90, p 394, emphasis in the original]. They implemented these
principles in their XNETWORK system, which allowed discussions to be embedded in the artifacts.
XNETWORK supported LAN design work, where the design artifact—the network layout—was
represented graphically. Shorter discussions were shown as PostIt-like notes in the design; longer,
design-rationale argumentation were on separate pages connected to the relevant elements of the
network. Its main limitation was that its applicability was constrained to domains that could be
represented graphically. While this may be the case for software design, which is commonly rep-
resented in just such a way, software ultimately is written in plain text. Also, argumentation in
XNETWORK was linked to individual objects in the layout (e.g., a router), so it would be difficult to
express argumentation relevant to a higher level of abstraction or touching on multiple parts of the
design.

Initial steps towards integrating software artifacts with developers’ communication were made
by Lougher and Rodden [68]. Their system was conceptually similar to computer tools for soft-
ware inspection [35]. Tools such as CAIS [71] and HyperCode [85] supported asynchronous code
inspection by allowing engineers to annotate the source code under inspection with their comments
and distribute them to other participants in the activity. However, although these comments were
captured electronically, they were lost once the inspection was over. Lougher and Rodden recog-

23

nized that these comments could have a longer-lasting value and be useful in future maintenance
activities. They developed a system that allowed maintenance engineers to make annotations on
the code as they changed it or reviewed their colleagues’ changes, capturing rationale and making
long-term collaboration possible. However, this approach requires the user to look at the exact spot
in the source code to see the annotation, which may not be as useful for a relative newcomer trying
to grasp tens of thousands of lines of source. Also, although annotations could be made at different
levels in the program’s structural hierarchy (e.g., a line or a function), there was no way to capture
comments that referred to scattered locations in the code.

Raison d’Etre’s idea of recording the developer’s views of the project (see Section2.1.1) was
taken one step further by integrating the source code with video and other media, implemented by
Chieh et al. inVariorum [25]. Variorum supports program documentation in the form of audio,
video, and pen drawing annotation of the source code. It is intended for recording software “walk-
throughs,” however, and there is no support for program evolution or design discussion. Also, it
has only been applied on small programs (less than 1,000 lines) and it is unclear how it would
support explanations of larger and more complex systems, especially high-level design issues since
the explanations are linked to lines of code.

Lindstaedt and Schneider [66] demonstrated a combination of a multimedia software walk-
through system, similar toVariorum, with an email repository similar to TeamInfo (see Section2.1.2).
Their FOCUS system allows the recording of multiple execution paths through a program, each path
demonstrating a different functionality. Paths can have associated with them a developer’s expla-
nations (audio, video, or text) and follow-up discussions. These so-called “explanation paths” can
intersect, for example at a method that they all include in the explanation. A collection of expla-
nation paths for a given program can be saved as a set of interrelated HTML pages and media files
accessible via a web browser. Thus saved, they become part of GIMMe, an online repository similar
in functionality to TeamInfo. GIMMe is intended to supplement FOCUS with support for long-term
collaboration: developers can locate explanations created in FOCUS by searching or browsing the
category hierarchy similar to TeamInfo’s. Emails sent as follow-ups to points in the explanation
paths and other development-related discussion are all captured in GIMMe and become part of the
group memory.

While in some ways similar to Hipikat, Lindstaedt and Schneider’s approach was targeting an
audience of researchers who create software prototypes as part of their research. It focused on
preservation of experiences once the prototype was completed and facilitating transmission of those
experiences to future efforts. The explanations were created on a finished piece of software, at the
end of a project, and the knowledge that was captured was essentially reflections on the past. There
was no support for evolution of the code, or capturing design discussions at the time they were going
on, all of which are essential part of Hipikat’s philosophy.

2.3 Recommender systems

Recommender systems are programs which attempt to predict items (for example, music or books)
that a user may be interested in based on some information about the user’s profile [91]. The criteria

24

used to make a recommendation can be content-based or collaborative [107]. In content-based
systems, the decision whether to recommend an item is based solely on its content and its fit with
the user’s profile. Collaborative recommenders—also known as collaborative filtering systems—are
essentially agnostic about the content of the item but instead use other users’ ratings of it. Those
ratings can be explicit, when users explicitly rate items for their usefulness, or implicit, when ratings
are inferred from users’ actions (e.g., buying a book is an implicit positive recommendation which
an online bookstore can use to recommend it to other customers with similar interests).

Currently, Hipikat’s recommendations are content-based, although it uses some collaborative-
based elements in the way items are ordered in a recommendation list (see Section3.1.2for details).
(For a discussion of extending this recommendation model, see Section5.1.3.)

Similarly to Hipikat, Ye and Fischer’sCodeBroker[123] uses content-based criteria to deter-
mine software artifacts to suggest in the context of a developer’s current task. However, CodeBro-
ker is tailored to helping a developer on small-scale reuse tasks: it monitors a developer’s use of a
text editor watching for the method declarations and the descriptions of those methods in Javadoc
comments, and uses that information as a query to a library to find potential components that could
be reused instead of a new component being created. In contrast, when used as a reuse tool, Hipikat
works at the granularity of a task, providing such information as documents describing how a com-
ponent is to be used with other components. The CodeBroker approach also relies on the developer’s
properly formatting documentation in the component being defined, and on the presence of properly
formatted documentation in the components in the reuse library. Hipikat avoids placing any addi-
tional requirements on the developers, making use of information that is potentially more informal.

In this regard, Hipikat is more similar to theRemembrance Agent[92], which mines existing,
non-structured collections, such as user’s email folders, to present documents relevant to the one
currently being edited. Like Hipikat, Remembrance Agent imposes no additional work on the user,
such as manually annotating the collection before it can be used. Its database is built automatically,
by indexing local directories of text files, email messages and other documents such as LATEXor
HTML files, or bibliographies. Unlike Hipikat, however, Remembrance Agent continually queries
its database, based on the text surrounding the current cursor position in the editor. Also, because it
is a general “personalized information manager,” Remembrance Agent does not have any structure
within its document collection, and the only criteria for recommending an artifact is its textual
similarity to the current editing context.

Letizia [65] is a content-based recommender that is intended to make exploring complex infor-
mation spaces more efficient. Letizia assists users in web browsing by automatically recommending
pages in the neighbourhood of the current page that the user might want to visit. The criteria for
recommendation are based on the current “interest profile,” created from contents of the pages re-
cently viewed by the user. Letizia then acts as an “advance scout,” following links from the user’s
current web page and bringing up those pages in the “local neighbourhood” that match the user’s
interest profile.

Like Remembrance Agent and unlike Hipikat, Letizia makes its recommendations automati-
cally, every time a web page is visited. Like Hipikat (and unlike Remembrance Agent), it can exploit
the structure inherent in the domain—in this case, the page links to explore the “neighbourhood.”

25

Letizia also incorporates a temporal component in its recommendation algorithm: the interest pro-
file is cumulatively built from the user’s activity over time. (For a discussion of extending Hipikat to
incorporate a temporal awareness of user’s activity, see Section5.1.3.) However, Letizia works only
within a collection of a single document type—the web of HTML pages—and within a very small
subset of it at that: pages within a few links’ distance from the current web page.1 It is intended to
help a user avoid wasting time on exploring irrelevant parts of a web site, not discovering related
documents within and across multiple information sources.

Fagrell’sNewsmate[36] applies many of the same principles behind Hipikat to the journalism
domain. It is a recommender that uses a journalist’s “todo” list (kept on a PDA) to search an archive
of news stories and recommend stories related to entries in the “to-do” list, and people who have
written stories on those topics in the past. Newsmate can also search other “todo” lists to detect
duplication of effort when two journalists work on same or similar stories. Like Hipikat, Newsmate
builds its database from artifacts that are created in the normal course of work, which for journalists
are news articles. It uses an electronic information organizer, a To-Do list kept on a PDA to infer
the task context and search the database for artifacts. Although it does not provide access to past
communication like Hipikat, it can recommend colleagues who are topic experts that the user can
contact for advice.

2.4 Mining artifact repositories

Modern software development teams store project artifacts in a variety of online repositories, such as
a source revision control system and an issue reporting and tracking system. To provide control over
changes to stored artifacts, these repositories usually maintain for each artifact a complete history
of changes that it underwent. For long-running projects, these repositories provide a window into
the project’s past. Following Carl Sagan’s saying “you have to know the past to understand the
present,” these repositories can serve as a rich source of information and past experiences useful in
the present. In this section, I give an overview of previous approaches that mined artifact repositories
to help developers in their ongoing tasks.

Mining source code repositories

In her seminal paper analyzing the use of configuration management tools as a coordination mech-
anism in software development [42], Grinter noted that the history of changes stored in the reposi-
tory over time grew into an organizational memory of which artifacts changed as a result of a certain
problem or enhancement. She reported that it was commonly used to learn what previous developers
did:

The memory gives [developers] the ability to leverage from the experiences of others.
. . . This mechanism of interaction can not be replaced by communication when the

1Letizia actually runs a breadth-first search until it is interrupted by the user following a link, when it stops
and starts a new search from the new URL. Given typical browsing practices, this means the search usually
only goes a few levels deep.

26

authors of the original software have left the organization. (p. 173)

A number of approaches attempt to make it easier to access the history stored in this memory.
Atkins’s Version Editor(VE) makes version history information available within an editing envi-
ronment [6]. VE displays for the current line the revision in which the line was changed, together
with its check-in description. The view of the file can be modified according to various visibility
criteria. For example, VE can highlight lines changed in the current version, show lines deleted
since a certain date, or lines touched by a particular set of changes.

CVSSearch by Chen et al. uses similar techniques but applies them in a different situation. It
works as a search engine, where a developer can type in search terms and receive in response frag-
ments of source code associated with CVS check-in comments in which the search terms occurred.
Unlike VE, CVSSearch does not use just the comment of the latest check-in in which a line was
changed: it tracks all changes as a file evolves, so that if a line has been modified, the comments
associated with it for the purpose of searching are accumulated, although the most recent ones are
given higher weight. CVSSearch can also give a developer a sense of how scattered an implemen-
tation of a feature is in the codebase by listing all files in which the search match occurred. It does
not, however, try to group the files in a more meaningful way, such as those that were part of a same
check-in.

Zimmerman et al. [125] and Ying et al. [124] applied data mining techniques to source reposi-
tories to find change patterns—sets of files that were changed together frequently in the past. These
patterns can uncover program dependencies that would remain hidden using existing approaches,
such as using structure encoded in the programming language (e.g., method calls or inheritance re-
lationships). A tool can then make recommendations about potentially relevant files—based on the
change patterns—to a developer working on a software change. For example, a developer checking
in a set of changes into the source repository can be alerted if some members of common change
patterns are missing from the check-in.

Bowman and Holt used source change data to determine a system’sownership architecture,
which shows how developers are grouped into teams and the code that these teams have worked
on [14]. The claimed benefits to the developers attempting to understand a system are identification
of areas of expertise, non-functional dependencies, and quality estimates. There were also benefits
to project managers: evaluating a system for risks of code abandonment and staffing problems, or
overall developer coverage. However, this approach was demonstrated only by a proof-of-concept
architecture built manually from data on the Linux project, and was not tested in practice.

Expertise Browserby Mockus and Herbsleb [78] also used source change data to identify devel-
opers and groups with experience in given elements of a software project. However, it determined
expertise automatically from the version control system. The expertise database could be explored
interactively, through an interface which would show for each file in the repository developers who
had changed it in the past—or vice-versa, for each developer the files on which he or she had worked.
The tool also offered visualization of the amount of modifications different developers performed on
a given file, giving a graphical indication of relative expertise. Expertise Browser was deployed in a
large, distributed software development project, where it was found to be the most useful to satellite
sites new to the project or lacking sufficient breadth of expertise on location. It does not, however,

27

help a project newcomer, except by indicating to which colleagues should be most knowledgeable
about a certain area of the code.

Expertise Recommender(ER) by McDonald and Ackerman [72] applied a similar approach
to identifying expertise. However, ER worked as a recommender, where developers could make
queries on certain project-specific keywords, and receive recommendation on people who have some
expertise with a problem. It used an open architecture, with recommendation heuristics that could
be customized to different organizational environments and practices. The prototype was tailored
to a tech support organization and used as one of its main heuristics source change history (people
who most recently checked in changes to a module).

Several approaches have used visualization of version history data as an aid for developers.
SeeSoft [7] is a software visualization tool that can display a variety of graphical representations of
source code. Among the representations using version history data are maps of files showing which
programmers wrote which line, or areas of “fix-on-fixes”: bug fixes which had to be fixed again
because the original repair was faulty. While potentially a useful tool for project managers, these
representations are arguably less useful for understanding the system itself.

Gulla also used versioning information to enhance traditional visualization techniques, for ex-
ample, to show the amount of differences in two versions of the system, identify files that change
often, or highlight those that changed together as part of a single check-in into the repository [44].
However, his focus was on software maintenance and configuration management tasks in projects
that use multiple product configurations, not specifics of what the source code does.

Mining issue tracking databases

Compared to source repositories, issue tracking databases have only recently gained the attention of
software engineering researchers, although so far mostly in the context of project management. For
example, Sandusky et al. [102] have investigated networks of dependencies among problem reports
in the Mozilla project. Their aim is to improve discovering problem dependencies as a problem
management aid. In a related effort, Ripoche and Gasser [94] used an issue tracking database to
automatically extract process models for open source projects.

The KDE open source project2 problem reporting system uses text similarity measures drawn
from information retrieval research to detect possible duplicate reports at submission time. Before a
new report is entered into the database, the user is presented with a list of existing reports that have
similar descriptions. The user can then check those reports to make sure his or her report is really
on a new problem. While duplicate report detection is becoming a necessity for large open-source
projects (the Mozilla project claims 30% of submitted problem reports are duplicates of existing
ones, which adds a huge load on the maintainers), it can be difficult for the user submitting the
report to recognize whether it is a duplicate if the symptoms are slightly different.

Čubraníc and Murphy used issue-handling history to predict the developer that should be as-
signed to work on a particular problem report [28]. They applied machine learning techniques that
were originally used for text categorization to build a model of each developer’s expertise based

2http://www.kde.org

28

http://www.kde.org

on the problem reports that he or she worked on in the past. This information consisted of textual
description of each bug and the developer who solved it and was drawn from the issue tracking data-
base. Once the “expertise” model was built, it could be applied to a new problem report to predict
which developer should work on it.

29

Chapter 3

Hipikat

In this chapter, we present the details of our approach and its implementation in the Hipikat proto-
type, and we describe the practical application of this prototype to a large open-source project.

There are three different aspects of Hipikat, and we describe each in a separate section. First, we
introduce the foundation of the Hipikat approach: the model of the project memory that we use and
the mechanism for recommending artifacts from this memory (Section3.1). Next, we describe the
working Hipikat prototype that implements the project memory model and recommends artifacts in
response to user queries (Section3.2). Finally, we present the instantiation of the prototype for a
concrete project, the Eclipse integrated development environment, and discuss work that would be
necessary to apply it to a different target (Section3.3).

The three aspects that we discuss in this chapter are largely independent. We could use the same
tool in terms of the user interface, in particular how it presents recommendations and interacts with
the user, but with a different project memory model. We could keep the same model, but use a
different tool. And lastly, we could instantiate it for a project other than Eclipse.org.

3.1 The principles of the Hipikat approach

The core idea of our approach is to recommend artifacts created as part of the development of a
software system that may be of relevance to a developer working on software evolution tasks for
that system. Hipikat can be viewed as a recommender system for software developers, that draws
its recommendations from the development history of a software project.

There are two distinct functions performed by Hipikat. First, the tool forms a project memory
from artifacts that were created during a software development project and that are a part of the
project’s history. The artifacts are not limited to source code and documentation (for example
requirements specifications), but include communications conducted through electronic media that
are captured (email messages or discussion forum postings), bug reports and test plans. Second,
Hipikat recommends to a developer artifacts selected from the project memory that may be relevant
to the task being performed.

These two functions can be implemented in modules that operate concurrently and indepen-
dently. Recommendations can be made as soon as any part of the project memory is created. The

30

formation of the project memory is an ongoing process: as new project information is created,
the project’s information sources—the code repository, the issue database, etc.—are monitored for
additions and modifications, and the project memory is updated accordingly. Depending on the
information source, the monitoring may be continuous or periodic, and once the project memory
updates are committed, they can be included in recommendations to users.

3.1.1 Forming the project memory

The project memory consists of the project artifacts themselves and also of links between those
artifacts indicating relationships. Thus, we can model the project memory as an entity-relationship
diagram [21]. Both artifacts and relationships are typed. There are four types of artifacts in our
model, corresponding to artifacts that are typically created in open-source software projects:change
tasks(i.e., problem reports and feature request descriptions recorded in an issue tracking system
such as Bugzilla1), sourcefile versions(e.g., checked into a source repository such as CVS2), mes-
sagesposted on developer forums (e.g., newsgroups and mailing lists), and other projectdocuments
(e.g., design documents posted on the project’s web site). (See AppendixA for a short review of
open-source software development process, typical tools used, and artifacts created by open-source
projects.) Figure3.1 shows the schema of these artifacts in the project memory together with the
relationships we establish between them. The figure also shows a fifth entity,person, which repre-
sents the author of an artifact. Each artifact is uniquely identified by an artifact key, so that it can be
referred to in queries and recommendations.

Relationships (links) between the artifacts are established either from existing information about
artifacts that is available from the project management tools or that is inferred by Hipikat. For exam-
ple, the creator of a file version checked into the repository is always known from the configuration
management tool, as is the author of a newsgroup posting. Hipikat infers links by combining in-
formation contained within the project artifacts and the meta-information about the artifacts from
different information sources. For instance, some links between feature requests and file revisions
can be inferred when there is a project convention to include within the check-in comment associ-
ated with a revision a reference to the issue-tracking system entry that describes the feature request.
Other links between entries in the issue-tracking system and file versions can be inferred based on
meta-information, such as when particular project artifacts were created or modified; for example,
it is likely that the author of a bug fix checked in a source code revision(s) close to the time that
the problem report was closed in the issue-tracking system. The specifics of our link inference
algorithms are discussed in Section3.2below.

Entries in the project’s issue-tracking system are a locus within the schema because these en-
tries typically represent a logical unit of work on the project. Those entries also serve as a focus
of artifacts in other repositories. For example, source code versions are checked into the source
repository fixing a particular set of issues; and newsgroup postings and mailing list messages often
contain discussion that either results in a new entry in the issue-tracking system or that is about

1http://www.mozilla.org/projects/bugzilla
2http://www.cvshome.org

31

http://www.mozilla.org/projects/bugzilla
http://www.cvshome.org

Change
task

Person

File
version

MessageDocument

similar tosimilar to reply to

documents about

writes

implements

check−in package

works on

writes

posts

Figure 3.1: Artifact types in the Hipikat project memory and the relationships between them.

an existing issue. Other documentation may also contain information about a particular entry in
the issue-tracking system, such as specific design trade-offs related to a feature request, milestone
plans, or regression tests.

3.1.2 Making recommendations

In the second component of Hipikat, selecting and presenting recommendations to a developer, the
relationship links are used to select relevant artifacts in response to a query. The query can be
initiated explicitly by the user, or implicitly based on the user’s navigation and other actions in the
workspace. The two options are not mutually exclusive and could coexist in a given implementation
of our approach.

The query identifies the artifact that is the “subject” of the query, and optionally can contain
additional context or recommendation filtering choices selected by the user or Hipikat as appropriate
to the situation. The server receives the artifact key as part of the query, finds the artifact in the
project memory, and uses the relationships to find the artifacts to include in the recommendation
lists.

For example, when a developer starts working on a feature modification task, the developer may
be interested in other change tasks that have been completed previously within the same subsys-
tem, or with a similar description. These artifacts are selected for recommendation by following
similar to links (see Figure3.1) and are returned to the user to inspect.

Once the user has identified a change task that appears to be similar, a query on it leads to source
revisions that implemented the task of interest (via theimplements link). These revisions may

32

help a developer identify code that may have to be modified or understood for the task at hand.
The completed similar tasks may also have related discussions about which design options were
examined, and which decisions were made that might impact the task at hand.

3.2 The Hipikat tool

We have built a working Hipikat prototype that implements the project memory model and the
functionality described in Section3.1. The prototype has been designed to adapt easily to any open-
source project that follows the development model described in AppendixA and that produces at
least a subset of the artifact types contained in the project memory schema described above.

The Hipikat prototype is a client-server system. The client and the server communicate over
a SOAP RPC protocol [15], with the recommendations returned by the server in an XML for-
mat, described in Section3.2.1. The characteristics of the protocol allow language- and platform-
independent implementation, and indeed high-quality freely-available libraries implementing the
SOAP protocol and XML processing exist for a variety of languages and platforms. This allows
a client to be written that is appropriate to a particular project and the development tools used by
its members. For example, Mozilla developers mostly use standard Unix tools, such as Emacs, so
the appropriate client for them should run within Emacs (written in Emacs Lisp), or perhaps as a
plug-in within Mozilla itself (written in a combination of JavaScript and C++). On the other hand,
Eclipse.org developers exclusively use the Eclipse IDE as their development environment, so for
them the only reasonable option is to have a Hipikat client written in Java as an integral component
of the Eclipse IDE.

In this section, we begin with the details of the client-server communication protocol (3.2.1).
We then describe the current server implementation, including the link inference algorithms that we
use (3.2.2). We conclude the section with a description of the implementation of the current Hipikat
client, which is written as an Eclipse plug-in (3.2.3).

3.2.1 Hipikat client-server protocol

The client issues a request for recommendations to the server, and displays returned results to the
user. The request is sent to invoke the method “getRecommendation” in the namespace “Recom-
mendationFetcher” on the Hipikat server. There are three parameters in a “getRecommendation”
request. Two of the parameters are required: the first identifies anonymously the user,3 and the sec-
ond identifies the artifact for which related items are sought. An optional third argument is intended
to further describe the context of the query for additional tailoring of recommendations, although
it is not used at this time. The server replies with a list of matches that the client then formats and
presents in human-readable format.

The server replies with an XML-formatted list of matches which is modelled on the “What’s

3Users are represented in the query to facilitate future extensions to selection mechanisms such as user-
modelling and collaborative filtering. In the interests of privacy, user ids used in queries do not personally
identify the user.

33

<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope

y

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
y

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

y
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>
<ns1:getRecommendation xmlns:ns1="urn:RecommendationFetcher"

y

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<userId xsi:type="xsd:string">cb175</userId>
<artifactKey xsi:type="xsd:string">bugzilla:20982</artifactKey>
<contextKey xsi:type="xsd:string" xsi:null="true"/>

</ns1:getRecommendation>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 3.2: XML source of a sample request from Hipikat client.

Related” service provided by Alexa.com and available in all major web browsers. The recommen-
dations are wrapped in aRecommendationList XML element (Figure3.3).

Each item recommended by the server is represented as aRecommendation element, with
childrenKey, Name, Reason , Confidence , Created , andlastModified . TheKey ele-
ment uniquely identifies the recommended artifact; it is used if the user decides to open it or make
a subsequent query on it. TheNameelement is a human-readable description of the artifact. See
Table3.1for a description of the name element construction for all artifact types.

Artifact type Key Name

CVS revision cvs file name : revision
Bug report bugzilla Bugzilla summary
Newsgroup article news subject (author)
Mail message mail subject author
Web page web Title (url)

Table 3.1: Construction of artifact keys and names for artifact types represented in Hipikat’s project
memory.

TheReason element describes why the item was recommended, andConfidence expresses
the relative strength of this relationship. The confidence value can be descriptive, as in “High –
checkin within five minutes” for a file version’s link to a bug report, or numeric in the case of a text
similarity measure. See Table3.2for a summary of confidence values for the corresponding reason
element.

TheCreated element gives GMT-based date and time when the artifact was created. Element
lastModified uses the same format for the last modification time of an artifact. In case the
artifact was never modified (file revisions, news articles, and mail messages are immutable), the

34

<RecommendationList>
<Recommendation>

<key>cvs:dev.eclipse.org:/home/eclipse/

y

org.eclipse.team.cvs.ui/src/org/eclipse/team/

y

internal/ccvs/ui/actions/TagAction.java:1.13</key>
<name>org.eclipse.team.cvs.ui/src/org/eclipse/team/internal/

y

ccvs/ui/actions/TagAction.java:1.13</name>
<Created>2002-04-08 21:46:03</Created>
<lastModified/>
<reason>Bug ID in revision log</reason>
<confidence>High</confidence>

</Recommendation>
<Recommendation>

<key>bugzilla:12367</key>
<name>[CVS Repo View] "Define Branch Tag" confusing?</name>
<Created>2002-03-27 16:34:00</Created>
<lastModified>2002-09-06 22:23:19</lastModified>
<reason>Text similarity</reason>
<confidence>0.6240631</confidence>

</Recommendation>
. . .

</RecommendationList>

Figure 3.3: A sample response from Hipikat server.

lastModified element is empty.

3.2.2 Hipikat Server

The server has to implement three distinct functions:

1. Artifact store update The project’s archives must be monitored for additions and changes
that result from the development and evolution of the system, and the project memory must
be updated accordingly to reflect the additions and changes. By the nature of the information
sources that are used, some artifact types are immutable once created (for example, CVS
revisions). Others can be modified, but never deleted (e.g., Bugzilla items). Finally, some
artifact types are both modifiable and deletable (e.g., web pages).

2. Link identification As artifacts are added to a project’s memory, the links between related
artifacts must be identified and added to the memory. These additions might cause changes
or deletions of the existing links for some relationship types (e.g., text similarity).

3. Recommendation selectionIn response to client queries, relevant artifacts must be selected
for recommendation and returned to the caller.

35

Reason Confidence

Bug ID in the check-in comment High

Check-in close to bug resolution

High – within three minutes
Medium high – within ten minutes
Medium – within an hour
Low – over an hour

Same check-in package

High – same check-in comment
Medium high – checked-in within a minute of
each other
Medium – within three minutes of each other
Medium low – over three minutes

Same email/newsgroup thread N/A

Text similarity Cosine similarity value (seeText similarity matcherin
Section3.2.2)

Table 3.2: Construction of confidence for artifact types.

As Figure3.4 shows, each function is encapsulated in a module. Each module is divided into
submodules that handle a single artifact type or link inference. The modules do not communicate
with each other, but instead share the access to the database, where the artifacts and artifact links
are stored.

Update Identification Selection

links
InsertInsert

artifact

Listen for
new artifacts

Follow
links

Monitor
sources

CVS

Web

Mail/News

Bugzilla
CVS

check−in
activity

similar to
implements

Query

Related
artifacts

Artifact database

Figure 3.4: Hipikat server architecture

The server is written in Java and can be run either inside a web application engine, such as
Tomcat,4 or stand-alone. The project memory is stored in a MySQL relational database.5

Artifact database

The artifact database saves primarily themetadatafrom the new and changed artifacts that are
needed to establish relationships between the artifacts. Text from the artifact’s contents and metadata

4http://jakarta.apache.org/tomcat
5http://www.mysql.org

36

http://jakarta.apache.org/tomcat
http://www.mysql.org

may be indexed, depending on the artifact’s type. (See Table3.3for the full list of data Hipikat stores
for each artifact type.) The indexed text is used for searching and making similarity comparisons,
which we will describe below in the Identification section. Note that, specifically, contents of files
in CVS repositories are not stored by Hipikat. There are two reasons for this. First, the storage
requirements for keeping every version of every file would be huge without employing a space-
saving algorithm such as that used by RCS. Second, and more importantly, for searching and making
similarity comparisons on source code to be really useful, Hipikat would have to be aware of its
syntax, that is, be able to parse the relevant programming language text. Even then, the exact
treatment appropriate for different syntax elements (e.g., variables, methods, comments, etc.) and
how similarity between different file revisions should be calculated is an open research question and
outside the scope of this dissertation. Instead, for file revisions we only use their check-in comment
for searching and similarity matching.

Artifact type Data stored in Hipikat

File version (CVS)

Path
Revision
Author
Date created
Check-in comment

Change task (Bugzilla)

Bug id
Reporter
Summary
Description
Other attributes (severity, OS, etc.)

Web page

URL
Title
Text
Last modification date

News article

Subject
Author
Text
Date created
Article id
Follow up to (“References”)

Email message

Subject
Author
Text
Date created
Message id
In-response-to

Table 3.3: Artifact types and data stored about them.

37

Update

The update system has a separate module to handle each different type of project information source,
such as Bugzilla, CVS, or the mailing list archive. Each update submodule monitors its information
source for changes, as appropriate for its type. For example, a web site is scanned in the usual web-
spider fashion [24] by starting from the set of known pages (initially just the project home page) and
following all links to pages local to the site. New and changed artifacts are inserted into Hipikat’s
artifact database, and change listeners in the identification module are notified of the updates.

The actual implementation details of update modules are project dependent, and we leave their
description until Section3.3, when we describe the instantiation of the Hipikat prototype for the
Eclipse.org project.

Identification

The identification system determines links between related artifacts and stores them in the database.
Links are determined by applying one or more heuristics to artifacts newly added to the database
or modified in some way. The identification system in Hipikat is designed to support multiple
heuristics. The identification supervisor manages the registration of each heuristic module and their
connection to the update system (Figure3.5).

CVS log
Newsgroup

threadBug activity Text similarity

Hipikat
database

Artifact

...
Identification supervisor

Artifact links

Figure 3.5: The identification subsystem

Each identification module is registered with the update system as a listener for changes on
artifact types for which it is responsible. There are currently five such modules: check-in com-
ment matcher (log-matcher), check-in time matcher (activity-matcher), text similarity matcher, CVS
check-in package matcher, and newsgroup thread matcher. When informed of a new instance of an
artifact, or a change to an existing artifact, the identification modules attempt to infer links within

38

the implicit project memory, following the schema from Figure3.1. The identification modules
are also notified when the update system’s periodic update of an information source is finished, in
case they need to do any identification post-processing, such as recalculating the text similarities.
Table3.4 lists existing matchers and artifact types for which each matcher is registered as a listener
with the update system.

Matcher Artifact type

Log matcher cvs
Activity matcher bugzilla
Text matcher all artifact types
Check-in package matcher cvs
Thread matcher news andmail

Table 3.4: Identification modules and artifact types for which each matcher is registered as a listener
with the update system

Log matcher The log matcherexploits the convention used by open-source developers that com-
ments entered during the check-in of source code versions (the “log”) contain the id’s of the bug
report(s) that is (are) being fixed by the version’s changes. The log matcher uses a small set of
regular expressions to search for certain phrases and constructions commonly used by project de-
velopers (such as, “Fix for bug 1234”). When a Bugzilla id is detected in a check-in comment, the
matcher inserts animplements link into the project memory to connect the change task with the
file version(s) that were checked in. The exact regular expressions may vary with the project and the
conventions that it uses, and we return to this issue when we describe the instantiation of Hipikat
for the Eclipse.org project in Section3.3. If no regular expressions match the check-in comment,
the log matcher does nothing.

Activity matcher Theactivity matchertries to complement the log-matcher by taking advantage
of natural work patterns used by the developers, rather than loose conventions such as the com-
ment check-in that are not enforced regularly. Shortly after the relevant source changes have been
checked in, a developer will usually change the status of the corresponding item in Bugzilla (e.g.,
to mark it “fixed”), or post a comment notifying others of his or her progress. The activity matcher
monitors updates of the Bugzilla database and looks for check-ins that are close to (within six hours
of) changes of status of an existing Bugzilla item to “RESOLVED FIXED.” Check-ins are then
grouped into likely work units by looking for all check-ins by a given developer within a small
time window, similar to the strategy employed by Mockus, Fielding, and Herbsleb in their study of
Mozilla development process [77]. Versions in each work unit are then linked to the change task
in which the activity occurred with animplements link, which also records the time difference
between the check-in and the activity for later ranking and presentation to the user.

39

Text indexer The text indexer does not introduce any artifact links into the project memory, but
instead performs “pre-processing” of artifacts necessary for text searching and the text similarity
matcher.

In the indexing step, an artifact’s text is transformed into a vector in theterm vector space. In
the vector space model, documents are represented as vectors of terms contained in a collection of
documents, commonly called thecorpus. In a corpus containingN terms, a document is represented
by a vector in theN -dimensional space as follows:

Docj = (w1j , w2j , . . . , wNj) (3.1)

wherewij is a value denoting the importance of termi in representing the concept of the document
Docj .

The variants of the vector space model come primarily from the method of determining the
value for eachwij . We use the so-calledlog-entropymodel [33], where the weightwij is calculated
as a product of local weightLij of the termi in the documentj, and global weightGi of the term
in the corpus.

The term’s local weight factor reflects the intuitive reasoning that terms which appear more
often in a document contribute more to its meaning. It is calculated as:Lij = log(1 + tfij), where
tfij is the term frequency, or the number of occurrences of termi in documentj.

The term’s global weight reflects the reasoning that terms which are limited to a few documents
are more useful for discriminating documents from the rest of the corpus than terms that occur
frequently across the entire corpus. In our model, it is defined as follows:

Gi = 1− 1
log(N)

N∑
j=1

pijlog(pij) (3.2)

whereN is the number of documents in the collection,pij = tfij

di
, anddi is the number of documents

containing termi.
In Hipikat, the text of new artifacts is indexed as they are added to the project memory. For each

artifact—for example, a Bugzilla description and its comments, or a document on the project Web
site—the constituent terms are extracted and their weight for the document calculated according
to their frequency as described above. We follow the indexing practice accepted in the field of
information retrieval and ignore certain common words (e.g., articles “a” and “the”, prepositions
such as “in”, etc.) as defined in the SMART stopword list [54]. Furthermore, we performstemming
to map multiple grammar forms of a word (e.g., “work”, “works”, “working”, “worked”) to a single
value. We use the standard Porter stemming algorithm [87].

Text similarity matcher The text similarity matcher determines the relationship between two
documents by comparing their document vectors. We use the vector-space cosine measure common
in information retrieval [101]:

sim(Di, Dj) =
Di · Dj

‖Di‖‖Dj‖
(3.3)

40

VectorsDi andDj could come directly from Equation3.1 for a document vector in the vector
space model. However, this model has the drawback that the document vector representation is tied
to the vocabulary: if two documents talk about the same thing but use different terms, they will not
be similar under the vector space model. Instead, we use an extension of the vector space model
called Latent Semantic Analysis (LSA) [31].

LSA essentially projects the matrixX of all documents in the corpus, formed by the document
vectorsDocj from Equation3.1, to matrixX̂—thesemantic space. The idea behind this transfor-
mation of the document vector space is that because of synonymy (multiple words with the same
meaning) and polysemy (multiple meanings of a single word) in natural languages, there is much
noise in the matrixX, and that the projection tôX reduces the noise. Therefore, even documents
that use different terms to talk about same concepts can end up as similar vectors in the semantic
space.

The text similarity matcher uses the vector-space cosine measure (Equation3.3) to calculate
similarity between pairs of documents, but document vectors come from the semantic space built by
the LSA step. A list of neighbours to an artifact is built sorted by similarity, andis similar to

links are created between the artifact and its most similar neighbours. New documents are projected
into the database as they arrive and the similarity lists updated. For performance reasons, the list is
normally truncated when similarity falls below a given threshold, or if it grows beyond a specified
length (see Section3.3.2).

“Classic” LSA is computationally costly for large document corpuses. Its essential step is sin-
gular value decomposition (SVD) of matrixX, whose time complexity for a sparse matrix of size
M × N (M terms in the vocabulary andN documents) withc non-zero entries per column is
O(MNc).

To get around this limitation, a number of approaches have been proposed which use an ap-
proximation of SVD onX that is much faster to compute. A conceptually simple approach that is
common in practice is to apply SVD to a sampleS of documents fromX, effectively reducing the
N dimension of the matrix used in the SVD computation [34]. OnceŜ has been calculated, it can
be used to project all documents inX to X̂S instead ofX̂. The criteria used to create the sample
matrixS can have impact on the approximation accuracy. We use the method proposed by Jiang et
al. and select documents fromX with probabilities proportional to the square of their length [56].

Text searching The text similarity approach is also used in user-specified search queries: A user’s
query is treated just as another document vector, which is projected into the semantic space to sort
the matching artifacts by relevance based on their degree of similarity to the search query.

CVS check-in package matcher This identification module links file versions that were checked
in together as part of the same check-in into the repository. It looks for other versions with the same
author and comment that were checked-in within the same six minute window. The reason for the
time window is to guard against developers (re)using the same, usually generic or empty, check-in
comment for unrelated check-ins. We based the package matcher’s heuristic and the length of time

41

window on Herbsleb et al.’s concept of a modification request [77], also used by German in his
studies of open source project archives [41].

Thread matcher The simplest identification submodule is the newsgroup thread matcher, which
looks for “References” headers in newsgroup articles (mandated by the RFC 1036 standard [51])
and reconstructs conversation threads of a newsgroup posting and subsequent replies. When an
article is opened in a newsreader using just its article id (that is, when a Hipikat client opens it using
the “news:” URL, rather than a user interactively from a subscribed newsgroup), the newsreader
cannot navigate to preceding and subsequent articles. Instead, the user can receive the conversation
thread in a Hipikat recommendation and open the individual articles this way.

A similar approach is applied to matching conversation threads in email archives. A standard
email message contains a header referencing the id of the message to which it is a reply [27].
Alternately, email archives with a web front end often have navigation links to a message’s replies.
A web crawler can then be tailored to the front end to take advantage of those links and present
them in recommendations.

Selection

The selection phase takes a set of candidate recommendations, and then orders it and possibly re-
moves items from the set to generate a refined recommendation list. Selection works by following
links from the artifact specified in a client’s request to find a set of related artifacts. Similar to iden-
tification, selection is designed to support multiple link types and selection heuristics, organized
as a hierarchy of selection modules under the control of the selection supervisor (Figure3.6). Se-
lection modules are specialized to make recommendations for a subset of artifact types and their
links—for example, one module makes recommendations on CVS and Bugzilla artifacts by fol-
lowing implements (and its reverse,is implemented by) links. In general, each selection
module pairs up with one or more identification modules and works with their link types.

Each module provides areasonfor recommending the artifact and aconfidencedescribing the
strength of the relationship. (See Table3.2 in Section3.2.1for a summary of confidence values for
the corresponding reason.) If an artifact is reached by multiple links, the selection module will take
that into account when giving a reason for the recommendation and confidence. For example, a bug
report can be related to a file revision both by the id match in the CVS log and by the bug activity
match. If that is the case, the selection module will use only the CVS log id match as the reason
for the selection, since it has higher confidence than the bug activity match. Higher confidence was
assigned to the log id match because it is explicitly entered by the developer doing the check-in, so
when it is present, it virtually always indicates the correct relationship between revision(s) and bug
report(s).

The selection supervisor manages the selection modules and ensures that they are executed in the
correct order. (See Table3.5 for a summary of the module ordering.) Execution order is important
because higher-level selection modules can rewrite the recommendation lists created by lower-level
modules. For example, a user can mark a recommended artifact as particularly relevant to his or her

42

Thumbs−up

Hipikat
database

package
check−in

Recommendation
list

Selection supervisor

...implements similar_to reply to

Artifact links

...
...

Figure 3.6: The selection subsystem

43

query (“give it the thumbs-up,” see Section3.2.3). This may eventually turn into a true collaborative
filtering system (see Section5.1.3for further discussion), but for now we use it in a simpler way:
artifacts in the recommendation list that were given thumbs-up by experts are moved to the top of
the list. The criteria used to define the “expert” group vary according to the project, but in a typical
open-source project, it would probably include the “core” developers.

Recommendations from all selection submodules to a given query are merged together before a
final list is returned to the user. The initial order is a concatenation of recommendations returned by
the top-level selector(s), but the client can reorder the list based on criteria such as the creation date
of a recommended artifact.

Module Description

Implements Followsimplements /implemented-by links between file revi-
sions and change tasks

Check-in package When a query in on a file revision, shows all other revisions that the
check-in package matcher identified were checked-in together as part
of the same package.

Reply-to When a query is on a newsgroup article or a mail message, shows
all other articles in the same conversation thread, as identified by the
thread matcher.

Similar-to Followssimilar-to links between artifacts. Recommendations
are ordered by collection, starting with change tasks, and continuing
with file revisions, web documents, mail messages, and newsgroup
articles.

Thumbs-up Moves artifacts that were given “thumbs-up” by the user to the top
of the recommendation list.

Table 3.5: Order in which selection modules are executed during the construction of a recommen-
dation list.

Extending the server with new modules

Adding new heuristics and link types to the server is quite simple. The identification module that
implements a new heuristic is written as a Java class that implements interfaceca.ubc.hipi-

kat.server.identification.Identificator and has to be registered with the identification
supervisor. The registration is trivially done by adding the matcher’s class to the server’s configura-
tion file and the will be dynamically loaded when the server is started.

If the identification heuristic creates a new link type, then a corresponding selection module has
to be written which can interpret a link’s attributes when providing the reason and confidence level
for a recommendation based on the new link type.

Lastly, adding a new artifact type requires changes on both the server and client side. On
the server side, if the new type comes from a new information source (for example, a text chat
channel), then an update module would have to be written to monitor the new information source

44

and add artifacts of the new type to the artifact database. If the new type comes from an existing
information source (e.g., a design specification posted on a web site in a special file format), then the
corresponding update module (in this example, the web update) would have to be modified to handle
the new artifact type when adding artifacts to the artifact database. In either case, identification
modules would need to register with the update system as listeners for changes on artifacts of the
new type. Finally, Hipikat client would need to be extended with the functionality for viewing
artifacts of the new type. This could be as simple as invoking a user’s web browser with an artifact’s
URL, if it has one, or as complicated as writing a specialized viewer.

3.2.3 Hipikat client(s)

As we mentioned earlier, a Hipikat client could be implemented in a variety of platforms and lan-
guages. An early prototype, used in an exploratory user study (described in Section4.1) was written
as a stand-alone Java application. However, based on the feedback from that study, we decided that
the client should be as integrated as possible into the development environment used by developers
in a given project. In this section, we present the current implementation, which is written as a
plug-in for the Eclipse IDE. Eclipse is an easily extensible, open-source IDE that is increasingly
popular with developers.

Eclipse’s extensibility means that the Hipikat client appears seamlessly integrated into the IDE,
including using it in combination with other software engineering tools plugged into Eclipse. For
example, an Eclipse developer can access from the same Search dialog both Hipikat search and the
Java search feature that is bundled with the default Eclipse distribution, simply by clicking on the
appropriate tab as shown in Figure3.7.

Figure 3.7: The Eclipse search dialog. The current tab is the Hipikat search. Other search types are
available through neighbouring tabs. For example, the tab for Java syntax-aware search is immedi-
ately the right of Hipikat’s.

45

User interaction

The basic user interface to Hipikat is simple: when a developer wants to find out more about an
artifact in the Eclipse project workspace, he issues a query to the server and receives a list of related
artifacts in response. These artifacts can in turn be opened and/or used for further querying. The
developer can leave the querying cycle to explore the source code or documentation, as prompted
by Hipikat’s suggestions, and return to issue more queries at any later point. (Possibilities for
tracking user actions in the environment and gathering feedback on usefulness of recommendations
are discussed in Section5.1.3.)

When it is possible to make a query on an artifact in the IDE, there is an option “Query Hipikat”
in the right-click context menu. For example, Hipikat knows about files in CVS. Therefore, the
developer can right-click on any versioned file appearing in any representation in the IDE—in the
directory tree in the Navigator view, as a class in Package Explorer, even as an entry in the revi-
sion list in the CVS Resource History view—and select “Query Hipikat” from the context menu
(see Figure3.8. Additionally, the Hipikat artifact database can be searched based on search terms
specified by the developer. As already mentioned, this functionality is accessed through a “Hipikat
search” pane in the regular Eclipse search dialog.

Figure 3.8: Option “Query Hipikat” in a file artifact context menu.

The identifier of the selected artifact is passed as the second argument in the request to the
Hipikat server, described in Section3.2.2. (See Table3.6 for a full list of artifact types and places
in the IDE where a Hipikat query can be made.)

The results of a query or search are displayed in a HipikatResults viewwithin Eclipse (see
Figure3.9). The view lists for each recommendation its type (Web page, news article, CVS revision,

46

Location in the IDE Artifact type

Bug report open in the Bugzilla editor bugzilla
CVS-managed file open in the Java editor cvs
File in the CVS Repository view cvs
Revision in the CVS Resource History view cvs
CVS-managed file in the workspace Navigator cvs
Item recommended in the Hipikat Results view item’s type
Bugzilla search match in the Search results view bugzilla
Java class or method in Outline and Hierarchy views cvs

Table 3.6: Places where Hipikat query can be done in Eclipse and artifact type that the query is on.

or a Bugzilla item), its name, why it was recommended, and—if applicable—an estimate of the
closeness of the match. The recommendations are grouped by artifact type and by selection criteria
as determined by the identification module (the “matcher”) that reported a link. Because each
recommendation includes the time when the recommended artifact was created, the user also has an
option of reordering the list chronologically—in case he or she is interested in most recent artifact,
for example.

Figure 3.9: Hipikat results view.

Double-clicking on a recommendation in the results view opens the artifact for viewing. Bug
reports and CVS artifacts are opened within Eclipse; news articles and web pages are opened in a
web browser. Right-clicking on a recommendation pops up a context menu, shown in Figure3.10.
From this menu the developer can also open the recommended item for viewing; more importantly,
it can be used to issue another Hipikat query. Recommendations that the developer considers irrel-
evant to the current task can be removed from the recommendation list to clean up the results view.
Lastly, for a CVS file version, its differences to the preceding revision can be shown in the standard
Eclipse “Compare with CVS revision” view. The intent of this feature is to make it easier for the
developer to see the changes to the code that were made in the revision.

Previous Hipikat queries are accessible through the drop-down history menu at the right end of
the view’s toolbar (see Figure3.11.

The toolbar also contains (going further from right to left) buttons to stop an ongoing query
(query in progress is indicated by spinning arrows), and to indicate usefulness of a recommendation

47

Figure 3.10: The context menu in Hipikat Results view.

Figure 3.11: The search history menu in Hipikat results view.

(or lack thereof) by giving it a thumbs up or down. Currently, the only visible effect of ranking
an item is moving it to the top or the bottom of the recommendation list view, although we plan
to eventually use it to refine the recommendations by a collaborative filtering step, an issue further
discussed in Section5.1.3.

3.3 Hipikat instantiation for Eclipse.org

We have instantiated the Hipikat prototype described in the preceding section to a large open-source
project, Eclipse.org.6 We have so far discussed Hipikat’s implementation at a fairly general level of
algorithms and heuristics. In this section, we present the details of adaptations that were necessary
to fit Hipikat into the Eclipse.org project. We believe that many of these techniques could be adapted
with little changes to other open-source software projects, since the information sources we used
are quite common (e.g., Bugzilla is the de-facto standard issue-tracking system in the world of open
source software). In many cases only the server addresses and URL paths would be different, which
is only a matter of editing a configuration file.

We first describe how the update phase was customized to access the information sources used
by the project, followed by the customization of the identification heuristics. We then continue

6We use the term “Eclipse.org” to distinguish the project from the product, the Eclipse integrated devel-
opment environment.

48

with the description of database size and the system’s performance. We conclude the section with a
description of an Eclipse plug-in that we wrote to access and query Bugzilla servers directly from
the IDE, instead of the standard web-based front end. This plug-in is used by the Hipikat client to
view Bugzilla reports and was used in the study presented in Section4.2.

3.3.1 Artifact update

The Eclipse project uses the following artifact sources: Bugzilla for issue tracking, CVS for source
repository, email lists and Usenet newsgroups for developer discussion, and a web site for the doc-
umentation (user and developer guides, code-writing tutorials, development plans, etc.).

Bugzilla

The issue-tracking system uses a standard distribution of Bugzilla (with minor differences in visual
layout).7 A Bugzilla server runs as a web application; clients communicate with it by invoking
predefined URLs on the server machine. These requests span in functionality from showing a user
interface (e.g., a form for filling in bug search parameters) to displaying results of an operation (e.g.,
retrieving a list of bugs that match a search criteria).

We wrote a Bugzilla update module that monitors the activity in a Bugzilla database by connect-
ing to a Bugzilla server like any client and processing the server output to bring the Hipikat artifact
database in step with recent changes in Bugzilla’s. The update module starts its periodic update by
sending a request to the Bugzilla server that asks for a listing of bugs that have changed in the last
n days, wheren is calculated since the last update.8 The server’s response lists all bugs that match
the request’s criterion. The list is in HTML format and includes such bug information as a one-line
summary of the bug and its severity and status, as shown in Figure3.12.9 The id’s of bugs in the list
can then be extracted by matching for the text “ ” in
the list’s HTML source. Those bugs are then retrieved,10 parsed, and added to the project memory.

As of September 17, 2004, the Hipikat project memory for Eclipse contained 69,375 bug reports,
with 260,894 additional comments posted on the reports. An update catching up the project memory
with the Bugzilla repository takes approximately 35 minutes when done daily (an average of 71 new
bugs and 247 comments per day in the first seventeen days of September 2004).

7The Eclipse Bugzilla server is located at the URLhttps://bugs.eclipse.org/bugs .
8The number of days n is encoded in the URL of the request:

https://bugs.eclipse.org/bugs/buglist.cgi?changedin= n&cmdtype=doit
9Recent versions of Bugzilla server software include functionality to return this list in a standard XML

format that is easier to work with. The Eclipse project uses an older version of the software, so parsing the
HTML output was our only option.

10The bug reports are retrieved using URLs of the formhttps://bugs.eclipse.org/bugs/-
show bug.cgi?id= bugid

49

https://bugs.eclipse.org/bugs

<tr class="bz_enhancement bz_P3 ">

<td>
39424 ← bug id

</td>

<td><nobr>enh</nobr>
</td>
<td><nobr>P3</nobr>
</td>
<td><nobr>All</nobr>
</td>
<td><nobr>jdt-ui-inbox@eclipse.org</nobr>
</td>
<td><nobr>RESO</nobr>
</td>
<td><nobr>DUPL</nobr>
</td>
<td>Add abstract method quickfix
</td>

</tr>

<tr class="bz_normal bz_P3 ">

<td>
39473

</td>
. . .

Figure 3.12: Source of a bug listing.

CVS source repository

Eclipse uses CVS for its source code repository and version management [12]. The server allows
anonymous access using the “pserver” CVS remote access protocol [30].11 Remote users have a
local copyof the repository in their workspace, which contains a particular configuration of file
versions (one version of each file—typically, the most recent one). Changes to files in a local copy
can becommittedback to the repository using a CVS client. Committed changes are disseminated to
other existing local copies when their ownersupdatethem to bring them in sync with the repository.

We wrote a CVS update module that works works by mimicking the interaction with a CVS
server. The update module keeps its own local copy of the entire project and periodically updates
the copy using a standard CVS command-line client. Under normal usage this may involve resolving

11The project’s CVS server is located on hostdev.eclipse.org , with the repository root at the direc-
tory /home/eclipse .

50

conflicts if a file has been changed both locally and in the repository. However, because our local
copy is not modified, no conflicts can occur. All changes happen only on the server and the local
copy is simply brought up to date with it. This may include replacing an existing file with a newer
version, checking out a newly-created file that does not exist in the local copy, or deleting a file from
the local copy that has been removed from the repository.

Hipikat monitors the diagnostic output of the command-line client to see which files were mod-
ified, deleted, or created. For each of those files, Hipikat then requests a history (log) from the CVS
server. The log lists all versions of a given file, with details such as the author, creation date, and
check-in comment (see Figure3.13). This list is parsed to extract the data for each version and add
the corresponding new artifacts to the project memory.

RCS file: /home/eclipse/org.eclipse.core.boot/plugin.xml,v
Working file: plugin.xml
head: 1.28
branch:
locks: strict
access list:
symbolic names:

...

revision 1.28
date: 2004/01/15 15:47:07; author: prapicau; state: Exp; lines: +1 -4
Delete all content from org.eclipse.core.boot

revision 1.27
date: 2003/11/25 21:29:22; author: dj; state: Exp; lines: +0 -1
Merge checkpoint.

revision 1.26
date: 2003/11/06 14:44:33; author: dj; state: Exp; lines: +1 -0
Added "eclipse" precondition tag to the plugin manifiest.

Figure 3.13: Portion of log

We adopted an off-the-shelf approach when we decided to re-use the standard Unix CVS com-
mand line client instead of implementing our own solution to monitor changes in CVS reposito-
ries.12 This allowed us to save the time to get the CVS repository update working. The CVS
client-server protocol is sufficiently complicated to convince us against reimplementing the stan-
dard command line client, which is proven in practice and maintained by the CVS development
team. One drawback is that the Hipikat server has to keep a full local copy of the Eclipse CVS
repository—which takes up 960MB of disk space—even though the actual contents of files are not

12The client is included as a standard part of most Linux distributions, and is also available for download
athttp://www.cvshome.org .

51

http://www.cvshome.org

needed. A solution that would save on disk space while allowing us to continue using the com-
mand line client would be for the Hipikat server to truncate all files in the local copy to zero length,
but preserve the timestamp, which is all the command line client uses during the CVS update to
determine what has changed locally.

As of September 17, 2004, there were 365,004 revisions of 47,895 files in 297 projects stored
in the project memory. An update catching up the group memory with the CVS repository takes
approximately 90 minutes when performed daily (an average of 232 new revisions per day in the
first seventeen days of September 2004). A lot of this time is taken up retrieving logs of files that
were changed. Running just the update from the command line takes up about 30 minutes.

Usenet newsgroups

Eclipse uses Usenet newsgroups as a public forum where users and third-party developers can ask
questions from the Eclipse team. The newsgroups are accessed using the standard NNTP protocol
(RFC 977).13

Newsgroup update is rather straightforward, since the NNTP protocol provides a request to the
server to list id’s of all articles in a given set of newsgroups that have been posted since a particular
date. We wrote a newsgroup update module that periodically connects to the Eclipse news server
and issues such a request for articles newer than the last update. The update module then retrieves
from the server each article in this list, parses the meta-data and the article body, and enters the
corresponding artifact into the database.

There are three Eclipse IDE-related newsgroups hosted by Eclipse.org:eclipse.platform(tar-
geted at third-party plug-in builders),eclipse.platform.swt, andeclipse.tools.jdt(for discussion of
the user interface toolkit and Java development tools, respectively).

Email lists

Eclipse uses mailing lists for communication by developers actually working or otherwise contribut-
ing to day-to-day development. There is a wide range of lists, divided by topic, such as “jdt-debug-
dev” for discussion of Eclipse’s Java debugging component.

These mailing lists are automatically archived using a program called Mailman.14 Archives are
accessible through a web front-end. Message id’s within each list start from “00000” and go up
sequentially in the order emails are received at the list’s mail server. The mail update module that
we wrote works along the lines of the Bugzilla update module described earlier. It periodically
connects to the URL for the index of messages posted to each project mailing list,15 using the same
HTTP protocol as any web browser. Messages in the index are listed in reverse chronological order,
so the update module only needs to extract the current highest message number, to know which

13The Eclipse newsgroups are stored on the Eclipse.org news server,news.eclipse.org , and are
access-controlled by issuing a username and a password to registered users.

14www.gnu.org/software/mailman/mailman.html
15List index is available at URL in the formhttp://dev.eclipse.org/mhonarc/lists/-

list-name /maillist.html .

52

www.gnu.org/software/mailman/mailman.html

messages have been added since the last update. It then accesses the URL for each new message16

and parses the HTML page with the message to extract the message contents.
Interestingly enough, the message’s page contains—embedded as comments—most of the orig-

inal messages headers that are not visible in the page, such as the message’s id and the id of the
message to which it is a response, if any. Knowing each message’s id is useful because that way
the threading heuristic used for newsgroup articles can be applied to email messages as well. Fur-
thermore, although the email address for the author of the message is anonymized in the visible
page, the original “From:” header is also captured in the HTML source (trivially scrambled using
the Rot13 cypher), and the author can be correctly identified that way.

Web site

The project’s web site17 includes project news, development plans, tutorial articles, FAQs, and
online documentation. We wrote a web update module that monitors the changes to the project web
site by operating as a simple web spider [24]. The module periodically connects to the project web
server, starting at the main page, and follows links to text and HTML documents with URL’s in
the Eclipse.org domain. Some URL paths are “blacklisted”; those links are not followed because
they lead to CGI scripts such as the mailing list archive or the bug repository, whose artifacts are
already processed by other means, or to irrelevant sections of the web site, such as the downloads.
Figure3.14contains the current URL blacklist.

Path Reason

/viewcvs Web interface to the CVS repository
Note: Regular expression/viewcvs/index.cgi/
∼checkout ∼/. * \.htm is used to identify URLs that are
exceptionsto the blacklist. Links matching the exception
pattern are followed during the update because it is used
to refer to the newest revision of various plugin-related
development documentation, such as design requirements or
development plans.

/mhonarc Web interface to the mailing lists archives
/mailman Web interface to administering the mailing lists
/newsportal Web interface to the newsgroup archives
/documentation/html Online documentation
/bugs Web interface to Bugzilla
/downloads/ Links to Eclipse binaries for download

Figure 3.14: URL paths that are ignored by the crawler.

16Individual emails are accessed at a URL of the formhttp://dev.eclipse.org/-
mhonarc/lists/ list-name /msg 5-digit-id .html

17www.eclipse.org

53

www.eclipse.org

3.3.2 Identification heuristics

In Section3.2.2, we described the identification heuristics (“matchers”) used in the current Hipikat
prototype. In this section, we give the specific parameters of those matchers that needed to be
adapted to the work practices and conventions used in the Eclipse project. We believe that applying
Hipikat to another large project using open source-style development methodology and a subset of
the information sources used in the Eclipse project would involve only minimally changing these
parameters.

Log-matcher As mentioned in Section3.2.2, the exact regular expressions used by the log-
matcher module may vary from project to project, depending on conventions adopted by its member
developers. Based on our observations of check-in comments in the Eclipse project and informal
conversations with developers on the project team, we determined the following typical cases (“bug-
ids” is a number, defined as a sequence of digits, or a sequence of numbers separated by commas,
spaces, “and,” or “&”):18

• the comment consists only ofbug-ids: regular expression “\[bug-ids\] ”

• phrase “#bug-ids”: “ #\s * bug-ids”

• phrases “bug” or “bugs” followed bybug-ids: “ [bB]ugs? +bug-ids”

• phrases “fix,” “fix for,” “fixed,” “fixes” or “fixes for” followed by bug-ids:
“ [Ff]ix(?:e[ds])? +(?:for)?[ˆA-Za-z0-9] * bug-ids”

• bug-idsat the very beginning of the comment: “ˆ bug-ids[:] ”

Activity-matcher The customizations to the activity-matcher heuristic deal with the length of
time window in which to look for a CVS check-in corresponding to the Bugzilla activity. We start
by looking at all check-ins by a given developer within a six hour window ending ten minutesafter
the bug activity. The reason for extending the window a little following the activity is that we have
observed some developers close the report in the bug-tracking system just prior to committing the
fix to the repository. We use a six-hour window because we observed some developers (or often,
interestingly, developer sub-teams) close the bugs en-masse at some point in their day. The length
of the window is a compromise to catch this kind of bug management without yielding such a large
number of matches that they would be hard to evaluate in a recommendation list. All versions
checked-in within the six-hour window are sorted by time difference between their check-in and
the bug’s resolution; the nearest version and all the eligible versions checked in within the next
three minutes are identified for linking (of typeimplements) to the bug report (see Figure3.15).
The identified links are further filtered by the rule that the activity matcher will link a file version
to multiple bug reports only if the activities that triggered the initial match occurred within two
minutes of each other, otherwise the one later in time is not linked.

18That is, bug-ids stands for the following regular expression:
(\d+((?:(?:, *)|(?:,? * and *)|(?: +)|(?: * & *)) \d+) * \b(?! \. \d+)

54

���
���
���

���
���
��

���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

	�	
	�	
	�	

�

�

�

���
���
���

���
���
���

�
�
�

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Nearest
revision

���������
���������
���������

���������
���������
���������

6 hours

3 minutes

Time

Bug resolution

Figure 3.15: Schematic of the activity matcher’s selecting of file versions to be linked to a bug
report. The hatched pattern shows the six-hour window surrounding the bug report’s resolution.
Only those file versions that were checked-in within that window are considered for linking (white
triangles). The version that is the nearest in time to the bug’s closing defines a three-minute window
for a “check-in package” (shown in cross-hatched pattern). Versions checked-in within that window
are actually linked by the activity matcher to the bug.

3.3.3 Project memory database

Hipikat project memory is stored in an MySQL19 database. The database consists of 58 SQL tables
and takes up 800MB of disk space.

The host running the database is a 500MHz Pentium PC with 500MB of RAM. It runs Fedora 2
distribution of GNU/Linux (kernel version 2.6.6). The version of the MySQL database that is in-
stalled on the host is 3.23.58. The hardware and the software are essentially that of a stock PC
workstation; no optimization or tailoring to database server applications have been conducted.

The mean time to create a recommendation list for all queries performed by the participants in
the Eclipse study (Section4.2) is 7.7 seconds with standard deviation of 8.2 seconds. No investi-
gations of the causes for the relatively high standard deviation have been conducted, although it is
likely that there are two major causes: network delays and the server that was not optimized for
database applications.

3.3.4 Bugzilla front-end as an Eclipse plug-in

We wrote a plug-in that makes it possible to interact with Bugzilla from within the IDE, rather than
through a separate web browser. To a plug-in user, Bugzilla search is similar to other searches in
the IDE (see Figure3.17for a screenshot of the search dialog and Figure3.16for a view listing the
results of the search).

A bug can be opened in an editor in the IDE (see Figure3.18). The user can then edit the
bug with functionality similar to the web-based client, for example post new comments or change
various attributes of the report.20 Most importantly, and the reason we wrote the plug-in in the first

19http://www.mysql.com
20Some functionality is missing at this time, in particular adding users to the CC list. We did not focus on

55

http://www.mysql.com

Figure 3.16: Bugzilla search results.

place, a user can issue Hipikat queries from the editor. (The integration is two-way: a double-click
on a Hipikat recommendation of a bug report will open the report in the editor.)

Access to Bugzilla from within the Eclipse IDE started off as part of the Hipikat plug-in, but as
it became a more full-featured Bugzilla front-end, we have spun it off as a separate Eclipse plug-in.
As of September 17, 2004, it has been downloaded 382 times.

3.4 Summary

In this chapter, we have described the details of our approach and its implementation in the Hipikat
prototype. We described three different aspects of Hipikat: the model of the project memory that we
use and the mechanism for recommending artifact from this memory; the working Hipikat prototype
that implements the project memory model and recommends artifacts in response to user queries;
and the instantiation of the prototype for a concrete project, the Eclipse integrated development
environment.

The project memory model consists of the project artifacts themselves and of links between
those artifacts indicating relationships. Relationships between the artifacts are established either
from existing information about artifacts that is available from the project management tools or that
is inferred by Hipikat.The relationship links are used to select relevant artifacts in response to a
query.

The Hipikat prototype implements the project memory model and a number of heuristics that
identify links between related artifacts and use those links to make recommendations. The prototype
has been designed to adapt easily to any open-source project that follows the typical open-source
development model (see AppendixA) and that produces at least a subset of the artifact types con-
tained in the project memory model. We present the description of adaptations that were necessary
to fit the prototype to a large open-source project. We include the performance of the system and
storage space requirements for over two years of project memory.

it because this feature was not needed in our user studies.

56

Figure 3.17: Bugzilla search dialog.

57

Figure 3.18: Viewing a bug.

58

Chapter 4

Validation

The hypotheses of this research are premised on the idea that the collection of all artifacts created in
the course of development of a software system implicitly forms a group memory. We make three
claims:

1. that newcomer software developers can use information from the project memory about past
modifications completed on the project to help them effectively perform modification tasks to
the system;

2. that this project memory can be built largely automatically, requiring minimal adjustments in
work practices of software developers;

3. that the automatically-built project memory can recommend useful artifacts, in particular past
modifications, that identify target classes, reusable code, or design decisions and other infor-
mation pertinent to the current change task.

The first claim is supported through two case studies. The first study was more exploratory in
nature and used a project memory that was built by hand from a project’s authentic online reposito-
ries (Section4.1). The results of the first study drove Hipikat’s development and led to the second
study: a multiple case design in which Hipikat was used to add features to a large open-source
software system (Section4.2).

The second claim is supported through the implementation of Hipikat used in the second study.
This implementation, already described in Chapter3, builds the project memory by mining the
kinds of archives that typically exist in open-source projects and requires no adjustments to the
developers’ working practices.

We tested the third claim by manually evaluating the quality of Hipikat’s suggestions for twenty
change tasks selected at random from the set of modifications implemented in a major release of a
large open-source software project. The details of this evaluation are presented in the final section
of this chapter.

59

4.1 The Avid study

As the first step in evaluating the first two claims introduced at the start of this chapter, we conducted
an exploratory study in which participants used an early Hipikat prototype to perform modifications
to an unfamiliar software system. We focused on whether recommendations of past modifications
were of any help to developers working on a change task, and if so, which kinds of recommendations
were used. We also wanted to determine if the way we presented the recommendations was adequate
and if there were other user interface issues that we needed to take into account.

Since the focus of the study was on theusefulnessof Hipikat’s recommendations, we decided
to build the project memory by hand. This way we could ensure that the project memory contained
recommendations that were relevant to the change tasks, and that were representative of various
recommendation heuristics that we were implementing for the automatic version. We used exist-
ing artifacts from the development of the target system, but determined the links manually (see
Section4.1.1for details). The Hipikat server therefore consisted only of the selection stage (see
Section3.1.2), while we took on the role of update and identification stages. This approach allowed
us to focus on getting a working client front-end and to test the user interface and recommendation
heuristics with users before committing to implementing them on the server end.

In this section, we describe the design of the study, including the details of how the project
memory was created and the user interface that was used to access it. We then describe how we
selected the study participants, and the procedures we used to run the study, followed by the study
results and their implications for the next step of this research.

4.1.1 Design

Since we were in an early stage of our research, it was not possible to define and isolate a set
of variables to be used in an experiment. Instead, we chose a case study format in which we
investigated the use of Hipikat by software engineers who were implementing changes to a software
system with which they were not previously familiar. Although we did not conduct our study in a
real workplace context, to ensure the setting was as realistic as possible, we decided to use an
existing software system as the study’s target.

To maximize the potential for data collection, we conducted the study as part of an assignment
in a graduate software engineering class. The assignment asked students to implement the changes
using two assigned program understanding tools, one of which was the Hipikat prototype, and to
write a report describing their experience. The students worked in pairs, in order to facilitate feed-
back, debate, and idea exchange while working on unfamiliar software system using new software
tools [82].

Participation in the study was voluntary: students who so chose could share their assignment
reports with us and take part in a follow-up interview. We relied on the participants’ own descrip-
tions of their experiences with Hipikat as an indication of its usefulness and as a generator of ideas
for improvements to the prototype. We decided not to analyze the code in their implementation of
the changes because our focus was not on their performance with or without Hipikat, but rather on
instances where the tool helped (or failed to help) in their task.

60

Furthermore, since the students could choose whether to participate in the studyafter they had
completed the assignment, we might not have observed them while they were working on the change
tasks, and thus could not use that as an additional source of data. We feel that these trade-offs were
appropriate to the kinds of questions we were asking at this stage of the research, and for the amount
of resources required to set up and run the study, and collect and analyze the data.

The target system: Avid visualizer

Having to manually create the memory meant that we had to balance two requirements about the
size of the target system that we used in the study. On the one hand, it had to be complex enough
that modifying it was not trivial. On the other hand, we needed to have a fairly complete coverage of
the code by Hipikat’s recommendations: we felt that if participants encountered significant areas of
the target system that had no recommendations from Hipikat, they would simply give up on the tool.
However, a target system that was too large would require a huge effort to create the appropriate
coverage in the project memory, when most of it would probably go unseen in the study. We
therefore settled on a relatively small, but non-trivial system that was under development in our
lab at the time, and for which we had the development history and easy access to developers for
consultation.

The software system that the participants worked on in the study was the Avid visualization
tool. Avid is a tool for visualizing the operation of Java systems at the architectural level [117]. It is
an off-line visualizer which uses data that has been previously collected during a software system’s
execution (such as object allocation and deallocation, method calls, etc.) and applies concepts
from the field of computer animation to display that information to a user. Avid uses a sequence of
“cels,” corresponding to individual animation frames, to represent the information collected across a
system’s execution. Each cel displays abstracted dynamic information representing both a particular
point in the system’s execution and the history of the execution to that point. Showing cels in quick
succession creates an animation of the system’s execution. Using Avid, a software engineer can
navigate both forwards and backwards through the cels comprising views on the execution, and
gain an understanding of the system’s dynamic behaviour.

In addition, the information is visualized in terms of a high-level view of the system selected
by the user as useful for the task being performed. This view is very flexible: an entity in it (called
a categoryin Avid’s terminology) can consist of a single class of interest, a small group of related
classes corresponding to a functional subsystem, or a large set of classes that are less important to
the current task. Figure4.1shows a screenshot of an Avid visualization. Several high-level entities
can be seen, with arrows between them representing method interactions and object creation.

Avid was developed at the Software Practices lab (SPL) at the University of British Columbia.
Avid is written in Java and has 12,853 non-comment, non-blank lines of code organized in 177
classes and 16 packages.

61

Figure 4.1: The Avid visualizer.

Hipikat project memory

As described in Section3.1, the Hipikat project memory consists of project development artifacts
and links between them. For this study, we had access to Avid’s CVS repository, documentation,
and project-related emails, and we inserted those artifacts into the project memory. Since the Avid
project did not use a bug-tracking system, we analyzed its CVS repository, extracted about two
dozen distinct change tasks from its history—including both bug fixes and new functionality—
entered these tasks as items in a Bugzilla database, and added the items to the project memory.

We then manually formed the links between the artifacts in the group memory. We followed the
principles described in Section3.1: revisions were linked to change tasks based on text similarity of
the check-in comments to task descriptions, documentation was associated through text similarity,
and associations between change tasks were inferred using text similarity and overlap in source files
that were changed as part of a task. These links were realistic: they contained both relevant and irrel-
evant suggestions that were based on the information recorded in the CVS repository. For instance,
change tasks that contained similar words in their description were sometimes about something to-
tally different, and groups of CVS check-ins often included some revisions whose modification was

62

not related to the check-in comment or to the rest of the group.

Change
task

File
version

similar tosimilar to reply to

about

writes

implements

check−in package

works on

writes

posts

Person

Document Message
documents

Figure 4.2: Hipikat project memory schema used in the exploratory study.

Study tasks

We selected as study tasks two previously completed changes from the development branch of the
project:

Task A: Excluding object age information from the summary file. To visualize the execution of
Java programs, Avid requires, amongst other inputs, a file containing summarized information
about the events generated during the execution of a Java program. The summary file is built
from the event trace file created during the program’s execution and contains information such
as the number of calls and the number of objects allocated or deallocated up to a certain point
in the trace file.

The summary file also contains information about the age of objects at deallocation time.
This information is voluminous, and experience with the visualizer has showed that it is not
always used by the developers. The task required the students to add a command-line option
to Avid to exclude object age from the summary file, and accordingly to not display object
age histograms in the visualization when using such summary files as input.

Task B: Reporting detailed call information from call summary arrows. In the visualizer, each
black directed arc between entities in the view shows a summary of method call activity
between the entities.

63

The task required the students to implement displaying detailed information on those calls
when the arc is double-clicked. The detailed information was to consist of class names
mapped to the “caller” and “callee” abstract entities connected by the arc and was to be
printed to standard output.

Figures4.3 and4.4 show the network of change tasks (boxes) related to study tasks A and B,
respectively, along with the classes (ovals) linked with those recommendations. It is apparent from
the figures that most, but not all, of the classes that needed to be modified in each task could be
reached by following a sequence of recommendations of past modifications. These sequences are
short for some of the classes, which can be reached from the top level of change tasks related to
the assigned study task. Other classes are reached only after several stages of recommendations are
followed, and sometimes a class necessary for a task’s solution is not reachable through Hipikat. For
example, classCategorySummary (lower left corner of Figure4.3) was part of the solution for
task A, and participants could find out about it from Hipikat in two steps: first by reaching change
task “Reducing memory footprint. . . ”, recommended for its similarity to study task A, and then
looking for files that implemented the change. On the other hand, none of Hipikat recommendations
point to classCelView (in the middle of Figure4.3, just below the top), so the participants had to
find out about it on their own. We come back to these “maps” when presenting the results of the
study, for illustration when participants refer in their comments to specific recommendations and
software artifacts.

Hipikat client

Unlike the current implementation described in Chapter3, the mock-up client used in this study
was a stand-alone Java application (see Figure4.5). The client allowed the user to browse the CVS
repository, the online documentation, and the change task database. When the client displayed an
artifact, it would issue a background request to the Hipikat server for items related to the displayed
artifact, and would display a list of related artifacts returned in a side pane. The client also included a
“bookshelf” where users could create notes as they worked and keep links to artifacts they accessed
often.

4.1.2 Participants and procedures

As mentioned in Section4.1.1, we conducted the study as a follow-on to an assignment in a graduate
software engineering class. The purpose of the assignment was to introduce the students to program
understanding tools. Students were grouped into pairs; each pair was asked to use the Hipikat mock-
up for one change and one of Rigi [79], Ciao [23], or jRMTool [80] for the other. The order in which
a pair had to perform each change task and the tool which it had to use were different for each pair.

The pair assignments were created by drawing a three-by-two-by-two matrix of non-Hipikat
tools (Rigi, Chava, or jRMTool), task to do with that tool (A or B), and whether that task was to be
done first or second. (The other task would be done using Hipikat.) Student teams were randomly

64

su
m

m
ar

y.
C

at
eg

or
yI

nf
o

su
m

m
ar

y.
C

at
eg

or
yM

an
ag

er

su
m

m
ar

y.
C

at
eg

or
yS

um
m

ar
y

su
m

m
ar

y.
E

ve
nt

S
um

m
ar

yM
an

ag
er

su
m

m
ar

y.
In

fo

vi
su

al
iz

er
.P

rim
ar

yS
um

m
ar

iz
at

io
n

vi
su

al
iz

er
.C

el
V

ie
w

vi
su

al
iz

er
.S

um
m

ar
yV

ie
w

E
xc

lu
de

 o
bj

ec
t

ag
e

fro
m

su
m

m
ar

y
fil

e

D
el

ay
 in

iti
al

iz
in

g
ag

e
ar

ra
ys

R
ed

uc
in

g
m

em
or

y
fo

ot
pr

in
t w

he
n

su
m

m
ar

iz
in

g
an

d
vi

su
al

iz
in

g

R
em

ov
e

un
ne

ce
ss

ar
y

C
el

C
at

eg
or

ie
s

C
ha

ng
ed

 s
um

m
ar

y
fil

e
fo

rm
at

Fi
x

di
sp

la
y

of
ob

je
ct

 a
ge

s
in

 s
um

m
ar

y
vi

ew

N
on

-m
on

ot
on

ic
al

ly
in

cr
ea

si
ng

tim
e

st
am

ps

A
dd

in
g

sa
m

pl
in

g
su

pp
or

t

E
ve

nt
W

ra
pp

er
s

fo
r

st
or

in
g

su
m

m
ar

y
in

fo
rm

at
io

n

Ti
m

e-
ba

se
d

sa
m

pl
in

g

ev
en

S
um

m
ar

yM
gr

Figure 4.3: Related artifacts for task A (boxed in bold). Change tasks are represented as boxes,
classes as ovals, and arrows point in the direction of the recommendation.

65

vi
su

al
iz

er
.A

bs
tra

ct
C

on
ne

ct
or

vi
su

al
iz

er
.A

bs
tra

ct
E

nt
ity

vi
su

al
iz

er
.C

el
V

ie
w

m
ap

.A
bs

tra
ct

C
at

eg
or

y

m
ap

.M
ap

R
ep

or
tin

g
ca

ll
in

fo
rm

at
io

n
fro

m
su

m
m

ar
y

ar
ro

w
s

C
ha

ng
in

g
ca

te
go

ry
 m

ap

D
ou

bl
e-

cl
ic

k
on

en
tit

y
sh

ow
s

ca
ll

st
ac

k

D
ou

bl
e-

cl
ic

k
on

hy
pe

ra
rc

 s
ho

w
s

ca
ll

st
ac

k

S
ca

le
an

im
at

io
n

de
la

y

D
is

pl
ay

in
g

hi
st

og
ra

m
s

w
he

n
sa

m
pl

in
g

D
el

ay
 in

an
im

at
io

n

N
ew

 s
ca

lin
g

fo
r h

is
to

gr
am

s

U
pd

at
in

g
hi

st
og

ra
m

s
w

he
n

st
ep

 s
iz

e
>

0

Fi
x

de
te

rm
in

in
g

Th
re

ad
Id

 w
he

n
sa

m
pl

in
g

Fi
x

di
ffe

re
nc

e
ba

r l
oc

at
io

n

Figure 4.4: Related artifacts for task B (boxed in bold). Change tasks are represented as boxes,
classes as ovals, and arrows point in the direction of the recommendation.

66

Figure 4.5: Hipikat client used in the study

67

assigned to one cell of the grid. There were twelve teams in the class, so no team had the same
(tool, task, order) assignment.

Earlier in the course, the class had two sessions in the lab where they had a chance to try out
each of the four tools on small practice problems. During the assignment they were also provided
with access to user guides for each tool.

Students had two weeks to complete the assignment. The deliverable was an assignment report
describing their work process in each of the two tasks and comparing the two software understanding
tools that they used.

Following the completion of the assignment, we invited students to participate in the study by
sharing their assignment reports with us. Participation in the study was voluntary, and the identities
of students who chose to share their assignment reports with us or to be interviewed about the
assignment were kept anonymous to the class instructor until the semester ended.

Seven pairs (out of twelve in the class) agreed and gave us a copy of their assignment reports.
We analyzed the reports for comments on Hipikat only, since our purpose in this study was not
comparison to other software tools. Thirteen of the fourteen participating students had no previous
knowledge of Avid. One worked the previous school year on porting Avid’s user interface to a
different UI library, and was familiar with most of the classes used in task B. (This participant was
part of “pair 5” in quotations from assignment reports below. The participant did not take part in
interviews.)

As a follow-up to the reports they shared with us, six students (out of fourteen) agreed to par-
ticipate in an interview. We conducted the interviews individually, even for the two pairs where
both students agreed to an interview. This was partly for the reasons of logistics, and partly to get
the individual perspectives on the assignment, as opposed to the pair’s consensus that was in the
assignment report. While in one pair we did get opposing views of the team’s dynamics, we did not
find any contradictions with respect to tool use.

4.1.3 Results

Overall, the participants reported that Hipikat helped them to start the assigned task. In particular,
suggestions of relevant previous changes to Avid that were based on textual similarity to the change
at hand helped to identify the classes and methods that the participants needed to understand or
modify to complete the assigned task:

Written comment from pair 5: The suggestions on the side pane on the left gave us
the starting point of classes to look for. We then used a bottom-up approach—browsed
through the source code to see whether it is relevant to the change task.

Interviewee 2: It helped really fast on the double-click [in task B]. We had the double-
click in five minutes.

68

Recognizing useful recommendations

For the most part, the participants in our study were able to distinguish which suggestions were
likely relevant, and which were the result of apparent similarity.

Interviewee 2: [W]e didn’t really go through the list in a “just search top-to-bottom”
manner. We were like, “OK, Animator probably has something to do with the animated
arcs, let’s look [at it]”.1

However, some pairs reported difficulty in assessing relevance without “wasting a lot of effort”
investigating a suggestion (Pair 5). This was especially the case in the early stages of the exploration,
when the participants would simply go down the list of the recommendations and examine them one
by one:

Written comments from pair 5: Until we examined the file HighLevelModel in the
list of suggested artifacts, we wasted a lot of effort examining classes in [preceding
recommendations in the list] suggested by Hipikat.

Another pair was more selective in their exploration and initially missed one of the most use-
ful recommendations in task B until they really understood the change they were being asked to
perform:

Interviewee 2: Because we didn’t understand the task [B], that [sic] when we saw
“why does reloading the map [the top recommendation] have something to do with
this?”, because we didn’t understand that. . . . And when we understood the task and
we actually looked at that [recommendation] and we saw, “OK, that’s exactly [it]”. [See
Figure4.6]

We also had reports of a participant pair missing a relevant suggestion because they lacked
knowledge about the overall structure of the system, and realized the suggestion’s relevance only
once they had figured out the solution on their own:

Written comments from pair 7: For the implementation of the change we ignored
the existance [sic] of the AbstractQueryManager2 although the Hipikat tool more or
less directly pointed us to it through the change task for showing the call stack. Instead
of using the AbstractQueryManager for the query we had to implement we put our
implementation right in the detailedQuery function in the AbstractConnector. By doing
this we violated the structure of the system.

That is, it does not help that the recommendation is objectively useful if the developer does
not recognize it as such. The following two comments further illustrate this problem: they both
talk about the same change task and the same set of recommendations, but reach exactly opposite
conclusions:

1Note in Figure4.4that class Animatorwas notpart of solution to task B.
2There is no class “AbstractQueryManager.” It is likely that the report talks about “DetailedQueryMan-

ager,” which was used by one of the classes implementing the fix for the related task, although it did not have
to be part of the solution to task B.

69

visualizer.AbstractConnector visualizer.AbstractEntity visualizer.CelView map.AbstractCategory

map.Map

Reporting call
information from
summary arrows

Changing
category map

Double-click on
entity shows

call stack

Double-click on
hyperarc shows

call stack

Scale
animation

delay

Displaying
histograms

when sampling

Delay in
animation

New scaling
for histograms

Updating
histograms

when step size > 0

Fix determining
ThreadId when

sampling

Fix difference
bar location

Figure 4.6: Recommendation trail for ”reloading the map”.

Written comment from pair 2: Unfortunately, none of the change tasks previously
recorded in Hipikat bore much resemblance to the change we were attempting aside
from identifying a file. . .

and

Written comment from pair 4: Hipikat definitely helped us during the first part of the
task. . . . We quickly found a related task [. . .] We confirmed that this task was related
by examining the CVS differences in files that Hipikat indicated were involved in the
change. This meant we knew which methods we needed to look at.

Participants’ confidence

A related challenge that study participants reported is applying the knowledge they learned from
Hipikat recommendations to their task.

Interviewee 2: [After seeing a recommendation that they knew could be reused in their
task.] But we still weren’t 100%, I wasn’t convinced that—I was convinced of the fact
that that was the easier way, to do it that way. But I still wasn’t convinced that it was
the better way.

That is, even when users realize that they can use the code from a recommendation in their own
solution, it can be difficult to decide how much can be reused, what pieces are missing, or even
whether it is the “right” way to implement the solution. Hipikat did not offer any assistance in this
regard beyond providing the recommendations, but the study format also did not allow us to capture

70

how the participants handled this situation, which would be an essential step before we can consider
how the tool could be improved in this regard.

User interface issues

The prototype of the Hipikat client-front end that we used in the study was designed as a code
browser, rather than as an editor. Thus participants had to switch between two applications as they
worked, and most considered it a drawback:

Written comments from pair 6: Hipikat only shows the source code to the user. The
user cannot modify the source in Hipikat. We have to open an editor to do the change
task.

Perhaps because having to switch applications is distracting, the Hipikat client’s code-browsing
functionality was underused. The participants often preferred to use an editor even when only
viewing the code, citing convenience, custom, or the added features that it offers:

Written comments from pair 7: We used emacs obviously to edit the source code but
also to read the source code as its syntax highlighting helps understanding the source a
lot.

Written comments from pair 5: The source repository viewer is not useful because
Hipikat does not have a sophisticated text editor like “emacs”.

Another consequence of this browser vs. editor division was that Hipikat showed the code of file
revisions in the CVS repository, while editor showed local copies. Once those copies were changed,
the two views diverged, which potentially was confusing:

Written comments from pair 3: [Because] the source files Hipikat work with are the
ones in the CVS repository, and we do not do any check-ins, . . . our modifications on
the source code could not be viewed . . .

Additionally, the prototype’s user interface, while simple and easy to use, was also limited in
its power. For example, it did not have multiple windows which would allow viewing of more than
one file at a time, and its “find” function was limited to searching within a single file. One user also
commented that having the recommendations change constantly as he was browsing the repository
was distracting. This behaviour could be annoying when he was exploring recommendations in a
list, and the act of opening a recommended artifact caused the recommendation list to change, so he
would have to use the “Back” button to restore the old list when he wanted to continue examining
it.

Lastly, the interviews suggested having the reason for making a recommendation visible, in-
cluding how relatively important it is:

Written comments from pair 5: Since Hipikat’s main goal is to provide a ranked list
of suggested artifacts, a natural extension to Hipikat is to allow a search that provides
sort[ed] list of matching occurrences by relevance.

71

4.1.4 Conclusion

The results of this study showed us that in some instances Hipikat can be a very useful tool. These
instances support our first research claim, although there were also cases in which Hipikat was not
helpful in the study task. Despite in some cases contradictory evidence (e.g., the two comments from
participant pairs #2 and #4 on page70), the study was an important step in refining our research
ideas and the implementation of Hipikat, both the project memory and the client front-end.

The comments we collected from the class reports and during the interviews drove the subse-
quent changes to the tool to make it more usable and useful. The participant feedback made it clear
that Hipikat client should not try to duplicate an editor’s functionality; ideally, it should be integrated
into an existing development environment. Furthermore, we decided to change the user interface
from automatically suggesting related artifacts to making suggestions in response to a query from
the user. We also included showing to the user the reason a recommendation was selected and the
strength of its relation to the query artifact. Lastly, we narrowed down the artifact linkage heuristics
to the present set (see Chapter3), since those were the ones behind recommendations that seemed
to be the most useful in this study based on the participants’ comments.

Just as importantly, this study helped us define the questions we asked in the next research step,
as well as the framework best suited to gather the kind of data in which we were interested. The
results we collected in this stage showed that it was possible to make reasonable suggestions using
the heuristics we had devised, and that those suggestions were (sometimes) useful to developers.
However, we felt that by relying solely on post-hoc written reports and interviews, we were missing
thecontextin which Hipikat was applied, something Shneiderman and Carroll pointed out is crucial
to understanding how software tools are used [106]. We also missedhow the information from
Hipikat recommendations was used as the participants worked on the change tasks, except through
the occasional glimpse:

Interviewee 2: [When] we actually looked at that [recommendation] and we saw, “OK,
that’s exactly where we have to actually implement it, where we have to get all the
information, put it into a data structure, and just print out that data structure when the
arc is double-clicked.”

We therefore decided we needed to observe and study the programmers’ behaviour as they used
Hipikat while working on software change tasks. We were influenced by Bowdidge’s observational
studies of StarDiagrams [13], but building on our experiences with the exploratory study, we decided
to use a large open-source software system as the change target, and to draw study tasks from real
modifications implemented in the target system between two milestone releases.

4.2 The Eclipse study

Following the results of the exploratory study, we decided to investigate more closely how Hipikat
was used in order to evaluate its usefulness. Specifically, we asked the following three questions:

1. Can newcomer software developers use information from the project memory about past mod-
ifications completed on the project to help them in a current modification task? We wanted to

72

see if relevant examples Hipikat provided from the project’s history can help the newcomer
get started or to fill in the background information.

2. When and from which artifacts will newcomer developers who are working on a software
change task query Hipikat? We were interested in the kinds of questions they ask and the
answers they expect.

3. How will the newcomers evaluate Hipikat’s recommendations and how can they utilize those
recommendations in their tasks? We were interested in whether the way Hipikat’s recommen-
dations are presented is adequate and whether there are ways in which it could be improved
to better support the developers in their change tasks.

An important factor influencing the design of the study was the need to have realistic participants
working on realistic tasks. Firstly, we were interested in studyingnewcomers, not novices: our
participants needed to have adequate programming experience in the programming language of
the system under study, but they had to have no previous experience as developers on the system
itself. We also required participants to have had experience developing large or medium-sized
software systems, and to be familiar with issues involved in working on such systems, as well as
tools commonly used to manage projects of such size (e.g., configuration management or issue
tracking systems). This made the pool of potential participants much smaller, as we could not use
easily recruitable computer science undergraduates with only a basic knowledge of a programming
language and insufficient experience working on large software projects.

Secondly, we wanted to study our participants as they worked on tasks that were complex
enough to challenge them and to require serious effort to understand the problem and come up
with a solution. Specifically, we looked for tasks that would require a couple of hours to solve; oth-
erwise there would not be much need for advanced software engineering tools, such as Hipikat. We
also wanted tasks that were appropriate as an assignment for a project newcomer in a real project.
The project we used in the study was Eclipse, an open-source software project initiated and ac-
tively supported by IBM. We considered mostly requests for new features in Eclipse, focusing in
particular on those requests that had a visual or UI component to them because it made it easier for
the participants to understand the task and test their solutions. Finally, the tasks had to allow for
exploration and variation in the learning and problem-solving process of individual participants, but
at the same time we wanted to be able to compare the solutions with each other and evaluate them
for “correctness” and quality.

Given the questions asked in this research and the complexity of the tasks analyzed, we deter-
mined that a case study was again the appropriate methodology for this stage of the research, using
multiple cases to try to capture individual working styles. Because we wanted to look in detail at
how developers accessed Hipikat and used its recommendations while working on modifications to
a new software system, we ruled out a controlled experiment. Instead, we chose a largely qualita-
tive analysis that would allow us to look for patterns across the cases and handle large individual
differences among the participants in programming and exploration styles.

Because we wanted to be able to compare the solutions with each other, all participants worked
on the same set of tasks. We also wanted to compare the newcomers’ end product with that of ex-

73

perienced developers who worked on the project, so we recruited several members from the Eclipse
development team and asked them to work on the same tasks and serve as our baseline for compari-
son. This design allowed us to study Hipikat under conditions similar to those faced by newcomers
to many large open-source systems, to test the system on real tasks, and to compare the results of
the newcomers with experienced team members.

4.2.1 Design

Eclipse is an extensible integrated development environment (IDE) that is written in Java and con-
tains around a million lines of code. As is common for an open-source project, the development of
Eclipse is conducted in a very transparent manner, with the full history of changes to the code, de-
veloper discussions, and problem reports publicly available. We selected as study change tasks two
previously completed enhancement requests drawn from the Eclipse issue tracking database. By
choosing enhancements to an earlier version of Eclipse, we were able to devise a set of correctness
criteria based on the solutions adopted by the Eclipse team. We could then check the participants’
solutions against the correctness criteria, as described in Section4.2.5. We created a copy of the
Eclipse project artifacts as they existed at the time when the enhancement requests were made, and
formed an instance of the Hipikat group memory on this copy.

The Eclipse team uses the Eclipse IDE itself for all development, so that was the natural choice
of the development environment for the study (that is, all participants used the Eclipse IDE to
make changes to its source code). All the information sources used by the project—the web-based
documentation, issue-tracking system, source code repository, newsgroups, and mailing lists, as
well as standard search engines used by the Eclipse project—were available to each participant,
with the same applications to access them that they would normally use (e.g., Internet Explorer for
viewing the web pages). Additionally, the newcomers had access to Hipikat, which is itself written
as an Eclipse IDE plug-in, and thus was seamlessly integrated into their development environment.

Each participant worked on two change tasks, which we describe below in more detail. One task
was easier than the other. The order in which the participants worked on the tasks was randomized
to control for order and learning effects.

Easy task

This modification request3 described a need, when hovering over a particular point in an editor for
Java source code, to display a breakpoint’s properties in a pop-up window.4 The request initially
asked for displaying a few basic properties, such as the breakpoint’s line number. A subsequent
comment in the request’s discussion suggested displaying an additional property of a breakpoint:
whether it stops the execution of the entire VM or just the current thread. The participants were
told that the latter was an optional property that they could implement if they so chose. (Figure4.7
shows a screenshot illustrating the fully implemented request in use.)

3Request 6660 in the Eclipse problem report database
4A breakpoint is a debugging facility that suspends the execution of the program at a certain location in

the code, enabling the developer to investigate the program’s internal state.

74

Figure 4.7: Breakpoint hover pop-up, as implemented in Eclipse 2.1. The pop-up indicates the
breakpoint’s line number, hit count, and the suspend policy, in addition to the class and method
where it is located.

Difficult task

The second modification request5 involved the interaction of a developer with the UI during ver-
sioning operations on a group of files. A file can be in one of three states: new (no versioning
information), versioned in the repository, or ignored for all versioning operations (typically tem-
porary and automatically-generated files). In normal operation, the versioning context menu that
comes up when the user right-clicks on a file in the IDE gives the user an option to, among other
operations,commita new version of a versioned file to the repository, or toadd a new file to the
versioning system, thus making it “committable” in the future. The modification request explained
that all operations in this menu were incorrectly greyed-out (made unavailable for selection) when
a mix of versioned and new files was selected—therefore the user would have to remember the state
of files to ensure that only files with the same state were selected together for versioning operations
or they could be neither committed nor added from the menu. A related problem noted in the same
request was that committing a new file to the repository requires two steps: “adding” to mark it
as a versioned file and then “committing.” The request asked for a more intelligent handling of
this case, similar to the way it is done through the “synchronization view”, where new files can be
automatically versioned when they are committed, if the user chooses to do so. The steps necessary
in the solution to the task are shown in Figure4.8.

Characterization of the two tasks

The categories “easy” and “difficult” are relative. Even the easy task was not trivial. The obvious
way to go about solving it—looking for the mouse hover handler and working backwards—would
lead the developer through some rather complicated code, having to understand multiple subsystems
of Eclipse without really making progress on the task itself. A significant difference between the
two tasks was in how much help the Hipikat recommendations provided towards the task: Hipikat
provided at least one recommendation that makes it substantially easier to solve the “easy” task.

5Request 20982 in the Eclipse problem report database

75

1. Enable the “commit” option in the versioning menu even if there are new files in
the selection.

2. If new files are present in the selection when the “commit” operation is chosen from
the menu, notify the user and ask him whether to add them first.

(a) If the user answered “yes,” mark the new files for versioning and proceed to
committing the entire selection.

(b) If the user answered “no,” do not mark the new files for versioning, and pro-
ceed to committing only the ones already versioned.

(c) If the user answered “cancel,” stop the whole process

3. If there are any files left to commit, proceed by asking the user for the check-in
comment.

4. If the user entered the comment and pressed “OK,” commit the files.

5. If the user pressed “cancel,” do not commit and return.

Figure 4.8: The high-level solution to the difficult task.

Scope of change. The two tasks differed not only in the amount of code needed to implement a
solution, but also in the extent to which the solution needed to interact with the rest of the system.

Easy: The scope of change to the system’s source code was fairly isolated; it was located in only
two classes and interacted with only a single other class in the system.

Difficult: Here too only a few classes needed to be changed, but the code in those classes interacted
with a number of different subsystems: file management, versioning, and user interface.

Relevant Hipikat’s recommendations. Participants relied on how high a recommendation was
ranked in the response to the query response. For each task, we ensured that at least one of the
recommendations provided by Hipikat in response to a query on the starting point—the task’s prob-
lem report— was relevant. Determining that a recommendation was relevant depended upon how
“obviously” similar its description (summary for a problem report or a CVS check-in comment) was
to the current task, and how easy it was to evaluate the code in file revisions related to a suggested
problem report for potential usefulness.

Easy: The top recommendation returned by Hipikat for the easy task was a previous enhancement
request that was similar in description. The implementation code linked to this request was
fairly straightforward to understand and coincided almost exactly with the code that had to be
changed for this task.

76

Difficult: Hipikat recommendations had to be examined in more detail to accomplish the difficult
task. The most useful recommendation (corresponding to the change that implemented the
committing of new files in the “synchronization view”) was not at the very top of the list
as in the easy task, so the participants had to look at a number of recommendations before
deciding which to investigate in detail to help them in the difficult task. Evaluating the var-
ious recommendations was more involved than in the easy task, because they were linked to
implementation code that was more complex and spanned multiple files.

Learning from recommendations. Applying knowledge learned from the relevant Hipikat rec-
ommendation to solving the actual task depended on how difficult it was to understand the recom-
mended code and how the code interacted with the rest of the system. Also important was how close
the location of the recommended code was to that of the task’s solution; if the recommended code
was in a different subsystem, this included how hard it would be to “transplant” the code to the new
location.

Easy: The recommended code was easy to understand. It simply puts the desired text for the
hover message into a particular container object (the “marker”).6 Just as importantly, the
recommended code was in the same file as the task’s solution and used many of the same data
structures.

Difficult: The related change reported by Hipikat was in a slightly different subsystem (the “syn-
chronize view”). Although it could be used to determine a general approach for most of the
solution, only small sections of the code could be reused directly because the data structures
on which it operated were different.

4.2.2 Participants

Twelve volunteers participated in the study. The volunteers were paid an hourly honorarium for the
time they spent in the study.

Eight volunteers were new to developing Eclipse, although some had used it as their Java de-
velopment environment for 1 to 12 months and so had experience as users. All of the newcomer
participants rated their familiarity with Java programming as at least “comfortable,” and had ex-
perience working on large projects, including software management practices such as source code
versioning and issue-tracking. Seven of the eight were graduate students and one was in the final
term of his undergraduate degree.

The four expert participants were all cooperative work students in at least their second term at
the IBM lab that is the leading contributor to the Eclipse project. The work term at the lab is four or
eight months; consequently all expert participants had at least six months of experience developing
and extending Eclipse, although their expertise was in different parts of the system than the selected
enhancement requests touched. Therefore, the experts were familiar with the system’s architecture

6There was no graphics handling in the recommended code because the container handles the display of
the pop-up window, relieving the developer of all GUI considerations.

77

and the accepted ways of doing things, but still had to engage in information gathering to understand
unfamiliar code.

4.2.3 Procedures

Because of the time required of each participant, the study was divided into two sessions, training
and programming, that took place within three days of each other, depending on the participant’s
schedule. To avoid interference with their regular jobs, the experts participated in the study on a
weekend, since they did not need the training session.

Training session

Each of the eight newcomers underwent four hours of hands-on Eclipse training. The participants
individually worked through three online tutorials that included frequent hands-on exercises apply-
ing the covered material. The participants worked on their own, but the researcher was present in
the room to answer any questions.

The first training session covered the use of Eclipse to write Java programs in general. The
tutorial took an hour and was based on the material in theUser’s Guidethat is part of Eclipse’s
online help. Although four of the eight participants had previous experience using Eclipse (to work
on their class assignments, for example), we required that all go through the tutorial to ensure the
same basic knowledge of the environment’s capabilities for writing, running, and debugging Java
programs.

The next two hours covered programming and extending Eclipse itself. This material was based
on the onlineProgrammer’s Guidethat comes with the Eclipse distribution. It is reasonable to
assume that “real-world” Eclipse newcomers would have gone through these online guides, because
the guides were the only introduction to Eclipse available until third-party books were published in
the Summer of 2003, while the version of Eclipse and the change tasks used in the study dated from
the Summer of 2002.

The last hour of the instruction covered Hipikat, from its design and features to a walk-through
of a sample session using Hipikat to work on an Eclipse problem report. This part ended with an
open-ended exercise where the participants were asked to complete a bug fix using Hipikat to give
them some experience using the tool in a less structured format.

The four experts did not go through any training because they all had significant experience with
Eclipse and did not have Hipikat available during the programming session.

Programming session

The programming session was divided into two parts, one for each change task. The maximum time
to allowed for each task was fixed at two and a half hours.

Each part started off by randomly assigning one of the change tasks to the participant. The par-
ticipant was then seated at a computer workstation displaying a window with the study instructions
(AppendixE) and running the Eclipse IDE with the full source of Eclipse 2.0 in the workspace.

78

The instructions directed the participant to the description of the change task in the study copy of
Eclipse’s Bugzilla database. The instructions asked the participant to read and understand the task.
Once the requested feature was understood, the participant was instructed to notify the experimenter
(that is, the author of this dissertation) and explain the feature to him.

The participant then moved onto the next section of the instructions (AppendixE.1.1), which
asked the participant to prepare a plan of the change. The participants were free to use any available
Eclipse tools to understand the code and to plan their change, but we requested that they complete
the plan and describe it to the experimenter before proceeding with implementing the change. The
format of the plan was left to each participant, and the level of required detail left flexible, perhaps
only including the broad outline of the approach and the list of files that would need to change. The
use of Hipikat was explicitly encouraged in the instructions to the newcomers. If a participant did
not come up with a plan by the end of the first hour, we conducted a progress interview to see what
the participant had been working on. Participants who got stuck during the planning stage were
given a small hint if they were entirely off the solution’s track. (This is comparable to advice they
may have got on an Eclipse newsgroup, for example.)

Once the participant notified us that the change plan was completed, we conducted a semi-
structured interview in which we asked both about the details of the plan and the process used to
come up with it, including tools used and information accessed. Following the plan interview, the
participant went on to the next section of the instructions (AppendixE.2), which directed him or her
to start implementing the change. When the participant notified us that the change was implemented,
or if the session time limit was reached, we conducted another semi-structured interview where the
participant showed us the details and described the process of implementation. During this interview
we asked critical incident-type open-ended questions about the most difficult part of solving the task
and how the participant went about solving it [38]. We also asked the participants about available
tools and information that were useful or not useful, as well as those that would have been useful
had they been available.

4.2.4 Data

We used screen capture software (Camtasia by TechSmith) to record the participants’ actions while
working on the change plan and its implementation. We also instrumented Hipikat to record all
queries in a file, although this information could have been obtained from the screen recordings by
manual means.

The participants submitted their change plans at the end of each change task. In all instance
but one these plans were created electronically, in a word processor. We later printed a hard copy
and used that in the subsequent analysis. One participants wrote the plan by hand and submitted his
notes.

The implementation of the change tasks was obtained by printing the source files that a partic-
ipant modified in the course of each change task. These files were printed after both change tasks
were completed. Because no participant modified the same file in both tasks, there was no need to
collect the changes after each task.

79

4.2.5 Analysis

All recordings we made were first manually transcribed: interview tapes to text, and screen record-
ings to maps of each participant’s exploration. The maps were made by marking when each artifact
(bug report, source file, revision, web page) was viewed for the first time and the way in which it
was reached. When two artifacts were logically related as part of the same “exploration path” (for
example, seeing the use of an identifier in one file, and jumping to its definition in another file), we
connected them with a directed edge, forming a directed tree of such paths. See Figure4.9 for an
example.7

We collected all code modifications that the participants made while they worked on each task.
These were checked for correctness against a set of criteria that we had identified. These criteria—
shown in Tables4.2 and4.4—are sufficiently abstract to cover the required functionality of added
features, but still allow variation within the actual implementations. We also included special cases
that are not always covered explicitly in the feature request description, but would result in bugs
under certain circumstances if they were not recognized. Lastly, we required that the added code be
readable and maintainable, and that it follow the Eclipse team’s coding practices.

We manually evaluated participants’ solutions based on the criteria. When a criterion was miss-
ing from the solution, we checked for it in a participant’s written change plan, and in the comments
the participant made during the change plan interview. (This is noted in the presentation of results,
but did not count as an error.) We were interested in the change plans in addition to the solutions
because we wanted to account for all the information participants discovered, even if the solution
was partly incomplete because of our arbitrary time limit for work on the task.

4.2.6 Results

In this section we present the results of our analysis. We first focus on the participants’ performance
in each of the two tasks. We describe the patterns in their solutions and compare the newcomers
with the experts. Next, we look at their process: how the newcomers accessed Hipikat, and how
they evaluated and used Hipikat’s recommendations in their work.

We present our analysis of performance for the easy task first, but note that the order in which
the tasks were done did not seem to make any difference in the performance across participants. For
example, the scores on the easy task for those newcomers that worked on that task first were: 95%,
90%, 85%, and 40%. Newcomers who worked on the easy task second scored: 95%, 95%, 70%,
and 65%. The difference between the means of the two groups is three percentage points (78%
vs. 81%), which could hardly be considered significant even in the non-statistically rigorous sense.

Easy task solutions

All of the participants implemented the basic requirements of this task: displaying a pop-up window
with the breakpoint properties on mouse hover. The experts solved the task much faster, while most
newcomers took all of or close to the full time available (average an hour and a quarter for the

7We used Excel so we could organize the entries in a grid for easy viewing of the timeline.

80

F
ig

ur
e

4.
9:

A
po

rt
io

n
of

a
ne

w
co

m
er

’s
ex

pl
or

at
io

n
m

ap
.

T
im

e
flo

w
s

to
th

e
rig

ht
,

an
d

th
e

to
p

ro
w

sh
ow

s
th

e
ex

ac
tt

im
e

fr
om

th
e

st
ar

to
ft

he
ta

sk
w

he
n

th
e

ar
tif

ac
ti

n
th

at
co

lu
m

n
w

as
op

en
ed

.
T

he
ex

pl
or

at
io

n
st

ar
ts

at
th

e
to

p
le

ft
co

rn
er

,w
ith

th
e

op
en

in
g

of
bu

g
20

98
2

(i.
e.

,t
hi

s
is

th
e

di
ffi

cu
lt

ta
sk

).
T

he
ne

xt
ar

tif
ac

tt
ha

tt
he

pa
rt

ic
ip

an
t

op
en

s
is

bu
g

18
66

7,
be

ca
us

e
it

is
th

e
ne

xt
on

e
go

in
g

to
th

e
rig

ht
.

It
w

as
re

ac
he

d
di

re
ct

ly
fr

om
bu

g
20

98
2

be
ca

us
e

th
e

tw
o

ar
e

co
nn

ec
te

d
w

ith
an

ar
ro

w
.

C
om

m
en

ta
tta

ch
ed

to
th

e
ar

ro
w

in
di

ca
te

s
th

at
th

e
tr

av
er

sa
lw

as
th

e
re

su
lt

of
a

H
ip

ik
at

qu
er

y.
C

om
m

en
ta

tta
ch

ed
to

bu
g

18
66

7
sh

ow
s

its
tit

le
(i.

e.
,t

he
“s

um
m

ar
y”

in
th

e
B

ug
zi

lla
te

rm
in

ol
og

y)
.

B
ug

10
54

1
is

op
en

ed
fiv

e
m

in
ut

es
in

to
th

e
ta

sk
in

a
si

m
ila

r
m

an
ne

r,
on

ly
th

is
tim

e
as

a
re

su
lt

of
a

H
ip

ik
at

qu
er

y
on

bu
g

18
66

7,
as

ar
e

bu
gs

10
62

0
at

7’
07

”
an

d
18

60
9

at
7’

15
”

(n
ot

e
th

at
th

e
ar

ro
w

s
le

ad
in

g
to

al
lt

hr
ee

of
th

os
e

bu
gs

st
ar

ti
n

18
67

7’
s

co
lu

m
n)

.
T

he
n

th
e

pa
rt

ic
ip

an
t

go
es

ba
ck

to
bu

g
10

54
1,

m
ak

es
a

H
ip

ik
at

qu
er

y
on

it,
an

d
fr

om
th

e
re

tu
rn

ed
lis

t
of

re
co

m
m

en
da

tio
ns

op
en

s
th

e
di

ff
vi

ew
fo

r
ve

rs
io

n
1.

2
of

fil
e

P
ro

je
ct

E
le

m
en

t.j
av

a
at

13
’2

3”
.

T
he

re
as

on
fo

r
re

co
m

m
en

di
ng

th
is

ve
rs

io
n

is
sh

ow
n

in
th

e
co

m
m

en
ta

tta
ch

ed
to

it:
“C

he
ck

-in
cl

os
e

to
bu

g
re

so
lu

tio
n.

”
T

he
ex

pl
or

at
io

n
co

nt
in

ue
s

in
a

si
m

ila
r

m
an

ne
r

in
th

e
re

st
of

th
is

ex
am

pl
e,

w
ith

al
l

th
e

ot
he

r
ar

tif
ac

ts
vi

si
bl

e
in

th
e

fig
ur

e
re

ac
he

d
fr

om
H

ip
ik

at
’s

re
co

m
m

en
da

tio
ns

fo
r

th
e

qu
er

y
on

bu
g

10
54

1.

81

experts vs. two hours for the newcomers, see Table4.1 for full details). However the whole picture
is more complex. All but one of the newcomers found the right files for the change quickly (using
Hipikat’s recommendation), but then took much longer than the experts to understand the intricacies
of the code.

Subject Time (minutes)

Alfreda 99
Bill 45
Cecilia 56
Dennis 93
Average 73

Emil 150
Frank 79
George 119
Harry 67
Ida 150
John 150
Keith 128
Louis 134
Average 122

Table 4.1: Time taken to implement the solution for the easy task. The
participants are grouped into experts and newcomers.

aAll names have been changed to protect participants’ anonymity. Names were
chosen arbitrarily so that each starts with a different letter, but reflect the partici-
pant’s gender.

Although all solutions presented the pop-up with breakpoint properties as requested, many par-
ticipants did not handle the special cases properly (e.g., updating the text in the hover after the
breakpoint’s properties were changed in the properties dialog), which introduced bugs into their
solution. Surprisingly, this was even more the case among the experts, where only one of the four
participants (25%) correctly updated the information in the pop-up after the breakpoint’s properties
were changed by the user. Of the eight newcomers, three participants (38%) handled this correctly,
and two more (for a total of 63%) handled it correctly within the scope of basic range of properties
that they chose to implement (that is, the line number, condition, and hit count). See Table4.2for the
full list of the correctness criteria used in this task, and Table4.3 for a summary of the correctness
of solutions for all participants.

The faulty solutions focused on a particular class,JavaLineBreakpoint, and missed consider-
ation of that class’s superclassJavaBreakpoint, which was responsible for updating some of the
breakpoint properties. The faulty solutions thus missed some method inheritance interactions, so
that the hover text was not updated when properties were changed through the JavaBreakpoint su-
perclass. An examination of the plans created by the expert participants who failed to handle these

82

Hover: Displaying new properties in the hover.

• Identify JavaLineBreakpoint and JavaBreakpoint classes

• Identify markers and the message attribute

• Setting the marker message

Updating the hover: Changing the breakpoint’s properties should be reflected in the hover.

• Hover updated when user toggles suspend policy

• Hover updated when user changes the hit count

• Hover updated when user changes the condition

Style: Modifications should respect existing architecture and coding style.

• Suspend policy is added in JavaBreakpoint, line number in JavaLineBreakpoint

• Strings are externalized

Subclasses.New hover functionality should work for subclasses of JavaLineBreakpoint.

• Method breakpoint hover is correct
• Watchpoint hover is correct

Table 4.2: Easy task correctness criteria.

updates shows that all of them talked exclusively about the concrete subclass. In a way this is
not surprising because that is where the bulk of the change was located, and it was probably so
deceptively simple that they did not investigate all of its implications.

The relatively high correctness of the newcomers’ solutions cannot be explained entirely by
the longer amount of time that they took to finish the task. They were not taking much longer to
come up with their change plans, yet even there both classes were regularly mentioned. We believe
that the newcomers did so well because both classes were included in the Hipikat recommendation
from which they were starting, and so they were used to thinking about the two classes as a single
unit, which was reflected in their plans and implementations. This is a good example of a valuable
bit of information that was never explicitly written down anywhere in the project artifacts, and
yet was implicit in the links between the artifacts inserted by the identification matchers. This
connection was recognized by the newcomers during their exploration of the memory; without
viewing Hipikat’s suggestion, it was not at all obvious that both classes would need to be updated.
Indeed, half of the expert participants overlooked it, causing bugs in their solutions.

Another example showing that newcomers can learn good practices implicitly recorded in past
solutions was the way they realized that they should “externalize” all text messages in their code
so that the application can easily be internationalized by changing a few properties files that came
with it, rather than the source code. This approach was not something that was explicitly covered in
the tutorials, but became obvious in Hipikat’s recommendation, which showed that whenever some
changes involved adding text messages, those messages were being externalized in the properties

83

Subject Hover Update Style Subcl. Correct

Alfred + + + + + + + + + �h 9.5 (95%)
Bill �l + + �c + + − + + �h 7.5 (75%)
Cecilia �l + + �c − + +p − + − 6 (60%)
Dennis �b + + �h + − − − + �h 5.5 (55%)
Average 7.1 (71%)

Emil + + + + + + + + + �h 9.5 (95%)
John + + + + + + − +p + �h 9 (90%)
Ida − + �a �a,s �a �a − − �a �a 3 (30%)
Keith + + + +s + + +s − + �h 8.5 (85%)

Frank + + + + + + + + + �h 9.5 (95%)
George + + + +s + − − − + �h 6.5 (65%)
Harry + + + +s + + +s + + �h 9.5 (95%)
Louis + + + +s �o �d − �e + �h 7 (70%)
Average 7.8 (78%)

a sets hover for all vertical ruler marks, not just breakpoints
b plan mentions only JavaBreakpoint
c not updated until the condition is changed
d duplicate line number if both hit count and condition are enabled
e strings are not always externalized
h not updated until the hit count is changed
l plan mentions only JavaLineBreakpoint
o hit count disappears if the condition is off
p correct in the plan only
s suspend policy not implemented

Table 4.3: Participants’ performance on the easy task. The participants are grouped into experts,
newcomers who worked on this task first, and newcomers who worked on this task second. Symbols:
+ – correct; - – incorrect;� – partially correct.

84

file. Three of the eight newcomers externalized their strings, and two more noted the practice and
said that they would probably do the same in their code before releasing it as a finished product.
On the other hand, all of the four experts were aware of this practice although only two actually
externalized their strings, while the other two admitted that they would have done so before releasing
their code to the rest of their team.

Difficult task solutions

The participants were less successful in solving this task, with the average score of 8.5 out of 15
(57%). While the two groups have virtually the same group average score (8.4 for the experts and
8.6 for the newcomers), the expert group arguably performed better on the basic requirements of the
task: detecting new uncommitted files, displaying the message dialog to the user, marking them as
versioned when directed by the user, and proceeding to commit to the repository. Three of the four
experts (75%) solved these requirements correctly. The unsuccessful expert was completely on the
wrong track with her planned solution and did not implement any of these steps. Thus the expert
group’s average score is partly skewed lower by the one unsuccessful member; however, that’s not
the sole reason, since the other three experts’ solutions—although solving the basic requirements of
the task—still did not handle correctly a number of special cases, and had the average score of 10.7
(71%).

In the newcomer group, three of the eight participants (38%) managed to implement all of the
basic requirements (average score 11.7, or 78%). Two more newcomers were able to detect the new
files and displayed the required message dialog to the user, but then did not implement marking
those files as versioned. Of the last three newcomers, one’s solution was almost correct but for a
runtime error, one still had syntax errors in the code when the time ran out, and the last one did not
get beyond correctly identifying the methods where his solution should go. In that respect, all of
the newcomers got farther than the unsuccessful expert, since even their incomplete solutions were
on the right track.

See Table4.4 for the full list of the correctness criteria used in this task, and Table4.5 for a
summary of the correctness of solutions for all participants.

The participants had more difficulty with the special cases in this task. For example, none of
their solutions looked within directories that were being committed to check whether they contained
any new files. The newcomers should arguably have been aware of this special case. Detecting these
files during the commit operation was discussed and accepted as desirable in an earlier problem
report when the corresponding feature was being added in the “Synchronize view”. This problem
report was recommended to them by Hipikat—ranked highly in the recommendation list for its
similarity to the assigned task—and they even used it as the basis of their solutions. However, it was
easy to overlook this point, buried as it was in the middle of a lengthy discussion within the problem
report. (We come back to this issue and consider how the presentation of such recommendations
could improved in Section5.2.1.)

Furthermore, because the code in Hipikat’s recommendation was in a different subsystem, in
which it was assumed that the contents of the directories were already available, the newcomers

85

Menu: Operations in the versioning context menu should be grayed-out as appropriate.

• Identify CommitAction.isEnabledmethod

• Enable the “commit” option even if some of the selected resources are new

• Do not enable the “commit” option if all resources are in .cvsignore

Detecting selected new files:When the “commit” option is selected in the versioning context
menu, the code should check for the existence of any new files in the active selection.

• Identify CommitAction.executemethod

• Look for new resources in the active selection

• Check in selected subdirectories for new resources (any number of levels deep)

Message dialog:If there were any new resources in the active selection, a dialog should be put up
to ask the user whether to add them to CVS management before proceeding with the commit.

• Put up the dialog if any of the selected resources are new

• If the user presses OK, add the new resources to CVS management

• If the user presses No, do not do anything to the new resources, but proceed with the commit
process

• Cancel aborts the whole commit process

Committing new resources: If the user selected “yes” or “no” in response to the message dialog,
the rest of the commit process should proceed appropriately.

• Show the check-in comments dialog

• All selected managed resources are committed to the repository (including the new ones)

Style: Modifications should respect existing architecture and coding style.

• Do not simply callForceCommitSyncActionto display the dialog (increases coupling)

• Externalize message in the dialog

• Use thevisitor pattern to look for new resources in the selected subdirectories

Table 4.4: Difficult task correctness criteria.

86

S
ub

je
ct

M
en

u
D

et
ec

tn
ew

M
sg

.d
ia

lo
g

C
m

t.
S

ty
le

C
or

re
ct

A
lfr

ed
+

+
−

+
+

−
+

+
�d

+
+

+
−

�f
−

10
(6

7%
)

B
ill

+
+

−
+

+
−

+
+

+
+

+
+

+
�f

−
11

.5
(7

7%
)

C
ec

ili
a

+
�p

−
−

−
−

−
−

−
−

−
−

−
−

−
1.

5
(1

0%
)

D
en

ni
s

+
�n

−
+

+
−

+
+

�d
+

+
+

+
�f

−
10

.5
(7

0%
)

Av
er

ag
e

8.
4

(5
6%

)

E
m

il
+

−
s
−

+
−

s
−

+
+

+
+

−
−

+
�f

−
7.

5
(5

0%
)

Jo
hn

+
+

−
+

+
−

+
−

+
+

+
+

+
�f

−
10

.5
(7

0%
)

Id
a

+
+

−
+

+
−

+
−

−
+

+
−

+
�f

−
8.

5
(5

7%
)

K
ei

th
+

+
−

+
+

�a
+

+
+

+
+

+
+

�f
−

12
(8

0%
)

F
ra

nk
+

+
−

+
+

−
+

�c
+

+
+

+
+

�f
�r

11
.5

(7
7%

)
G

eo
rg

e
+

�p
−

+
−

s
−

+
−

−
−

−
−

+
�f

−
5

(3
3%

)
H

ar
ry

+
+

−
+

+
−

+
+

+
+

+
+

+
�f

−
11

.5
(7

7%
)

Lo
ui

s
+

−
−

+
−

−
−

−
−

−
−

−
−

−
−

2
(1

3%
)

Av
er

ag
e

8.
6

(5
7%

)
a

D
oe

s
no

ta
ct

ua
lly

ad
d

th
e

ch
ild

re
n

to
th

e
se

le
ct

ed
lis

t.
c

N
o

ad
d

w
he

n
th

e
ch

ec
k-

in
co

m
m

en
td

ia
lo

g
is

ca
nc

el
le

d.
d

w
ill

sh
ow

th
e

ch
ec

k-
in

co
m

m
en

td
ia

lo
g

ev
en

if
no

fil
es

w
ill

be
co

m
m

itt
ed

f
us

es
F

or
ce

C
om

m
itS

yn
c’

s
ex

te
rn

al
iz

ed
st

rin
g.

p
D

oe
s

no
tw

or
k

if
th

e
pa

re
nt

is
no

ta
C

V
S

F
ol

de
r.

r
V

is
ito

r
do

es
no

tr
ec

ur
se

,a
lth

ou
gh

no
te

d
a

qu
es

tio
n

ab
ou

ti
t.

s
T

rie
d

us
in

g
C

V
S

S
yn

cS
et

(c
au

se
s

ru
nt

im
e

ca
st

ex
ce

pt
io

n)
.

Ta
bl

e
4.

5:
P

ar
tic

ip
an

ts
’p

er
fo

rm
an

ce
on

th
e

di
ffi

cu
lt

ta
sk

.
T

he
pa

rt
ic

ip
an

ts
ar

e
gr

ou
pe

d
in

to
ex

pe
rt

s,
ne

w
co

m
er

s
w

ho
w

or
ke

d
on

th
is

ta
sk

fir
st

,a
nd

ne
w

co
m

er
s

w
ho

w
or

ke
d

on
th

is
ta

sk
se

co
nd

.
S

ym
bo

ls
:

+
–

co
rr

ec
t;

-
–

in
co

rr
ec

t;
�

–
pa

rt
ia

lly
co

rr
ec

t.

87

overlooked that this was something they would have to do themselves if they were to reuse it in
their subsystem. This raises an interesting question of the kind of expectations that the newcomers
had for Hipikat’s suggestions, something which we consider in more detail in our later discussion
(Section4.2.7).

The expert participants did not look at problem reports other than the one describing the assigned
study task, and so they never saw the above-mentioned discussion. Still, they used Eclipse daily in
their work, so it was a little surprising that they forgot about the behaviour in the “Synchronize
view” (particularly because that view was specifically mentioned in the assigned task description)
and did not parallel its functionality in their solutions.

Instead, during interviews some experts said that they did not consider the directory special case
at all; those who did consider it ended up concluding that the commit operation should not work that
way. This conclusion diverges from the project consensus on the behaviour of the commit operation.
If the requested feature had really been implemented this way in Eclipse, users of the system would
have probably been confused with inconsistent outcomes of the commit operation depending on the
point in the user interface at which it was invoked.

Accessing Hipikat

We used the exploration maps to try to find patterns in how and when Hipikat was queried and
which recommended artifacts were accessed. Not surprisingly, Hipikat was accessed less during the
easy task than during the difficult task. An average of 3.6 and 6.3 queries were made, respectively.8

In each case, one of the queries—usually the very first one, except as noted below—was on the
problem report that describes the assigned task, so in the easy task in particular it did not take very
long for the participants to find the information that they wanted from Hipikat.

Almost all queries were made within the first hour, especially when a participant was successful
in formulating a solution plan. (Slightly less than 20% of all queries were made after the first hour,
or 0.7 and 1.1 query in the easy and difficult tasks, respectively.) Once a participant knew the file(s)
to be changed and had determined a general plan of how to do implement the change, he or she
did not make any more Hipikat queries. Hipikat was apparently used as a tool to help get an initial
understanding of the assigned task, but not in the execution of the task.

This is particularly obvious in the easy task, where four of the eight newcomers needed only two
queries. Their first query, on the problem report assigned in the task, led to a very similar problem
report which was at the top of Hipikat’s recommendations and was marked fixed. Querying on that
report led to the file revisions implementing its features, which pointed out the classes involved in
the change and highlighted the code that was added. At that point, the participants would switch
to viewing the source code of these classes and to using other Eclipse tools to understand how that
code interacts with other parts of the system. Other participants who successfully solved the easy
task also found that same top recommendation and eventually used it in their solutions. However

8Figures in this section refer to unique queries made in each task. Occasionally, participants queried on
the same artifact more than once during the course of a task. Because those repeat queries were used as an
alternate query “history” mechanism, we did not count them when calculating the averages.

88

they made one or more other queries, probably to get a better feel for the code before plunging in to
understand it more fully.

The participants queried Hipikat predominantly in the two-step sequence just described: find
an interesting-looking problem report, then check to see if it has any associated file revisions that
look like they could be relevant to the task, either as an example of the API usage or as a potential
source of code to reuse. (This is not surprising because it was the main interaction technique shown
to participants in their Hipikat tutorial.) Artifacts other than problem reports and file revisions were
hardly ever considered, except in two situations. At the very beginning of the task, participants
looked for explanations of some of the terms in the task description (e.g., “hover”, “suspend VM”),
not only in problem reports but also in the suggested web pages (that is, in online design documents
and reference manuals). Second, when participants felt that the recommended problem reports
were not giving sufficient information (or were suggesting file revisions containing code that was
either irrelevant to the task or too hard to understand), they tried looking at recommended news
articles for possible clues. This was only a temporary change of tactic, because the newsgroups
in the Eclipse project are not used to discuss development issues. Therefore, news articles were
not helpful in either assigned task, so participants who looked at them soon returned to their initial
search strategy.

Evaluating and using Hipikat’s recommendations

Based on the query and access patterns described above, it appears that the participants’ exploration
was focused on solving the assigned task, rather than gaining deeper understanding of the code.
Furthermore, their exploration appears to be defined by a sequence of sub-goals. The following
quote from one newcomer discussing the easy task illustrates this goal-driven behaviour:

So, my first goal is to find out how the hover behaviour is implemented. . . . the second
thing was to find out where the line number, where I can get the line number at that
stage, so I can add it in. (Harry)

The most important thing was to find code relevant to the current sub-goal. Of course, finding the
right piece of code in a system containing hundreds of thousands of lines can be like searching for
a needle in the proverbial haystack. Even using more sophisticated search strategies—like starting
from a recognizable entry point and tracing backwards through call and inheritance graphs—could
be likened to using a length of thread to find an exit from a labyrinth. We observed two of our
experts struggle with the easy task using just such a strategy. They eventually succeeded in their
search because of their experience. On the other hand, the newcomer who failed to solve the same
task used much the same strategy, but got hopelessly bogged down trying to trace her way through
the call and inheritance graphs. After much frustration, and despite several hints from the author
observing her work, the participant found the code in the UI subsystem that displays pop-up hovers
and forced her solution there. The solution displayed the line number in all hover pop-ups, not just
for breakpoints (a similar mechanism is used to signal syntax errors in source code editors and to
insert user-defined bookmarks), and violated architectural boundaries of the system.

89

The alternative approach, which we saw among the newcomers, was to use Hipikat’s recom-
mendations to find code that could be reused in the task’s solution and/or the probable location of
where the solution should be implemented. However, using the recommendations poses its own
challenges. First, a potentially useful recommendation has to be recognized. Then, the recom-
mended piece of code has to be understood in terms of what it does and how it fits into the larger
system. Finally, that code has to be adapted to its new purpose, which may involve moving it to a
different place in the system’s architecture. We explore the first two points in the remainder of this
section, and leave the third for the discussion (Section4.2.7), when we explore some of its more
general implications for learning from group memories.

Recognizing useful recommendations We found that the crucial first condition to recognize a
useful recommendation was whether the description of a problem report looked “interesting.” That
is, it had to be similar enough to the current task to make it likely that the associated code could be
reused, or at least that the participant could learn from it information relevant to the task. In the case
of such a problem report, the participants would then, via another Hipikat query, move to investigate
the associated file revisions.

Not surprisingly, participants searched for similar reports by going down the list of recommen-
dations returned in response to the query on the task’s problem report. Given the effort needed to
understand the code associated with more complex recommendations, we observed reluctance to
investigate too many recommendations down the list. If anything, we noted that participants tended
to stop their exploration as soon as they had a starting point from which to look at source code.

The difficult task provides an excellent illustration of this behaviour. There, the initial Hipikat
recommendation list contained two related problem reports near the top of the list. Both of them
pointed to the same set of files, although the revisions associated with the one lower in the list actu-
ally highlighted code that could be directly reused to implement two of the task’s basic requirements.
In contrast, the higher-ranked recommendation was only useful in pointing to the right classes, but
its implementation was more complicated and in the end not as useful for the assigned task. And yet,
only two of the eight newcomers ever looked at the code implementing the fix for the lower-ranked,
but in reality more relevant, problem report. Instead, the higher-ranked recommendation was “close
enough.” Its description was similar enough to the assigned task, and its implementation involved
code that looked promising enough, so the participants were apparently reluctant to spend any more
effort looking for something better. In the end, this course of action was successful, although it al-
most certainly took longer than following the lower-ranked recommendation. Given the uncertainty
whether something better existed, it was not an unreasonable course to take.

Understanding recommendations In some cases, for instance in the top recommendation in the
easy task, the code in recommended revisions was easy to understand just by seeing the modified
lines highlighted by Hipikat. At this point, the participant would switch from the Hipikat view to
working with the source code directly in order to understand it more fully, and especially how this
code interacted with the rest of the system.

In other cases, and in particular in the difficult task, this could require significant effort. For

90

instance, some highly-rated recommendations in the difficult task included up to nine files that were
implementing the fix for a problem. Understanding just how changes in those nine files were re-
lated to each other, what exactly they do, and which of them were relevant to the actual task was
a serious challenge. The way Hipikat presented the recommendations involving file revisions was
not sufficiently helpful in such cases. We will discuss the problem in more detail in the discussion
(Section4.2.7), including potential avenues for alleviating it. A common “shortcut” used in such
situations by the study participants was to consider the names of the files included in those revi-
sions as an indication of their potential relevance, and to switch to viewing source code even if the
revision’s changes were not quite understood. Participants preferred to build their understanding of
such files from scratch by reading it in an editor, at the risk of following a false lead and having to
return to searching.

4.2.7 Discussion

In this study, the examples of previous changes provided by Hipikat were helpful to newcomers
working on the two change tasks. The recommendations were used as pointers to snippets of code
that could be reused in the assigned tasks and as indicators of starting points from which to explore
and understand the system. Without such help, it is hard for a newcomer to a project to even know
where to begin:

before I actually saw the results Hipikat[[unclear]], I wondered how I would trace
where the hover behaviour was coming from, and—and really I had no idea how that
stuff is implemented. . . . I mean, I can’t, I don’t know even if I would have gotten to
it. I might have done some search on breakpoints, maybe that would have gotten to
[[unclear]]. . . . No I guess the breakpoint it doesn’t actually implement IMarker. I’m
not sure. Certainly wouldn’t have been as easy. (Harry)

Moreover, the study also made it apparent that the recommendations provided were not used to
gain wider understanding of the code, or of the design rationale behind it. For instance, although the
problem reports recommended by Hipikat included developer discussions, such as design decisions
and implementation trade-offs, it seems that the reports were read mostly to evaluate their closeness
to the task at hand. Otherwise, the participants arguably should have noticed that the problem report
used as a basis for most solutions in the difficult task contained a discussion of what to do with new
files in subdirectories during a versioning operation in the “Synchronize view.” However, none of
the participants considered checking for this condition.

One possible reason for this oversight is that the study participants were focusing on imple-
menting some basic functionality first, given the study’s time limits, and leaving the improvements
for later. Arguably, this is true in general: programmers and professionals arealwaysunder time
pressure and driven to fix just the immediate problem. The question is whether project histories
will tend to be used mostly as a source of “shallowly understood” examples, superficially knowing
the functioning of a piece of code without understanding the pre-conditions that it expects when it
is called or the results that it returns. As we saw in the difficult task, the consequences of such a

91

strategy are implementing a quick fix without deeper analysis, which may introduce subtle bugs and
other problems in the future. This is a concern that deserves further study, but with users who have
a real and long-term involvement in the project, because those users will have a stronger incentive
to gain deeper understanding of the recommendations provided by a project history recommender,
such as Hipikat.

On the other hand, it is possible that it was precisely Hipikat which allowed the study partic-
ipants to solve the tasks without gaining a deeper understanding of the system, by making it easy
to “lift” the code from recommendations. Rosson and Carroll [97] have observed this approach by
developers. Developers naturally engage in anas neededcomprehension strategy because it is the
only strategy that is feasible given time constraints and limited information. Since Hipikat makes a
wider range of information available, we expect that at times when more thorough comprehension
is necessary, it would be a feasible action to take.

We should also note that the way the discussion was organized within the problem report—with
little structure and no highlighting of the important parts and conclusions—made it too difficult
to follow by someone who is just trying to get the overall picture. This is precisely the kind of
situation that design intent systems attempt to address, but these systems are impractical to apply
to the hundreds of problem reports that a large project, such as Eclipse, handles each week. It is
possible that a more appropriate compromise can be found between the formal notations proposed
by most design intent systems, and the simple chronological sequence of comments used in most
issue tracking systems today.

When useful recommendations go unrecognized.The newcomer participant who was unsuc-
cessful in the easy task provides an interesting lesson to consider: even the best examples are useless
if the developer does not recognize them as such. As we already described, the top recommenda-
tion provided by Hipikat was a problem report which could hardly have been more similar to the
assigned task, and which was linked to code that was fairly easy to understand and very helpful in
solving the task. And yet, this participant looked at the recommendation and discarded it as irrele-
vant. It is hard to say what could have been changed in Hipikat that would have helped in this case,
or to prevent it from happening again. It may be simply an unavoidable risk faced by newcomer
developers working on an unfamiliar software project. It should, however, be less likely for a devel-
oper who has a larger stake in completing the change task, and who is willing to investigate more
fully even recommendations that at first look seem unpromising. (A more careful investigation of
recommendations could also be expected as users gain experience with Hipikat and come to rely on
it more for providing useful recommendations.)

Understanding a recommendation’s context. At least some participants who used Hipikat stated
in interviews that they had assumed that the code they were using as a template in their difficult task
solutions would automatically handle the subdirectory special case that was already described. They
had misunderstood thecontextof the recommended code and how it translates to the new context in
which they were developing. In the original context, the subdirectories were already being handled
by the caller—something that was not true in the new context. Althoughreuse of useshas already

92

been studied by Rosson and Carroll [97], understanding theusage contextduring reuse of Hipikat’s
recommendations poses additional problems to the developer. Developers studied by Rosson and
Carroll reached the code they were reusing by exploring the source on their own, building a mental
model of the context as they went. Developers in our study using Hipikat had to build their mental
model from the recommendation outward. This exploration was fairly “breadth-first”, and so it is
possible that it was not sufficiently “deep” to establish the right usage context.

We believe that some form of visualization could make it easier to understand the provided
example in the context of the larger system, which may help alleviate this problem. In particular,
the relationship between modifications in a set of versions, and to the other modules, could be made
clearer by presenting it as a graph of methods anduserelationships, rather than a series of source
files diffs.9 Otherwise, Hipikat users are faced with the situation in which, as one of the study
participants described it, “everything is in drawers and you open one drawer at a time and look
inside.” (Louis)

Understanding a past context. Establishing the correct context becomes even more difficult
when a recommendation is from a version of the system so far in the past that the API or, even more
problematic, usage conventions have changed and are not valid in the current system. Detecting
this situation automatically—thereby never making such recommendations in the first place—is un-
likely. However, it is precisely the newcomer developer who will be most challenged to realize that
parts of recommendations may not apply any more. This challenge could potentially be diminished
by visual indication of discrepancies between the recommendation’s and present code’s structure,
although it will not necessarily solve more semantic problems, such as the correct conditions which
need to exist before a certain call should be made, for example.

4.2.8 Threats to the study validity

When designing our user study, we faced interesting methodological challenges and our choices
reflect both practical and theoretical constraints. The lack of universally accepted measures for
code quality and the fact that there were many potential variations in how the study tasks could
have been done meant that we had to design our own correctness criteria that were more high-level
and had the flexibility to accommodate a range of solution. Similarly, there are few meaningful
measures of program comprehension—or of the program comprehensionprocess—so conducting a
qualitative analysis of comprehension issues was the only realistic option. Also, as we’ve already
discussed above, we decided to rely largely on observation to answer thehowandwhenHipikat is
used.

There were other logistical constraints that influenced our design. Although we wanted real-
istically difficult tasks, we couldn’t require that study participants spend a week working on them
full-time—they had to be doable in a day. Initially, we had allocated four hours per task, but then

9This problem is exacerbated by the fact that the Eclipse user interface arranges file editors using a “tab”
metaphor, so that only the current one is visible (see Figure1.10, for an example). While it is possible to get
around it by having multiple Eclipse windows opened, it is cumbersome, and users rarely do it.

93

pilot testing showed that fatigue, compounded with frustration, was becoming a serious factor as
the time progressed and that most of the interesting events happened in the first couple of hours.
Consequently, we shortened the time allowed for each task to two and a half hours, which turned
out to be sufficient to complete the exploration stage—which is when Hipikat is used—and to devise
most, if not all of the implementation of the solution.

These methodological choices should be kept in mind when evaluating the threats to the study
validity. Commonly, these threats are classified as follows:

Construct validity Construct validity refers to whether the study effectively measures what it is
intended to measure;

Internal validity Internal validity refers to how a causal relationship is established to argue about
a theory from the data;

Reliability Reliability refers to the degree to which someone analyzing the data would conclude
the same results;

External validity External validity refers to the generalizability of the results of a study.

Construct validity

We address construct validity in two ways. First, we devised the criteria for evaluating the cor-
rectness of the participant solutions by closely following the solution implemented and adopted in
reality by the Eclipse team for the release 2.1 of the product. The style-based criteria, “externaliz-
ing strings used in user messages” and “avoiding additional coupling,” are seemingly less objective,
since they are not based on satisfying a predetermined set of functional requirements like the other
correctness criteria that we use. However, that does not mean that they are arbitrary. Externalizing
strings is the policy adopted by the Eclipse project to ease localization of the software, and could
be seen in the examples provided by Hipikat. Avoiding additional coupling between components
is recognized in software engineering community as a “good” development practice. Given these
criteria, we believe that it was possible to evaluate the correctness of the solutions quite objectively
simply by comparing the code against the list of checkpoints, as in Tables4.3and4.5.

Second, we collected the data from multiple sources to the extent possible: we videotaped the
development process, interviewed the participants at multiple points in the study, and asked them to
write down the plan of their changes before they started modifying the code. Each of the sources
was useful to complement the others. For example, videotapes record exactly what was being done
and when, but the answer “why” it was being done remains a guess unless it is corroborated by
the participant in an interview. Interviews, on the other hand, are in danger of participant’s post-
hoc rationalizing of his or her actions, but this threat can be reduced by checking the participant’s
statements about what they were doing against what was actually recorded.

94

Internal validity

Internal validity of this study could be questioned primarily on the grounds of comparing the per-
formance of newcomers using Hipikat to that of experts using their usual development tools. In
the terminology of experimental design, the experts were not a true control group, because even
though they did not use Hipikat, they also differed from the newcomer group in their experience
with Eclipse. This difference means that the causal link between using Hipikat and performance
is less clear, because it may be obscured by other factors, such of length of experience. However,
given that newcomers outperformed experts on the correctness criteria, we feel that we have a pretty
strong support for the argument that it was Hipikat that made the difference. This support may not
be in a statistically significant form, but there should be no other reason to believe that program-
mers with only half a day of instruction on a million-line software system could do as well or better
modifying it as those who have had a year of experience working on the project.

The value of even having the expert group is that thanks to it we were really able to see what
could be done (and how) by an experienced member of the project in the time allotted for the study.
We knew what the “correct” solution was, but we did not know how it had been reached. The
experts’ performance gave us only a rough approximation, but is none the less valuable and puts the
newcomers’ performance in the study into a better perspective.

Reliability

We attempted to ensure the reliability of our study with respect to data collection by having de-
tailed procedures for conducting the study and gathering the data. Also, we used video- and audio-
recordings rather than field notes, so that coding and analysis could be done from the original
sources, rather than notes which have a layer of interpretation already build in.

With regards to whether another researcher evaluating the same data would reach the same
conclusions, the main issue here is that we evolved our qualitative data analysis as we progressed.
We did not attempt to collect a measure such as intercoder reliability10 primarily because of the time
commitment necessary to train another analyst and for that person to perform analysis sufficient to
calculate the intercoder reliability. We note, however, that a significant part of the analysis was rather
objective, such as checking whether a participant’s solution implements the correctness criteria. The
exploration maps were also constructed using very simple marker events in the video-recordings—
specifically, visiting an artifact for the first time and the navigation method used to access it (for
example, from the list of classes, or by executing a “references” search).

External validity

Arguably, the external validity of this study is limited since it used only two change tasks drawn from
a single software development project. However, we tried to select study tasks that are representa-
tive of change tasks that might be given to a newcomer developer during his or her “assimilation”

10Intercoder reliability, or intercoder agreement, is the measure of the extent to which independent coders
evaluate a characteristic of an artifact and reach the same conclusion.

95

phase. Both tasks involved adding new functionality to the system rather than fixing a bug, and
this functionality had at least some visual component to it, to make it easier to initially explain the
requirement to the newcomer. The tasks were limited in scope to a handful of different modules,
but were not trivial in terms of their solution, which had to use methods from at least two different
subsystems (for example, Java debugging and text editors in the case of the easy task).

Furthermore, the two tasks were very different from each other on a number of categories. First,
the tasks came from two different subsystems of Eclipse, Team and Java, which are entirely inde-
pendent of each other and whose development teams are even each located on a different continent.
Second, the tasks differed in the amount of code necessary to implement the change, as well as its
complexity and use of other classes and methods. Third, the help Hipikat provided in solving the
tasks varied, with a top recommendation being extremely helpful in the easy task, while in the diffi-
cult task the participant had to examine several recommendations with differing levels of relevance
to solving the task.

Lastly, Eclipse is quite typical of large open-source software projects in terms of artifacts that it
produces in the course of the development, and development process that it follows. We believe that
this similarity means that our approach would be applicable to other projects, such as Mozilla or
Gnome, and that Hipikat would be able to recommend artifacts useful to project newcomers under
those conditions as well.

4.2.9 Conclusion

Our case study showed that newcomers can use the information presented by Hipikat to achieve
results comparable, or better, in quality and correctness to those of more experienced members of
the team. In addition to validating this research claim, the study also allowed us to look at when
newcomer developers query Hipikat, and how they evaluate Hipikat’s recommendations.

The study participants used Hipikat in the early stages of their exploration, to give them an
initial foothold in the system from which they can develop conjectures about the task and build
their solution. Consequently, we observed the participants tended to stop their investigation of
Hipikat’s recommendations as soon as they felt that they have found a recommendation that was
“good enough,” and that would allow them to switch working with the code directly.

We also found difficulties for the newcomers to understand recommended artifacts in the context
of the past system, and to take the knowledge forward and apply it to the current context. Partly,
these difficulties were caused by the way recommended artifacts were presented, which made it
difficult to understand their relationship with each other and the rest of the system. However, part of
the problem lay in the change of usage context when code from a recommendation is being reused
in a different location, something which Hipikat currently does not help in detecting.

4.3 A look at the quality of Hipikat’s recommendations

To investigate the usefulness and accuracy of Hipikat for providing information relevant to a devel-
oper working on software modification task, we evaluated Hipikat’s recommendations on a sample

96

of bug reports drawn from the Eclipse bug database.
We begin our description of the study by explaining how we selected the sample of bugs (Sec-

tion 4.3.1) and the criteria by which we evaluated Hipikat’s recommendations (Section4.3.2). We
then present a summary of the results, followed by a detailed description of three cases that represent
the range of issues that we have identified in the results (Section4.3.3).

4.3.1 Selecting the sample

Our study targeted modification tasks that were completed for Release 2.1 of Eclipse. In general,
in open source software development, a bug report that is markedfixed corresponds to a single
modification task performed by a developer. We thus initially defined the set of eligible reports as
all reports from Eclipse’s bug database that were marked “fixed” between June 27, 2002 (the day
Eclipse 2.0 was released) and March 27, 2003 (the day of the 2.1 release). This is the same time
period that we used in the Eclipse case study (Section4.2), and consequently is the phase of Eclipse
development with which we are the most familiar and for which we can best evaluate the relevance
of Hipikat’s recommendations.

We further narrowed the set of eligible bug reports to those modifications that a newcomer may
have been assigned. Although there are no clear rules that can be used to automatically identify
such modifications, a good approximation is to use theseverityfield of the bug report. A severity
value ofminor is defined in Eclipse.org’s online help for Bugzilla11 as a “minor loss of function,
or other problem where an easy workaround is present.” From anecdotal evidence gathered through
observing activity in Eclipse’s bug database, if a bug’s severity has been set to the value of “minor,” it
is virtually always a good indication that fixing the bug is an appropriate task for a project newcomer,
and is for the purposes of this investigation the most practical method to select such tasks.

A total of 215 reports from the Eclipse bug database matched our criteria (bugs of severity
“minor” which were resolved to “fixed” between June 27, 2002 and March 27, 2003). From this
set, we randomly selected a sample of 20 bug reports for investigation. As we investigated these
bugs, we found that some did not represent modification tasks. In these cases, we discarded the bug
and drew another one. One reason these reports made it into our sample was that the report was
inappropriately marked as “fixed”—for example, if in reality the problem described in the report
was determined not to be a real bug in Eclipse. (There is a separate bug status to indicate this
situation, called “invalid,” but occasionally developers do not use it when they should and mark the
bug “fixed” instead.) We also discarded a selected report if we could not determine how it was fixed,
which was usually when it was fixed as a side-effect of another (larger) modification task.

4.3.2 Evaluation criteria

The performance of information retrieval systems is often evaluated in terms of recall and preci-
sion [101]. Informally, precisionis the proportion of retrieved material that is actually relevant to
the query, andrecall is the proportion of relevant material that is actually retrieved.

11https://bugs.eclipse.org/bugs/queryhelp.cgi#severity

97

https://bugs.eclipse.org/bugs/queryhelp.cgi#severity

More formally, we call thesolutionof a modification taskm the set of filesfsol(m) that contain
the implementation of the task. The Hipikat recommendationH(m) is the set of all project artifacts
that Hipikat returns in response to a query on bug reportm. We then define the set of recommended
filesfr(m) as the union of solutions to completed modification tasks inH(m):

fr(m) = {fsol(b)|b ∈ H(m) ∧ b is a modification task}

that is, the files that can be reached through the two-step investigation procedure of querying Hipikat
first on the assigned task, and then on bug in the returned recommendation list that were marked as
“fixed.” This was the search strategy that was also used by the newcomer participants in our study
(see Section4.2.6).

The precision of a set of recommended filesfr(m) is then the fraction of recommendations that
did contribute to the files in the solutionfsol(m) of the modification taskm:

precision(fr(m)) =
|correct(fr(m))|
|fr(m)|

, where (4.1)

correct(fr(m)) = fr(m) ∩ fsol(m) (4.2)

The recall of a recommendation is the fraction of the files in the solutionfsol(m) of the modification
taskm that are recommended:

recall(fr(m)) =
|correct(fr(m))|
|fsol(m)|

(4.3)

However, as we have seen in the Eclipse case study (Section4.2), there is more value in Hipikat
recommendations than just finding the location where the solution should be implemented. In par-
ticular, the usefulness of recommendations in the difficult task lay in theirexamples of useof the
relevant APIs, rather than pointing to the class that contained the solution. Given the above mea-
sures of precision and recall, Hipikat recommendations for the difficult task in the Eclipse study
would score poorly, although they were useful. We therefore propose to extend the definition of
the solution to a modification task with the set ofconstructscsol(m) that were part of the imple-
mentation. These constructs can include method calls or specific API use patterns in the case of
Java classes, or portions of the XML files that are used to define Eclipse plug-ins and their connec-
tions, for example. However, we will not calculate the precision and recall for constructs, because
precisely defining the granularity and number of relevant constructs in a given solution is to some
extent a matter of individual judgement. (For example, it’s not necessarily simply the number of
method calls involved in the solution.) Instead, we will include the relevant constructs, and their
presence in Hipikat recommendations, in the detailed description of results for individual bugs in
the next section.

4.3.3 Results

The results of this investigation are summarized in Table4.6. For each bug report in our sample, we
list the precision and recall of recommended files and constructs. In each case we also include the
rank of the first recommendation that contained the right files or construct, respectively.

98

B
ug

id
F

ile
s

F
irs

t-
us

ef
ul

re
co

m
m

en
da

tio
n

P
re

ci
si

on
R

ec
al

l
F

ile
s

C
on

st
ru

ct
s

A
ll

bu
g

s
C

o
m

p
le

te
d

A
ll

bu
g

s
C

o
m

p
le

te
d

23
71

9
0.

56
(5

/9
)

0.
71

(5
/7

)
1

1
1

1
28

38
2

0.
50

(1
/2

)
1.

00
(1

/1
)

5
1

N
on

e
26

33
8

0.
17

(1
/6

)
1.

00
(1

/1
)

2
1

2
1

30
94

3
0.

15
(4

/2
6)

1.
00

(4
/4

)
4

3
4

3
23

32
1

0.
13

(2
/1

6)
1.

00
(2

/2
)

3
1

3
1

27
82

2
0.

11
(1

/9
)

1.
00

(1
/1

)
12

2
N

on
e

19
85

7
0.

09
(2

/2
2)

1.
00

(2
/2

)
3

2
2

2
32

48
0.

07
(1

/1
4)

1.
00

(1
/1

)
10

4
N

on
e

23
38

0.
06

(1
/1

7)
1.

00
(1

/1
)

7
3

10
4

96
15

0.
06

(1
/1

7)
0.

50
(1

/2
)

2
2

2
2

34
64

1
0.

05
(1

/1
9)

0.
50

(1
/2

)
10

4
10

4
24

16
8

0.
04

(1
/2

4)
1.

00
(1

/1
)

2
2

N
on

e
20

01
7

0.
04

(1
/2

4)
0.

25
(1

/4
)

8
2

8
2

23
36

5
0.

04
(1

/2
5)

1.
00

(1
/1

)
1

1
1

1
22

26
0

0.
04

(1
/2

6)
1.

00
(1

/1
)

4
1

N
on

e
28

51
3

0.
04

(1
/2

7)
1.

00
(1

/1
)

4
3

2
2

67
32

0
(0

/2
6)

0
(0

/1
)

N
/A

N
/A

5
1

31
97

2
0

(0
/3

6)
0

(0
/1

)
N

/A
N

/A
N

on
e

32
06

7
0

(0
/1

4)
0

(0
/1

)
N

/A
N

/A
2

2
33

18
2

0
(0

/6
0)

0
(0

/2
)

N
/A

N
/A

N
on

e

Av
g.

0.
11

;0
.0

6
0.

65
;1

.0
0

Ta
bl

e
4.

6:
R

ec
al

l
an

d
pr

ec
is

io
n

of
re

co
m

m
en

da
tio

ns
fo

r
a

sa
m

pl
e

of
20

bu
g

re
po

rt
s.

T
he

“A
ve

ra
ge

”
ro

w
gi

ve
s

m
ea

n
an

d
m

ed
ia

n
of

th
e

sa
m

pl
e.

“F
irs

t-
us

ef
ul

”
co

lu
m

n
in

di
ca

te
s

th
e

ra
nk

of
th

e
fir

st
re

co
m

m
en

da
tio

n
th

at
po

in
te

d
to

th
e

rig
ht

fil
es

or
co

ns
tr

uc
t.

F
or

bo
th

fil
es

an
d

co
ns

tr
uc

ts
w

e
gi

ve
tw

o
nu

m
be

rs
.

C
ol

um
n

“A
ll

bu
gs

”
in

di
ca

te
s

th
e

ab
so

lu
te

ra
nk

am
on

g
re

co
m

m
en

de
d

bu
g

re
po

rt
s,

w
hi

le
th

e
“C

om
pl

et
ed

”
co

lu
m

n
gi

ve
s

th
e

ra
nk

w
he

n
ta

ki
ng

in
to

ac
co

un
t

on
ly

th
os

e
re

co
m

m
en

da
tio

ns
th

at
re

pr
es

en
te

d
co

m
pl

et
ed

m
od

ifi
ca

tio
n

ta
sk

s
th

at
al

so
ha

d
at

ta
ch

ed
fil

e
re

vi
si

on
s.

99

We will return to Table4.6 in the following section (4.3.4), when we discuss study results in
more detail. But first, in the remainder of this section, we describe in detail recommendations for
three bugs from the sample. These bugs were selected as examples of a situation in which Hipikat
made very good, moderately useful, or poor recommendations, respectively, and we use them to
illustrate the kind of help that can be expected from Hipikat in practical situations.

An example of a very useful recommendation

Bug report 23719 points out an inconsistency in the names of automatically generated getter and
setter methods when the underlying field is a boolean with a name like “isFoo.” In that case, the get-
ter name will be “isFoo”, but the the setter will be named “setIsFoo,” which causes interoperability
problems with bean introspection applications.

Solution The solution of this bug involves several classes. The core is in theproposeSetter-

Namemethod of classNameProposer , which, if the field is a boolean whose name starts with
“is”, removes the “is” before adding the “set” prefix to the field name. (The field name is first
stripped of pre-configured field prefixes and suffixes, like “f-” or “-m”.) The method is overloaded
and exists with two signatures: in one case there is one parameter of typeIField , in the other
there are two, aString and aboolean . (The latter variant of the method existed with only
theString parameter prior to this modification task.) TheproposeSetterName(IField)

method simply callsproposeSetterName(String, boolean) with the string argument
set toIField.getElementName() and boolean set toIField.getTypeSignature().-

equals(Signature.SIG BOOLEAN).
The changes to theNameProposer.proposeSetterName method mean that the extra

boolean parameter has to be added in its callers in other classes:RenameFieldRefactoring ,
GetterSetterUtil andAddGetterSetterOperation . Also, the method can now throw
a JavaModelException and so a “throws” clause has to be added toRenameFieldInput-

Wizard ’s createNewSetterName method.
Lastly, an JUnit test was written (as classNameProposerTest) and added to the suite of

tests for JDT UI plug-in (classAutomatedSuite).

Recommendations Hipikat turns out to be very helpful for solving this bug because it provides
highly ranked recommendation that points out both the constructs and the locations of the solution.
The top Hipikat recommendation for bug 23719 is bug report 6887. This report corresponds to
the modification task that changed the name of automatically generated getter names for boolean
fields from “getfield” to “isfield”. Again, in this case the core of the task’s solution was in the
NameProposer class, but this time in theproposeGetterName method. The constructs used
parallel the ones in the solution for bug 23719 in theproposeSetterName method that we
described: if the field is a boolean, then the method adds the “is” prefix to the field name (with pre-
fixes and suffixes stripped away first). The modification implementsproposeGetterMethod

as an overloaded method, which takes either a single “IField” parameter or a String and a boolean.

100

The IField variant of proposeGetterName calls the other one exactly the same way as
the proposeSetterName(IField) calls proposeSetterName(String, boolean)

in the solution to bug 23719.
These changes also necessitate adding the extra boolean parameter in what used to bepropose-

GetterName(String) to its callers inRenameFieldRefactoring , GetterSetter-

Util , andAddGetterSetterOperation . Also, becauseproposeGetterName can now
throw aJavaModelException , a “throws” clause had to be added toRenameFieldInput-

Wizard ’s createNewGetterName method.

Applying the recommendations As can be seen from the preceding descriptions, the solution to
the top Hipikat recommendation for report 23719 contains all constructs needed to solve the new
report. These constructs will have to be applied in a different method of classNameProposer

(proposeSetterName as opposed toproposeGetterName), but that difference should be
obvious from the two operations. The recommendation also points out all of the other source code
files that will have to be changed as part of the implementation, although this would be evident from
compilation errors caused in those files by the changes inNameProposer .

The only aspect of the real fix to bug 23719 that the recommendation missed is the introduction
of the corresponding JUnit tests. However, the code recommended by Hipikat in this case should
be sufficient for even a newcomer to implement the functionality him- or herself, which given the
complexity of the API for manipulating the model of Java programs in Eclipse, is very helpful.

Moderately useful recommendations

Bug report 6732 points out that expanding a node in the tree widget in theNavigatorview can take
a long time when a lot of elements are present. It is perhaps unavoidable that some operations will
take longer to execute, but in this case Eclipse does not give any visual indication that the operation
is in progress; the lack of response can even make it appear to the user that the application has
locked up. The bug report concludes by suggesting that the widget follow accepted HCI practice of
showing a busy cursor while node expansion is in progress.

Solution The solution, shown in Figure4.10, is to perform the operation using the methodshow-

While(Runnable) of classBusyIndicator , with the operation encapsulated in aRunnable

interface.

Recommendations Hipikat recommendations for this bug do not point to the location of the so-
lution. However, of the four recommended completed modification tasks, three contain an im-
plementation of the busy cursor in a different context (2937, task view filter, 15506, switching
launch configs, and 9687, opening an editor). Each of the three useful modifications uses the
BusyIndicator.showWhile construct, with the operation wrapped in aRunnable . The
remaining completed modification task that was recommended but not useful (3790, busy cursor
when opening type hierarchy) is linked, with low confidence, to three file revisions that seem to be

101

protected void createChildren(final Widget widget) {
| final Item[] tis = getChildren(widget);

if (tis != null && tis.length > 0) {
Object data = tis[0].getData();
if (data != null)

return; // children already there!
}

> BusyIndicator.showWhile(widget.getDisplay(), new Runnable() {
> public void run() {

// fix for PR 1FW89L7:
// don’t complain and remove all "dummies" ...

> if (tis != null) {
for (int i = 0; i < tis.length; i++) {

tis[i].dispose();
}

> }
Object d = widget.getData();
if (d != null) {

Object parentElement = d;
Object[] children = getSortedChildren(parentElement);
for (int i = 0; i < children.length; i++) {

createTreeItem(widget, children[i], -1);
}

}
> }
> });

}

Figure 4.10: Solution of bug 6732 (Diff-style view of changes implemented in AbstractTreeViewer
revisions 1.11).

102

irrelevant to the task. (It appears that in this case the developer in charge did not use any of the
practices that allow Hipikat to make the connection between CVS check-in comments and Bugzilla
items.)

Applying the recommendations Arguably, after reading these recommendations, a newcomer
should have no trouble to realizehow to implement this modification, although finding the exact
location (AbstractTreeViewer) might be more of a challenge.

Unhelpful recommendations

Bug report 33182 is an example in which Hipikat did not provide any help, either to locate the file(s)
involved, nor to identify the constructs necessary for the solution. The topic of the report is the
inclusion of certain sections into the so-called “update preview” display even when they contained
no information. The solution that was implemented is very simple: if the information for one of
the four applicable sections (“Supported platforms”, OS, WS, and NL) is missing, the section will
display a default value (e.g., “Supported platforms: all”). The solution is contained in two files:
in classDetailsForm the setters for each of the four sections are extended to set the section’s
content to the default value if the assigned value isnull , i.e., missing. The text for the default
value is externalized in properties fileUpdateUIPluginResources.properties for easy
localization of the user interface. (See Sections4.2.5and4.2.6.)

There are two related reasons for this lack of useful recommendations. One is that the problem
report itself is very terse. (This seems to be the case for most problem reports that we have come
across in this particular subsystem, “Platform-Update”.) Its contents are fairly generic to the sub-
system, and so none of the recommended problem reports are truly similar, although ten of them
are from the area. To make things worse, programmers working on this part of the code rarely enter
CVS check-in comments, which makes recommending much more difficult for Hipikat. (As an
illustration, out of 71 revisions ofDetailsForm , 63 have no check-in comment at all, four had
a bug number in the text, and one more a two-word description of the feature implemented in the
revision.) Given that at the time almost all work in this area was done by only two developers and
that there were no other modules that depended on it, it is perhaps not surprising that Hipikat did
not perform well in this kind of environment.

4.3.4 Summary

Table4.6shows that in 12 modification tasks, out of a sample of 20, Hipikat was able to point out
all of the files involved in the task’s solution, that is, it had a recall of 100%. In three more cases,
Hipikat had a recall of 50% or more, recommending half or more of the relevant files. We did not
numerically evaluate Hipikat’s performance on recommending constructs useful for the solution, but
in our sample there are two cases when Hipikat successfully identified constructs even when it did
not identify files (bugs 6732 and 32067). Intuitively, this is going to be the case even with a perfect
recommender if new functionality is being introduced into a module when it is already present in

103

other parts of the system (as in our example of a moderately successful Hipikat recommendation,
bug 6732).

Just as importantly, useful recommendations are usually ranked high among completed mod-
ification tasks. Relevant files and constructs are found from the first or second top-ranked such
modification in eleven out of sixteen cases for files and ten out of thirteen times for constructs—and
always within the top four. This is important because we observed in the Eclipse study that the
participants were reluctant to investigate too far down the list.

Rankings of useful recommendations are lower when all bug reports included in Hipikat rec-
ommendations are taken into account. However, users know that bug reports that have not been
marked “fixed” do not need to be further investigated to look for associated code. In this respect we
are counting on the developer to make reasonable choices when investigating Hipikat recommenda-
tions, which we believe is not an inappropriate assumption. Moreover, Hipikat recommends all bug
reports, not just the ones marked “fixed,” in case they contain interesting discussion, for example,
mention of other bug reports or reasons why the report will not be considered for implementation.

Likewise, although Hipikat precision in this study was quite low, it is part of the inevitable trade-
off to get better recall. Again, we feel that it was the right choice to make; there is a lot of useful
information that developers get just from seeing the name and module of a file, and they can use this
information to quickly filter the recommendations for those most likely to be really relevant to the
task. We saw this behaviour in the participants in the Eclipse study, and it has also been observed
in other studies of programmer strategies of code reuse [97]. However, giving a smaller number of
recommendations, and using different criteria to select an artifact for recommendation, remains an
open area of research.

104

Chapter 5

Discussion

In this chapter, we describe the main issues that arose during the development and evaluation of
Hipikat, the trade-offs involved, and our views on the potential impact of extended use of Hipikat
on the process of software maintenance. Throughout the chapter, we compare our choices with
existing alternatives, and note avenues for future research involving Hipikat.

5.1 Model

One comment that was common to participants in both the Eclipse and Avid studies (Sections4.2
and4.1, respectively) is that our approach depends on the existence of extensive repositories of soft-
ware development artifacts. This dependence on artifact repositories is not far-fetched in the modern
world of software development. It is already a fact of life in open-source software development. No
serious project today comes without an online versioning system for the source code, an issue track-
ing system, archived mailing lists, and a web site; these same resources are available to every project
on an open-source project hosting web site like SourceForge1 or GNU Savannah2—and are so con-
venient that student teams in 4th year capstone software engineering courses sometimes use them
for class projects. Commercial software development is going the same route: versioning control
of source code and issue-tracking systems have been in common practice for some time. With the
universal adoption of email, many organizations now have archives of developer communication for
long-running projects. As the software industry is increasingly becoming involved in open-source
projects (e.g., IBM, Sun, and Apple’s participation in various high-profile projects is well-known),
it can be expected that open-source techniques and tools will gain even wider acceptance.

In this section we will discuss some of the open issues regarding certain aspects of the Hipikat
model, but will not question the basic assumption that those artifact repositories exist in the first
place.

1http://www.sourceforge.net
2http://savannah.gnu.org

105

http://www.sourceforge.net
http://savannah.gnu.org

5.1.1 Unit of recommendation

Hipikat makes recommendation at the artifact level of granularity; that is, what is recommended is
a bug report, a file revision, a web page, etc. This level of granularity follows naturally from artifact
sources—e.g., Bugzilla for bug reports—and usually results in recommendations that are logically
self-contained. (For example, even though there are multiple individual comments in a bug report,
they are all related to a single bug.)

In some cases, however, it may be desirable to recommend only a portion of an artifact, e.g., if
only a couple of comments in a long bug report were relevant to a query. Just what the appropriate
portion of the artifact is could be highly dependent on the circumstances and has the potential
drawback of a loss of context if the recommended fraction is too small, unless it is shown within the
larger artifact. A way to accommodate this functionality within the existing Hipikat model would be
to recommend entire artifacts and highlight the most relevant passages (similarly to the way Google
highlights the search terms in cached pages). The highlights could be represented in a uniform way
and independently of the artifact type as a collection of ranges of text in the artifact. This kind of
relevant passage detection could be automated for artifacts consisting of natural language text (i.e.,
not computer code) by using existing information retrieval techniques for topic detection within
documents (e.g., [46, 100]). For a discussion of manual identification of such passages, see the
section on collaborative filtering (Section5.1.3).

At other times, the unit of recommendation should be a set of mutually related artifacts. A case
in point is a set of file versions that were checked in together to fix a bug. It makes sense to think of
all files in the set as a single change; trying to understand modifications in one class in this set (if
the files are Java source code, for example) will be futile without taking into account code modified
in other classes in the set. Another example are threads of email messages or newsgroup articles. A
general way in which suchsetsof artifacts could be recommended as a group would be by returning
a hierarchy of recommendations, rather than the flat list format we currently use. That way a single
recommendation node (cf. Figure3.2) could either point to a single artifact, or (recursively) contain
sets of recommendation nodes.

Lastly, in some cases the desired unit of recommendation does not map neatly onto the structure
of artifacts in repositories. Sometimes the recommendation to a query could be a unit in the syntactic
space of the programming language used in the project: a class or a method, for example (cf. [125]
and [49] for examples of software development recommenders that operate at a class and method
level of granularity). The content of such a recommendation could be obtained from a file version,
especially if Hipikat could highlight the relevant range as discussed earlier in this section. However,
the project memory model would have to be extended to allow entities at granularities other than
artifacts in online repositories. It remains to be seen how far this metaphor could be stretched while
still keeping it logically coherent to the user and maintaining the principle that each recommendation
can be used as a starting point for another query.

106

5.1.2 Better time awareness

Although Hipikat records the time an artifact was created—and includes it in the information that
is sent as part of a recommendation so the query results can be viewed sorted by creation date—it
does not use this data in the recommendation heuristics. That is, it is not possible to ask Hipikat
questions like “show me artifacts about feature X that were created since release N” (or even “since
date D”). Such functionality could be trivially added by extending the search dialog feature (see
Section3.2.3) with special query conditions, although at the expense of increasing the complexity
of the user interface.

Another time-related issue is that the value of information contained in artifacts usually dimin-
ishes with time as the system changes. Therefore, even if an artifact were the best match to a query
on the basis of text similarity, it will not be very useful if it describes a functionality of an old ver-
sion of the system that no longer works that way. (Even worse, it may be especially misleading to
the novice who does not have know enough project background to recognize that the information
is out of date.) Some existing recommender systems attempt to model this information decay by
decreasing the calculated similarity value by a factor that takes into account the age of the document
under consideration [5]. The challenge inherent in this approach is that the time decay factor is es-
sentially arbitrary, chosen by trial-and-error, and not necessarily portable across different document
collections.

However, not all information about a software system gets out of date at the same rate. If a
module hasn’t changed much over time, even old artifacts related to it will still be relevant. The
information decay is not monotonous: a system whose architecture has degraded over time can be
refactored to restore it and reverse the entropy. Therefore, dealing with this issue remains an open
research question.

5.1.3 Collaborative recommendation

As already discussed in Section2.3, Hipikat’s recommendations are made purely based on the
content of artifacts. However, given a large enough user base, it becomes possible to make use of
other user’s interactions with the tool when choosing artifacts to recommend. Suchcollaborative
recommendinguses ratings given to artifacts by other users to select the ones that are the most
relevant to a given query. One way to obtain the ratings isexplicitly, asking the user to manually
rate the artifacts. This is the approach we have implemented in the current prototype as the “thumbs-
up” operation in theHipikat results view: giving a thumbs-up to a recommendation means that in
the future it will be ranked at the top of recommendations when it matches a query. This is a very
simplified form of collaborative recommending, and one that was intended primarily as a proof-of-
concept. A more complete implementation should take into account the closeness of the current
query and the query (or queries) for which a recommendation was given the thumbs-up or, a more
typical pure collaborative recommending technique, the similarity in user profiles (e.g., interests or
expertise) between the current users and the users who created the ratings. An even better solution
would be to fully integrate collaborative and content-based criteria, such as introduced in Fab [107].
Such a combination could not only improve the quality of recommendations, but also avoid the

107

negative sides of the collaborative recommendation approach, such as handling users with unusual
information needs compared to the rest of the population.

Using explicit ratings has a significant drawback, however: it requires the users to perform ad-
ditional work which is not going to directly benefit them, and, as Grudin has noted [43], is therefore
unlikely to get done. Perhaps even more problematic is the fact that the action of rating a recom-
mendation fits rather awkwardly into the existing software development process: as we have found
in our empirical studies, recommendations are investigated in the initial stages of a change task, but
the natural point to rate their usefulness would be once the task has been completed, when the de-
veloper can truly evaluate which ones were the most useful. Trying to rate recommendations early
on, as they are investigated, does not only introduce room for error, but is actually disruptive to the
user’s main task—planning the software change.

Typical collaborative recommenders that use explicit ratings don’t suffer from this drawback
because they naturally fit the act of rating into an existing process: peoplelike giving their opinions
on movies (e.g., Video Recommender [48]), music (e.g., Ringo [105]), or books (e.g., the reader
reviews on Amazon.com, which include a rating). In Hipikat’s target domain, we argue, that is
not the case and an approach that usesimplicit rating (i.e., inferred from users’ actions) would be
more appropriate and likely to succeed. While the best way to obtain these ratings for Hipikat
should be empirically established, two basic approaches that have been used in other recommender
domains are applicable in our case. Firstly, the action of viewing an artifact can be taken as a
positive rating; this rating can be further quantified based on the length of time spent viewing it
(e.g., as in GroupLens [59]) or how often the artifact is visited by the whole user community [121].
An alternative approach which may better capture the context in which the “rating” was made is
to use the developers’ history of navigation within the IDE and Hipikat to extract patterns in the
temporal order of viewing of artifacts [19, 39]. By discovering these patterns, the tool can then
recommend artifacts that were consistently accessed in similar contexts. The unresolved problem
with navigation patterns remains how to identify the “dead ends” and distinguish them from useful
paths. Especially newcomers exploring the code likely will not have the experience to recognize
dead ends and by following such irrelevant paths will increase those artifacts’ future rank. It seems
that having an option in the user interface to explicitly rate recommendations (especially negative
ratings) would be a useful feature in such cases.

5.1.4 Making sense of the group memory

In her research on how knowledge workers learn, Kidd noted the value of theact of making notes
to the learning process, rather than the notes themselves [57]. In the domain of teamwork, Schmidt
and Bannon emphasize that it is the active construction of meanings in a common information space
which facilitates cooperative work, not simple provision of a shared database [104]. The same
critique of the metaphor of organizational memory as a storage, with “remembering” equivalent to
passive retrieving of data from the memory store rather than constructive process adapted to current
situation, is echoed in Bannon and Kuutti [8].

On these grounds, an argument could be made against the use of a project memory recommender

108

such as Hipikat because it promotes passive retrieval of information. Ribak et al. further argue that
a good CSCW system for knowledge sharing must nourish community building [93]. They apply
this principle in ReachOut, a knowledge-sharing tool designed to encourage group interaction. Rea-
chOut offers chat-like forums where users can ask questions from their colleagues. The discussion
can be both synchronous and asynchronous, but the contents persist for a limited time only. As
Ribak et al. say, “There is no point in creating more written, explicit knowledge; it is the real collab-
oration and the sharing of tacit knowledge that needs to be fostered. Providing access to previous
discussions will imply the traditional ‘search before you ask’ ” [93, p. 128].

There is obvious merit in this approach, and we do not think Hipikat could (or even should)
entirely replace interaction with team members. Still, given the large amount of existing project
artifacts, it would only make sense to use the available information to take some of the burden off
one’s colleagues, especially in an environment like open source software where there may be too
many newcomers to give them appropriate mentoring support. In some cases, there may simply be
no one who can help with the problem because that knowledge has been lost (especially if people
involved have left the project). Also, the existing information provided by Hipikat could help a
newcomer ask more informed and focused questions, something that can only be beneficial to all
involved.

More importantly, Hipikat does not simply serve ready-made answers; its recommendations are
more often just starting points for individual learning. Viewed this way, Hipikat actually promotes
newcomers’ actively making sense of past experiences and adapting them to current issues, which
is an essential process in their transition into becoming experienced members of the development
team.

5.2 Implementation

5.2.1 Presentation of query results

Hipikat currently presents its recommendations as a list consisting of a one-line short artifact de-
scription taken from the artifact’s metadata (see Table3.1), the reason for the recommendation, its
relevance to the query, and confidence in the result (see Table3.2). Displaying an artifact depends
on its type: file revisions are displayed using the existing Eclipse facilities, either standalone in an
editor or in a side-by-side comparison with its predecessor, highlighting the changes; displaying
bug reports replicates in Eclipse the functionality of the existing Bugzilla front-end; and a URL is
opened in an external web browser. Both the presentation of the recommendation list and displaying
recommended artifacts could be improved.

Showing matches in a flat list sorted by their relevance is the dominant way of presenting results
by recommenders, and search engines in general, in a multitude of domains. It is the simplest to
implement and works fine in most situations. However, it has significant drawbacks when the user’s
purpose is exploratory browsing of a collection. Flat-list presentation does not indicate relationships
within the results, only to the query itself. If the user can see similarities between individual matches,
he or she can identify clusters within the results, making it easier to discard subsets which match

109

the query in ways not relevant to the user’s current purpose (e.g., [3]). This task can be made even
easier when the clusters are automatically labelled with their most salient keywords (e.g., as in
WebRat [99]). Document clustering (from cluster calculation to visual presentation) and document
summarizing are active areas of research in information retrieval, and incorporating their advances
in Hipikat would be a useful step to take. Moreover, it would be an interesting study in its own right
how beneficial those features are for understanding unfamiliar software and finding code to reuse.

As we have already noted in Section4.2.6, even once participants in the Eclipse study recog-
nized the potential relevance of a recommendation, understanding the recommended artifacts was
sometimes more difficult than it could have been. This is particularly the case for file revisions.
Even when seeing a revision’s changes highlighted and side-by-side with its predecessor, under-
standing how those changes work is a challenge when the changed code is scattered across many
files and changes need to be correlated to see how they work together and fit into the rest of the
system. We believe presenting these changes and relationships in a graphical form would go a long
way to assist the user. Implementing such a feature, however, would require a significant amount
of work, both to solve the technical challenges and to determine the most effective form for the
presentation.

5.2.2 Scaling up

The main bottleneck in the heuristics that are currently used in Hipikat is using Latent Seman-
tic Indexing for determining text similarity. LSI uses singular value decomposition (SVD), which
is a costly operation in terms of both memory consumption and computation time. Even using
workarounds to reduce the size of the matrix on which SVD is performed—as we currently do (see
Section3.2.2)—or to approximate its calculation using less expensive methods would likely not
scale to larger document collections because it would eventually become too slow or too inaccurate.
(LSI’s precision-recall performance in general tends to degrade as document collections become
very large and heterogeneous [20].) There is, however, ongoing research into scaling up LSI to
handle such large selections. For example, Tang et al. distribute the document collection over a
peer-to-peer network to reduce the cost of the search, combined with other techniques for reducing
the cost of SVD [114]. They report several orders of magnitude better efficiency than LSI, while
maintaining LSI’s retrieval quality even for large and heterogeneous document collections. Incor-
porating such a technique into Hipikat should allow it to scale even to the projects of the scale and
duration of Mozilla (six years of development and 260,000 reports in its Bugzilla database).

5.2.3 Check-in comment and activity-based matching

When the developer checking a file version into the repository adheres to the bug number conven-
tion, the version’s check-in comment is in general a better indication that it fixes a particular bug.
However, it is not perfect: some developers do not enter the bug id into their check-in comments,
and others simply enter a blank comment for the majority of their check-ins. (This seems to be
more of a problem in some Eclipse subteams than other, as we have seen in Section4.3.3.) For this
reason, we added the activity-based matching. It complements the check-in comment quite nicely,

110

simply because most developers work on only a few problems at a time, and mark them fixed in the
bug-tracking system as they check the implementation into CVS. Most of the time, the two matchers
identify the same links. When they diverge, we rank the check-in comment matcher’s recommen-
dation higher, because it is usually the correct one. For example, developers don’t always mark the
reports in the bug-tracking system as fixed immediately after they check the fix into the CVS, but
do a sort of “mass cleanup” of their assignments when they find the time.

Sometimes, however, the check-in comment can be wrong, as illustrated in the post on the
developers’ mailing list shown in Figure5.1. In this example, the activity matcher identified the

Date: Tue, 25 May 2004 12:13:35 -0400
From: Name removed
Subject: [platform-ui-dev] Mislabled commit
To: platform-ui-dev@eclipse.org
Reply-To: platform-ui-dev@eclipse.org

A fix for Bug 62707 was erroneously submitted with a comment that
suggested that the fix was really for 63849. The affected files are:

org.eclipse.ui.workbench/Eclipse UI/ . . ./ActivityViewerFilter.java, 1.1
org.eclipse.ui.workbench/Eclipse UI/ . . ./messages.properties, 1.9
org.eclipse.ui.workbench/Eclipse UI/ . . ./PerspContentProvider.java, 1.17
org.eclipse.ui.workbench/Eclipse UI/ dots/SavePerspectiveDialog.java, 1.11
org.eclipse.ui.workbench/Eclipse UI/ . . ./SelectPerspectiveDialog.java, 1.20

Sorry to get your hopes up if you were keen on 63849. :)

Figure 5.1: Email posted to an Eclipse developers’ list to correct a mislabeled code check-in.

correct related artifact (bug 62707). Unfortunately, the fact remains that it would be ranked lower
than the log-matcher’s (incorrect) recommendation, bug 63849. As we saw in the user studies
in Chapter4, this means that the correct recommendation will be less likely to be investigated,
especially when it is contradicted by the check-in comment. The check-in comment probably carries
even more weight for newcomers, who are forced to rely on it because they are not yet familiar with
the code and cannot easily evaluate the purpose of a change just by looking at a set of file revisions.

5.3 Validation

5.3.1 The choice of methodology

One of the fundamental decisions that had to be taken in this research was whether to take a classic
experimental approach that included a control group and was analyzed purely quantitatively, or to
conduct a less-structured study that used a qualitative analysis approach. We opted for the latter in
order to have a richer set of data and look at qualitative aspects of what the study participants did

111

and how they used Hipikat. This is reflected in the design and the kinds of questions we posed in
the Eclipse user study (see Section4.2). We believe this was the appropriate choice for this stage of
the research, when we were interested in describing the situation and showing that our approach has
some promise. Only now, following the results presented in this dissertation, can a true experiment
be set up and the project memory approach evaluated more quantitatively [73].

A related validation design choice in the Eclipse study was not to use a true control group of
newcomers who did not have access to Hipikat. Based on working with newcomers to Eclipse within
our research lab and attending IBM Ottawa lab’s Eclipse “training camp” for cooperative work
students, we believe that newcomers placed into a situation that involved solving adding a feature to
Eclipse in a limited time without access to either Hipikat or mentoring would fail to complete any
significant part of the assigned task. To avoid this strawman case, we chose to compare newcomers
using Hipikat with experts not using Hipikat. We believe that our finding that the newcomers’
solutions were just as correct, or better, than the experts’ should be an even more interesting result
than what we could have got from a classic control group.

5.3.2 Types of artifacts most used in the study

Our studies did not fully explore all artifact types and links present in the project memory. In the
study evaluating precision and recall of Hipikat recommendations (Section4.3), we drew our sample
of modification tasks from minor severity bugs, which meant that the changes did not require much
discussion or elaboration of features. Our measures consequently focused on getting to the relevant
files and code constructs.

In the Eclipse study (Section4.2), the two change tasks used in the study, combined with the
Eclipse.org project practices, meant that the most useful artifacts were bug reports and file revisions.
In general, bug reports were used to identify similar change tasks done in the past whose solutions
could be reused or serve as a springboard for understanding relevant code. The reuse and learning
were then done from the associated file revisions, until eventually participants switched to working
with the source code directly.

Study participants used other artifact types (web pages and newsgroups) far less, but it should
be emphasized that the issue-tracking system (that is, Bugzilla), as used in Eclipse.org and other
open source projects, is not simply a collection of descriptions of how to reproduce a bug or of
requests for new features. It serves an important additional purpose as a forum for discussing
design rationale and implementation alternatives. As we noted in the study analysis (Section4.2.6),
these parts of bug reports did not seem to be read as carefully or understood fully; the participants
appeared focused on finding code useful to get their study task done. We do not believe that this
detracts from the study’s support of research claims; however, a closer examination of usefulness of
rationale contained in the project memory and how developers try to access it using Hipikat would
be an essential step to be done in future research.

112

5.3.3 Measure of effectiveness

The primary measures we used in the Eclipse study to evaluate the participants’ performance were
the correctness criteria we identified from the “real” implementations of the two features as they
were developed by the Eclipse team and included in subsequent release of the software. As we
discussed in Section4.2.8, while we tried to make them as objective as possible, there is always
some room for a rater’s subjective interpretation. In addition, the criteria could have been organized
slightly differently, which would change at least somewhat the correctness scores.

It is important to recognize, however, that those scores were simply a means to monitor the
progress of the participants’ solutions and help identify situations where using Hipikat was helpful
or where it failed. The correctness scores are complemented with more detailed observations of the
participants’ work, as well as by their comments in interviews. We believe this combination gave
us a good picture of the issues we studied. Using an alternative “pure” code quality measure would
not have been as helpful in this context; neither would simply focusing on the time needed to solve
the tasks. The latter measure is particularly problematic because the only way to meaningfully use
it for comparison across participants is if their solutions are all correct. And yet, at least in this
case, evaluating partial solutions and pointing out to a participant cases that still need to be handled
would provide so much guidance as to completely skew the results.

5.4 Impact of extended use of Hipikat

While one of our starting principles was that little or no change to the development process be
required in order to use Hipikat, it would be interesting to see how extended use of Hipikat would
affect the developers. Our study focused on fresh project newcomers, but even if they were the
only ones using Hipikat, it is possible that this would affect the development practices of the entire
team, once most of its members have used it during their “apprenticeship.” For example, would the
developers voluntarily adopt practices that would help Hipikat be more useful, such as summarizing
and highlighting important parts of discussions in order to make them more understandable if they
were recommended by Hipikat to a newcomer in the future?

An intriguing question is then whether the developers would be willing to accept being asked to
do more in order to make Hipikat more effective, if they came to recognize the tool’s usefulness. At
that point, a feedback mechanism on the relevancy of Hipikat recommendations might be introduced
into the development process. These recommendations could be evaluated together with the new
code during code review, similarly to the process proposed by Terveen et al [116].

It also remains to be seen how useful Hipikat would prove for experts. Even experts at times
have to work in an area of the system with which they have had little experience, that is, areas in
which they are relative newcomers. Additionally, power users often come up with new ways to use a
tool in ways that were never envisaged by the tool’s designer. Anectodal evidence of Internet power
users employing Google as a substitute for bookmarks in a web browser is a good example of this
phenomenon. There is little incentive to spend time and effort maintaining one’s bookmarks if a
Google query can find a site just as quickly—and show other pages, including newly-created ones,

113

that match the same search terms and are potentially relevant to the current information needs. It is
possible that expert software developers will similarly find their own idiosyncratic uses of Hipikat
for applications unlike any described in this dissertation.

5.5 Hipikat’s applicability

We conclude this chapter with a discussion of the range of situations in which we believe Hipikat
to be particularly useful. However, it is important to first note the characteristics of a project’s
organization and culture that are the necessary preconditions for an environment in which Hipikat
can be successfully introduced.

5.5.1 Environmental pre-conditions

In this research, we focused on a particular subset of virtual software development teams: open-
source software (OSS). The reasons for this choice go beyond OSS projects’ public repositories,
which gave us ready access to information sources for the project memory and made it easy to set
up a realistic environment for our validation studies (see Sections4.2and4.3). Even more important
was the culture of openness that permeates open-source software projects. Not only are almost all
important project discussions conducted in public forums, such as developers’ mailing lists; OSS
developers are committed to re-posting and summarizing in such public forums even discussions
that were—for whatever reasons—conducted in a different medium, for example face-to-face or
in a personal email [45]. This committment extends to other development practices, such as the
Mozilla project’s public review of all software changes before they are committed to the code base
in the repository or the obligatory reference to the bug being fixed in a check-in comment as the
changes are entered into the source repository. At the same time, open-source software developers
rarely keep thorough and up-to-date documentation; writing code is generally considered more fun
(and challenging) and brings greater prestige within the project, and there are few other incentives
that can be given to unpaid volunteers that form the bulk of contributors to OSS projects. The
combination of the “culture of communication” and the general disregard for documentation makes
open-source software projects a natural fit for a project memory approach.

Within the open-source software community, we focused on projects that have relatively large
developer teams (with ten or more members) and that have been running for a longer period of
time. A project’s size encourages the richness and wider range of information sources; smaller
projects rarely use all four information sources in our model, and if a team has only two or three
developers—as we have seen in the example of unhelpful recommendations in Section4.3.3—there
is less need to fully discuss and review all modifications to the code. A project’s age ensures that
there is a sufficient accumulation of experiences to go into the project memory; we expect Hipikat
will become increasingly useful as time passes by and the project grows and evolves, as illustrated
by the examples below.

114

5.5.2 Hipikat’s strengths

Given the above pre-conditions for a successful introduction of Hipikat into a project, we believe it
would be the most useful in the following types of situations:

• refining existing functionality

• learning the API usage

• avoiding common errors

• recovering design rationale

Refining existing functionality

Eclipse bugs 6660 (the easy task in the Eclipse study, see Section4.2.1) and 23719 (the “useful”
case in the recommendation quality study, see Section4.3.3) are both good examples of a situation
where Hipikat provided information that was very useful for implementing the solution.

What both of these bugs had in common was that they were adding features that built on top
of existing functionality that was added at a discrete point in time and a very distinct record in
the project memory. Bug 6660 expanded the information displayed in a breakpoint hover pop-up,
and extended the functionality that had previously worked only on conditional breakpoints to all
breakpoints. Bug 23719 added boolean-specific naming of automatically-generated field “setter”
methods; a functionality that could to a large extent be based on the existing generation of boolean-
specific “getter” methods.

In each of these cases, the issue-tracking database contained a single report that corresponded
to the existing functionality that was being refined—bugs 15739 and 6887, respectively. The report
and the corresponding code implementing the solution were highly-rated Hipikat recommendations.
This made it relatively easy to not only find the location for the modification, but also to see exactly
how the base functionality was grafted onto the system whenit was being implemented. Information
that can be learned from the recommended code goes beyond just which method calls were used
to implement the functionality; a newcomer could also see the accepted ways for error handling,
architectural practices, and naming conventions. It should be noted, however, that in both cases the
relevant parts of the system remained relatively stable since the functionality that was being refined
had been implemented, which made it easier to learn from the recommendations and apply them to
the new task.

Learning API usage

Eclipse bug 6732 (the “moderately useful” case in the recommendation quality study, see Sec-
tion 4.3.3) is an example of a different kind of situation when Hipikat’s recommendations can be
helpful to a newcomer. Here, the newcomer does not have existing functionality to refine, but rather
is implementing functionality that appears in other forms elsewhere in the system, but always fol-
lows the same pattern.

115

In this example, bug 6732 is about displaying a busy cursor while long-running operations are
being executed. This functionality appears in a variety of other contexts in Eclipse. In many of these
contexts, the busy cursor was added in response to a bug report so there is a distinct record in the
project memory. Hipikat finds and recommends three such instances as related to bug 6732, and it
is easy to see the relevant API and how it is to be used to “wrap” the existing operation.

While bug 6732 deals with the user interface, the same principle applies to patterns of actions
at other levels of the code, such as logging and handling errors or internationalizing the application
by externalizing messages to the user in a properties file. Taken even further,anykind of API usage
patterns could be detectable and recommendable to the developer. Hipikat does not go quite as far,
but Holmes and Murphy have implemented just such a system, which uses the existing code base as
the source from which the API patterns are mined [49].

Avoiding common errors

Sometimes there are undocumented aspects of the API that cause problems to developers who are
relatively unfamiliar with it. Bug 19761 is an example of this problem: it reports a NullPointer
exception that turns out to be caused by making a method call before the object has been properly
set up through a fairly complex, and non-obvious, sequence of steps. Hipikat also turns out to be
helpful in this case because the bug report includes the Java stack trace with the exception. This
trace appears in the Eclipse console window when the exception occurs during execution, and can
be used as a Hipikat query, which will then recommend bug 19761, along with the explanation of
the proper API calling sequence.

Recovering design rationale

Artifacts recommended by Hipikat are not only useful for learning the API, but also the rationale
for certain functionality choices. A recommendation related to bug 20982 (the difficult task in the
Eclipse study, see Section4.2.1) provides a good example of this situation. Bug 20982 deals with
the user interface for handling versioning operations on files in the workspace. One of the top
recommendations, bug 10541, includes a lengthy discussion of several behaviour issues that arose
when a related versioning functionality was added to another Eclipse module. (Six comments on
the original proposal were added over a five-day period after the report was submitted, and another
two over the next month and a half as the solution was being implemented). The same issues
would have to be considered during the implementation of bug 20982, although its solution would
be implemented somewhat differently because of internal module differences. Nevertheless, the
discussion and the choices made in bug 10541 are relevant, especially for the sake of the consistency
in behaviour in similar components across the entire system.

116

Chapter 6

Conclusion

New members of virtual software development teams—where members of the team are not collocated—
face significant challenges coming up-to-speed on the project because it is difficult to get effective
mentoring. Virtual teams generally do not have available light-weight communication channels that
make possible informal everyday interactions among the team members. Consequently, newcom-
ers have limited access to information that is typically obtained only through personal contact with
one’s more experienced colleagues.

The motivation for the work described in this dissertation is to help developers better perform
modifications by providing them information from the project’s history. The developers, especially
in virtual teams, suffer because of lack of information necessary to build appropriate understanding
of the system. A lot of information already exists, but it is not used to its full potential. Virtual
software development teams typically generate large amounts of electronic artifacts in the course
of their work. These artifacts are usually accessible through archives of the project’s mailing lists,
the source code versioning system, and the bug-tracking system. We believe that the collection of
artifacts across these repositories implicitly forms aproject memoryfor a software development.

The thesis of this dissertation is that newcomer software developers can use information from
the project memory about past modifications completed on the project to help them effectively
perform modification tasks to the system; that the project memory can be built largely automatically,
requiring minimal adjustments in work practices of software developers; and that developers can be
provided with tools to efficiently access this project memory to find useful information.

To validate the claims of this thesis, we have developed a general model of the project memory
that incorporates the types of artifacts and relationships between them that are typically generated
in the course of software development by virtual teams. This model could be instantiated for any
project that follows such development practices; we provided a practical implementation, called
Hipikat, that was instantiated for a large open-source software project, the Eclipse IDE. We then
evaluated the effectiveness of this implementation in two empirical studies.

In the first study, eight volunteers used Hipikat to perform two modification tasks that added
new functionality to Eclipse. The tasks were concrete and realistic: they were selected from en-
hancements implemented for a subsequent release of Eclipse. The eight volunteers had no experi-
ence developing for Eclipse, although they had previous software engineering experience working

117

on medium to large software systems. We compared their solutions to the solution adopted by the
Eclipse team in the official release. We also compared the newcomers’ performance with four mem-
bers of the Eclipse team who were asked to perform the same two modifications without Hipikat.
The results of our study show that the newcomers were able to use information from Hipikat recom-
mendations in their solutions, and that their solutions were of comparable, and often better, quality
than the experts’, although the newcomers did take longer to implement the tasks. The study also
allowed us to investigate when and how newcomers used Hipikat, and to identify the problems they
faced evaluating and utilizing the recommendations.

In the second study, we evaluated the usefulness of Hipikat’s recommendations on a sample
of twenty modification tasks performed on Eclipse during the development of release 2.1 of the
software. The tasks were appropriate to the kinds of tasks given to newcomers to the project during
their ramp-up phase. The usefulness of the recommendations was evaluated by calculating their
recall and precision values with respect to the files that contained the “official” solution for each of
the sample tasks and the constructs comprising the solution. The results of the study show that in
most of the cases examined in the study, Hipikat was able to provide a useful pointer to the files
involved in the solution of the task, the constructs necessary for the solution, or both. One example
where Hipikat was entirely unhelpful was when the description of the modification was very terse,
and—more importantly—members of the subteam responsible for the feature tended not to use
the online artifact repositories to their fullest (e.g., they rarely entered the check-in comments).
However, because the subteam in question was small and relatively isolated from the rest of the
project at the time, arguably this was not the kind of situation where a project history approach
would be appropriate or even needed.

6.1 Contribution

In addition to demonstrating the validity of the thesis statement, the research described in this dis-
sertation makes the following five contributions to the field of software engineering.

First, we provide a general model for an automatically-generated project memory. As a conse-
quence of the generality of the model, the techniques we used can, to a large extent, be re-applied to
create a project memory for a different software development project, particularly if its development
process is similar to the open source development process.

Second, we describe heuristics that we used to automatically infer linkages between artifacts in
the project memory. These heuristics are a proof of the concept that automatic creation of the project
memory is possible and a viable approach to creating group memories with minimal disruption to
the existing group practices. The heuristics described in this dissertation are to a large extent based
on my observations of work conventions and on informal communication with developers in a large
open-source software project. These heuristics are likely applicable to other projects using such a
development methodology and tools.

Third, we describe a specific implementation of a project memory for a large open-source soft-
ware project, the Eclipse integrated development environment. We discuss the issues of scalability
related to the project memory of this project. The experiences we gained and engineering issues we

118

identified will be useful to researchers who want to apply our approach to other projects. We also
provide a usable tool to access the project memory. The tool is integrated into one of the most pop-
ular development environments today and could be used with little or no change to provide access
to project memory instantiations for other projects.

Fourth, we provide an in-depth description of a methodology for empirical study of software
evolution tasks under realistic conditions that allows replication and comparative evaluation. This
methodology can be reused by researchers conducting similar studies of programmers performing
evolution tasks and of software engineering tools used in such tasks.

Finally, we describe the design of a study for evaluating the performance of recommender tools
in software engineering domain. Our design extends the existing measures used to evaluate recom-
mender systems in software engineering context (e.g., [125, 124]) by taking into account not just
whether the tool can identify entities that need to change in a software modification task (e.g., files),
but also whether it can identify the constructs that are used within the change. This design could be
useful for researchers wishing to evaluate similar software engineering tools.

6.2 Summary and future work

In conclusion, although Hipikat is still in a prototype stage, the idea of using project memories as
an aid for newcomers shows promise. However, before Hipikat can be considered for adoption as
a standard tool for open-source software projects, much work remains to be done. This works falls
into four general categories.

First, heuristics used to generate recommendations should be further improved. This involves
both better identification of linkages between artifacts in the project memory and better selection
of artifacts relevant to a query. Techniques that seem particularly interesting include collaborative
filtering and better modelling of the user’s ongoing exploration activities, interests, and information
needs (Section5.1.3).

Second, these heuristics should be adapted to ensure their viability as the project memory grows.
For example, the largest open-source software project, the Mozilla web browser, contains nearly
four times more reports in its bug database than Eclipse (as of September 6, 2004, there were
258,217 reports in the Mozilla bug database, while Eclipse had 73,343). The current implementation
of Hipikat most likely could not cope with that kind of size, even by the brute force approach of
improving the hardware used. A more scalable approach, probably distributed in nature, should be
investigated (Section5.2.2).

Third, the Hipikat front-end should be further developed to make it easier to understand and
utilize the recommendations. Displaying the recommendations in formats other than a flat list, or
even topically clustering them, could make it easier for the user to see similarities between the rec-
ommendations and identify interesting ones (Section5.2.1). Furthermore, visualizing the changes
contained in recommended file revisions could make it easier to understand their functionality and
interaction with the rest of the system. Lastly, combining Hipikat with a tool for investigating
program concerns, like FEAT [96], would make it easier to explore the source code starting from
information provided in Hipikat’s recommendations.

119

Finally, once Hipikat is permanently adopted by a software development team, its impact on
team’s development practices would be a valuable research topic both on its own and as a driver
for further development of the tool (Section5.4). This is perhaps the most interesting aspect of the
work that lies ahead because software development is a human activity and thus subject to all of the
quirks and idiosyncrasies of human behavior. Weinberg was perhaps the first to point this out in his
pioneering book [120]. He laid the groundwork for what followed as others began to realize how
much common ground there is between the fields of software engineering and computer-supported
cooperative. The research reported in this dissertation was inspired by this and has attempted to
further the connection.

120

Bibliography

[1] Mark S. Ackerman and Thomas W. Malone. Answer Garden: A tool for growing organi-
zational memory. InProceedings of the Conference on Office Automation Systems, pages
31–39, 1990.2, 21

[2] Kari Alho and Reijo Sulonen. Supporting virtual software projects on the Web. InProceed-
ings of 7th International Workshop on Enabling Technologies: Infrastructure for Collabora-
tive Enterprises (WETICE ’98)—Workshop on Coordinating Distributed Sofware Develop-
ment Projects. IEEE Press, April 1998.132

[3] Robert B. Allen, Pascal Obry, and Michael Littman. An interface for navigating clustered
document sets returned by queries. InConference on Organizational Computing Systems
(COOCS’93), pages 166–171, 1993.110

[4] G. Antoniol, G. Canfora, A. De Lucia, and Merlo Merlo. Recovering code to documentation
links in OO systems. InProceedings of the Sixth Working Conference on Reverse Engineering
(WCRE’99), pages 136–144. IEEE Computer Society Press, 1999.6

[5] Avi Arampatzis. Adaptive and Temporally-Dependent Document Filtering. PhD thesis,
Katholieke Universiteit Nijmegen, Nijmegen, The Netherlands, 2001.107

[6] David L. Atkins. Version sensitive editing: Change history as a programming tool. In Boris
Magnusson, editor,System Configuration Management, volume 1439 ofLecture Notes in
Computer Science, pages 146–157. Springer-Verlag, 1998.27

[7] Thomas Ball and Stephen T. Eick. Software visualization in the large.IEEE Computer,
29:33–43, April 1996.28

[8] Liam Bannon and Kari Kuutti. Shifting perspectives on organizational memory: From stor-
age to active remembering. InProceedings of the 29th Hawaii International Conference on
System Sciences (HICSS’96), volume 3, pages 156–167, 1996.108

[9] Laszio A. Belady and M. M. Lehman. A model of large program development.IBM Systems
Journal, 15(3):225–252, 1976.1

[10] Lucy M. Berlin. Beyond program understanding: A look at programming expertise in indus-
try. In Empirical Studies of Programmers: Fifth Workshop, pages 6–25, 1993.1

121

[11] Lucy M. Berlin, Robin Jeffries, Vicki L. O’Day, Andreas Paepcke, and Cathleen Wharton.
Where did you put it? issues in the design and use of a group memory. InProceedings of
the SIGCHI conference on Human factors in computing systems, pages 23–30. ACM Press,
1993.2, 22

[12] Brian Berliner. CVS II: Parallelizing software development. In USENIX Association, editor,
Proceedings of the Winter 1990 USENIX Conference, pages 341–352. USENIX, 22–26 Jan-
uary 1990.50, 135

[13] Robert W. Bowdidge and William G. Griswold. Supporting the restructuring of data ab-
stractions through manipulation of a program visualization.ACM Transactions on Software
Engineering and Methodology, 7(2):109–157, April 1998.72

[14] Ivan T. Bowman and Richard C. Holt. Reconstructing ownership architectures to help under-
stand software systems. InProceedings of the Seventh International Workshop on Program
Comprehension, pages 28–37, Pittsburgh, PA, USA, 5–7 May 1999. IEEE Computer Society
Press.27

[15] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Hen-
rik Frysyk Nielsen, Satish Thatte, and Dave Winer.Simple Object Access Protocol
(SOAP) 1.1. World Wide Web Consortium, 8 May 2000.33

[16] K. C. Burgess Yakemovic and E. Jeffrey Conklin. Report on a development project use of an
issue-based information system. InProceedings of ACM Conference on Computer-Supported
Cooperative Work (CSCW’90), pages 105–118, 1990.7

[17] John M. Carroll, Sherman R. Alpert, John Karat, Mary Van Deusen, and Mary Beth Rosson.
Raison d’etre: Capturing design history and rationale in multimedia narratives. InProceed-
ings of ACM SIGCHI Conference on Human Factors in Computing Systems (CHI’94), vol-
ume 1, pages 192–197, 1994. Color plates on page 478.22

[18] John M. Carroll and Thomas P. Moran. Introduction to this special issue on design rationale.
Human-Computer Interaction, 6(3–4):197–200, 1991.7

[19] Matthew Chalmers, Kerry Rodden, and Dominique Brodbeck. The order of things: activity-
centred information access. InProceedings of the 7th World Wide Web Conference, vol-
ume 30 ofComputer Networks and ISDN Systems, pages 359–367. Elsevier, 1 April 1998.
108

[20] C.-M. Chen, N. Stoffel, M. Post, C. Basu, D. Bassu, and C. Behrens. Telcordia LSI engine:
Implementation and scalability issues. InProceedings of the Eleventh International Work-
shop on Research Issues in Data Engineering (RIDE’ 01), pages 51–58. IEEE Press, April
2001.110

[21] Peter P. Chen. The Entity-Relationship model—Toward a unified view of data.ACM Trans-
actions on Database Systems, 1(1):9–36, March 1976.31

122

[22] Yih-Farn Chen, Michael Y. Nishimoto, and C. V. Ramamoorthy. The C information abstrac-
tion system.IEEE Transactions on Software Engineering, 16(3):325–334, March 1990.3

[23] Yih-Farn R. Chen, Glenn S. Fowler, Eleftherios Koutsofios, and Ryan S. Wallach. Ciao:
A graphical navigator for software and document repositories. InProc. Int. Conf. Software
Maintenance, ICSM, pages 66–75. IEEE Computer Society, 1995.64

[24] Fah-Chun Cheong.Internet Agents: Spiders, Wanderers, Brokers, and Bots. New Riders
Publishing, Indianapolis, IN, USA, 1996.38, 53

[25] Tzi-cker Chiueh, Wei Wu, and Lap-Chung Lam. Variorum: a multimedia-based program
documentation system. InProceedings of the IEEE International Conference on Multimedia
and Expo (ICME 2000), volume 1, pages 155–158, 2000.24

[26] Jeff Conklin and Michael L. Begeman. gIBIS: A hypertext tool for exploratory policy dis-
cussion. ACM Transactions on Office Information Systems, 6(4):303–331, October 1988.
7

[27] D. Crocker. RFC 822: Standard for the format of ARPA Internet text messages, August 1982.
42

[28] DavorČubraníc and Gail C. Murphy. Automatic bug triage using text categorization. InPro-
cedings of the Sixteenth International Conference on Software Engineering and Knowledge
Engineering (SEKE’04), pages 92–97. Knowledge Systems Institute, 2004.28

[29] M. Cusumano and R. Selby.Microsoft Secrets: How the World’s Most Powerful Software
Company Creates Technology, Shapes Markets, and Manages People. The Free Press, 1995.
1

[30] The CVS project. The CVS client/server protocol specification. Included with the CVS
source code distribution.50

[31] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and
Richard A. Harshman. Indexing by latent semantic analysis.Journal of the American Society
of Information Science, 41(6):391–407, 1990.41

[32] P. Devanbu, Y.-F. Chen, E. Gansner, H. Müller, and J. Martin. CHIME: Customizable Hy-
perlink Insertion and Maintenance Engine for software engineering environments. InPro-
ceedings of the 21st International Conference on Software Engineering (ICSE’99), pages
473–482. ACM Press, 1999.6

[33] Susan Dumais. Improving the retrieval of information from external sources.Behaviour
Research Methods, Instrument, and Computers, 23(2):229–236, 1991.40

[34] Susan T. Dumais. LSI meets TREC: A status report. InProceedings of The First Text RE-
trieval Conference (TREC1), pages 137–152, 1993.41

123

[35] Michael E. Fagan. Design and code inspections to reduce errors in program development.
IBM Systems Journal, 15(3):182–211, 1976.23

[36] H. Fagrell. Newsmate: Providing timely knowledge to mobile and distributed news journal-
ists. InBeyond Expertise, pages 257–274. 2003.26

[37] G. Fischer, A. C. Lemke, R. McCall, and A. I Morch. Making argumentation serve design.
Human-Computer Interaction, 6(3–4):393–419, 1991.7

[38] J. C. Flanagan. The critical incident technique.Psychological Bulletin, 51:327–358, April
1954.79

[39] Xiaobin Fu, Jay Budzik, and Kristian J. Hammond. Mining navigation history for recommen-
dation. InProceedings of the 2000 International Conference on Intelligent User Interfaces,
pages 106–112, 2000.108

[40] Pankaj K. Garg and Walt Scacchi. Ishys: Designing an intelligent software hypertext system.
IEEE Expert, 4(3):52–63, Fall 1989.6

[41] Daniel M. German. Mining CVS repositories, the softChange experience. InProceedings of
the First International Workshop on Mining Software Repositories (MSR’04), pages 17–21,
Edinburgh, UK, 25 May 2004.42

[42] Rebecca E. Grinter. Using a configuration management tool to coordinate software develop-
ment. InConference on Organizational Computing Systems, pages 168–177, 1995.26

[43] Jonathan Grudin. Groupware and social dynamics: eight challenges for developers.Commu-
nications of the ACM, 37(1):92–105, January 1994.108

[44] Bjorn Gulla. Improved maintenance support by multi-version visualizations. InProceed-
ings of the International Conference on Software Maintenance 1992, pages 376–383. IEEE
Computer Society Press, November 1992.28

[45] Carl Gutwin, Reagan Penner, and Kevin Schneider. Group awareness in distributed soft-
ware development. InProceedings of the 2004 ACM Conference on Computer supported
cooperative work (CSCW’04), pages 72–81, Chicago, Illinois, USA, 2004. ACM Press.114

[46] Marti A. Hearst. TextTiling: A quantitative approach to discourse segmentation.Computa-
tional Linguistics, 23(1):33–64, March 1997.106

[47] James D. Herbsleb, Audris Mockus, Thomas A. Finholt, and Rebecca E. Grinter. An em-
pirical study of global software development: Distance and speed. InProceedings of the
23rd International Conference on Software Engineering (ICSE’01), pages 81–90, Toronto,
Canada, 12–19 May 2001. IEEE Computer Society.2

124

[48] Will Hill, Larry Stead, Mark Rosenstein, and George Furnas. Recommending and evaluating
choices in a virtual community of use. InProceedings of ACM SIGCHI Conference on
Human Factors in Computing Systems (CHI’95), volume 1, pages 194–201, 1995.108

[49] Reid T. Holmes and Gail C. Murphy. Using structural context to recommend source code ex-
amples. InProceedings of the International Conference on Software Engineering (ICSE’05),
to appear.106, 116

[50] E. Horowitz and R. C. Williamson. SODOS: A software documentation support
environment—its use.IEEE Transactions on Software Engineering, SE-12(11):1076–1087,
November 1986.6

[51] M. Horton and R. Adams. RFC 1036: Standard for interchange of USENET messages,
December 1987.42

[52] George P. Huber. A theory of the effects of advanced information technologies on organiza-
tional design, intelligence, and decision making.Academy of Management Review, 15:47–71,
January 1990.20

[53] D. Hutchens and Victor Basili. System structure analysis: Clustering with data bindings.
IEEE Transactions on Software Engineering, SE-11(8):749–757, 1985.4

[54] E. Ide and G. Salton. Interactive search strategies and dynamic file organization. In G. Salton,
editor, The SMART Retrieval System—Experiments in Automatic Document Processing,
chapter 18. Prentice Hall, 1973.40

[55] Severin Isenmann and Wolf D. Reuter. IBIS—A convincing concept. . . but a lousy instru-
ment? InProceedings of the Conference on Designing Interactive Systems (DIS’97), pages
163–172, Amsterdam, The Netherlands, 1997. ACM Press.7

[56] Fan Jiang, Ravi Jannan, Michael L. Littman, and Santosh Vempala. Efficient singular value
decomposition via improved document sampling. Technical Report CS–1999–5, Duke Uni-
versity, 1999.41

[57] Alison Kidd. The marks are on the knowledge worker. InProceedings of ACM SIGCHI
Conference on Human Factors in Computing Systems (CHI’94), volume 1, pages 186–191,
1994.108

[58] Donald E. Knuth. Literate programming.The Computer Journal, 27(2):97–111, 1984.5

[59] Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Herlocker, Lee R. Gordon,
and John Riedl. GroupLens: Applying collaborative filtering to Usenet news.Communica-
tions of the ACM, 40(3):77–87, March 1997.108

[60] Douglas Kramer. API documentation from source code comments: a case study of Javadoc.
In Proceedings of the 17th Annual International Conference on Computer Documentation
(SIGDOC’99), pages 147–153, New Orleans, LA, USA. ACM Press.5

125

[61] B. M. Lange and T. G. Moher. Some strategies of reuse in an object-oriented programming
environment. InProceedings of the SIGCHI conference on Human factors in computing
systems, pages 69–73. ACM Press, 1989.8

[62] Jintae Lee. SIBYL: A tool for managing group decision rationale. InProceedings of ACM
Conference on Computer-Supported Cooperative Work (CSCW’90), pages 79–92, 1990.7

[63] Jintae Lee and Kum-Yew Lai. What’s in a design rationale?Human-Computer Interaction,
6(3–4):251–280, 1991.7

[64] Timothy C. Lethbridge, Janice Singer, and Andrew Forward. How software engineers use
documentation: The state of the practice.IEEE Software, 20(6):35–39, November/December
2003.4, 5

[65] Henry Lieberman. Autonomous interface agents. InProceedings of ACM SIGCHI Con-
ference on Human Factors in Computing Systems (CHI’97), volume 1, pages 67–74, 1997.
25

[66] Stefanie N. Lindstaedt and Kurt Schneider. Bridging the gap between face-to-face communi-
cation and long-term collaboration. InGROUP’97: International Conference on Supporting
Group Work, pages 331–340, 1997.24

[67] David C. Littman, Jeannine Pinto, Stanley Letovsky, and Elliot Soloway. Mental models and
software maintenance. InEmpirical Studies of Programmers, pages 80–98. 1986.3

[68] Robert Lougher and Tom Rodden. Supporting long term collaboration in software mainte-
nance. InConference on Organizational Computing Systems, pages 228–238, 1993.23

[69] Jonathan I. Maletic and Andrian Marcus. Supporting program comprehension using semantic
and structural information. InProceedings of 23rd International Conference on Software
Engineering (ICSE’01), pages 103–112, Toronto, Canada, 12–19 May 2001. IEEE Computer
Society.4

[70] Andrian Marcus and Jonathan I. Maletic. Recovering documentation-to-source-code trace-
ability links using latent semantic indexing. InProceedings of the 25th International Con-
ference on Software Engineering (ICSE’03), pages 125–137, Portlan, OR, USA, May 3–10
2003. IEEE Computer Society.7

[71] Vahid Mashayekhi, Chris Feuller, and John Riedl. CAIS: Collaborative asynchronous in-
spection of software. In David Wile, editor,SIGSOFT’94: Proceedings of the Second ACM
SIGSOFT Symposium on Foundations of Software Engineering (FSE’94), pages 21–34. ACM
Press, 1994.23

[72] David W. McDonald and Mark S. Ackerman. Expertise Recommender: A flexible recom-
mendation system and architecture. InProceedings of ACM Conference on Computer Sup-
ported Collaborative Work (CSCW 2000), pages 231–240, Philadelphia, PA, 2–6 December
2000. ACM Press.28

126

[73] Joseph E. McGrath. Methodology matters: Doing research in the behavioral and social sci-
ences. In Ronald M. Baecker, Jonathan Grudin, William A. S. Buxton, and Saul Greenberg,
editors,Readings in Human-Computer Interaction: Toward the Year 2000, pages 152–169.
Morgan Kaufman, San Francisco, CA, 1995.112

[74] Diane McKerlie and Allan MacLean. Experience with QOC design rationale. InProceed-
ings of ACM INTERCHI’93 Conference on Human Factors in Computing Systems – Adjunct
Proceedings, pages 213–214, 1993.7

[75] Ettore Merlo, Ian McAdam, and Renato De Mori. Source code informal information analysis
using connectionist models. InProceedings of IJCAI ’93: The Thirteenth International Joint
Conference on Artificial Intelligence, volume 2, pages 1339–1344.4

[76] Amin Michail. CodeWeb: Data mining library reuse patterns. InProceedings of the 23rd
International Conference on Software Engeneering (ICSE’01), pages 827–828, Toronto, ON,
Canada, May12–19 2001. IEEE Computer Society.9

[77] Audris Mockus, Roy T. Fielding, and James Herbsleb. Two case studies of open source
software development: Apache and Mozilla.ACM Transactions on Software Engineering
and Methodology, 11(3):1–38, July 2002.6, 39, 42

[78] Audris Mockus and James D. Herbsleb. Expertise Browser: A quantitative approach to
identifying expertise. InProceedings of the 24th International Conference on Software En-
gineering (ICSE’02), pages 503–512. ACM Press, May 19–25 2002.27

[79] Hausi A. Müller and Karl Klashinsky. Rigi—A system for programming-in-the-large. In
Proceedings of the 10th International Conference on Software Engineering (ICSE’88), pages
80–86. IEEE Computer Society Press, 1988.64

[80] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software reflexion models: Bridging
the gap between source and high-level models. InProceedings of the Third ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE’95), pages 18–28. ACM Press,
1995.64

[81] L. R. Neal. A system for example-based programming. InProceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI’89), pages 63–68. ACM Press,
1989.8

[82] C. E. O’Malley, S. W. Draper, and M. S. Riley. Constructive interaction: A method for study-
ing human-computer-human interaction. InProceedings of IFIP INTERACT’84: Human-
Computer Interaction, pages 269–274, 1984.60

[83] Open Source Initiative. The Open Source definition, 1997.
http://www.opensource.org/osd.html.132

127

[84] David Lorge Parnas. Software aging. InProceedings of the 16th International Conference
on Software Engineering (ICSE’94), pages 279–287. IEEE Computer Society Press / ACM
Press, 1994.1

[85] J. M. Perpich, D. E. Perry, A. A. Porter, L. G. Votta, and M. W. Wade. Anywhere, anytime
code inspections: Using the Web to remove inspection bottlenecks in large-scale software
development. InProceedings of the 19th International Conference on Software Engineering
(ICSE’97), pages 14–21. ACM Press, 1997.23

[86] Peter Pirolli and John Anderson. The role of learning from examples in the acquisition of
recursive programming skills.Canadian Journal of Psychology, 35:240–272, 1985.8

[87] M. F. Porter. An algorithm for suffix stripping.Program, 14(3):130–137, July 1980.40

[88] Colin Potts and Glenn Bruns. Recording the reasons for design decisions. InProceedings of
10th International Conference on Software Engineering (ICSE’88), pages 418–427, 1988.7

[89] David F. Redmiles. Reducing the variability of programmers performance through explained
examples. InProceedings of ACM INTERCHI’93 Conference on Human Factors in Comput-
ing Systems, pages 67–73, 1993.9

[90] Brent Reeves and Frank Shipman. Supporting communication between designers with
artifact-centered evolving information spaces. InProceedings of ACM Conference on
Computer-Supported Cooperative Work (CSCW’92), pages 394–401, 1992.23

[91] Paul Resnick and Hal R. Varian. Recommender systems.Communications of the ACM,
40(3):56–58, March 1997.24

[92] Bradley J. Rhodes and Thad Starner. Remembrance agent. InThe Proceedings of The First
International Conference on The Practical Application Of Intelligent Agents and Multi Agent
Technology (PAAM ’96), pages 487–495, 1996.25

[93] Amnon Ribak, Michal Jacovi, and Vladimir Soroka. ‘ask before you search’: peer support
and community building with ReachOut. InProceedings of ACM Conference on Computer-
Supported Cooperative Work (CSCW’02), pages 126–135, 2002.109

[94] Gabriel Ripoche and Les Gasser. Scalable automatic extraction of process models for under-
standing F/OSS bug repair. InProceedings of the 16th International Conference on Software
Engineering and Its Applications (ICSSEA-03), 2003.28

[95] H. Rittel and M. Webber. Dilemmas in a general theory of planning.Policy Sciences, 4:155–
169, 1973.7

[96] Martin P. Robillard and Gail C. Murphy. Concern graphs: finding and describing concerns
using structural program dependencies. InProceedings of the 24th International Conference
on Software Engineering (ICSE’02), pages 406–416, New York, May 19–25 2002. ACM
Press.119

128

[97] Mary Beth Rosson and John M. Carroll. The reuse of uses in Smalltalk programming.ACM
Transactions on Computer-Human Interaction, 3(3):219–253, 1996.8, 92, 93, 104

[98] Mary Beth Rosson, John M. Carroll, and Christine Sweeney. A view matcher for reusing
Smalltalk classes. InProceedings of ACM SIGCHI Conference on Human Factors in Com-
puting Systems (CHI’91), pages 277–283, 1991.8

[99] Vedran Sabol, Wolfgang Kienreich, Michael Granitzer, Jutta Becker, Klaus Tochtermann,
and Keith Andrews. Applications of a lightweight, web-based retrieval, clustering, and vi-
sualisation framework. InProceedings of Conference on Practical Aspects of Knowledge
Management (PAKM’02), volume 2569 ofLecture Notes in Computer Science, pages 359–
368. Springer-Verlag, 2002.110

[100] Gerard Salton, J. Allan, and Chris Buckley. Approaches to passage retrieval in full text
information systems. InProceedings of the Sixteenth Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (SIGIR’93), pages 49–58,
1993.106

[101] Gerard Salton and Michael J. McGill.Introduction to Modern Information Retrieval.
McGraw-Hill, New York, 1983.40, 97

[102] Robert J. Sandusky, Les Gasser, and Gabriel Ripoche. Bug report networks: Varieties, strate-
gies, and impacts in an OSS development community. InProceedings of the First Interna-
tional Workshop on Mining Software Repositories (MSR’04), pages 80–84, Edinburgh, UK,
25 May 2004.28

[103] Daniel L. Schacter. Implicit memory: History and current status.Journal of Experimental
Psychology: Learning, Memory, and Cognition, 13(3):501–518, 1987.2

[104] Kjeldt Schmidt and Liam Bannon. Taking CSCW seriously: Supporting articulation work.
Computer Supported Cooperative Work (CSCW): An International Journal, 1:7–40, 1992.
108

[105] Upendra Shardanand and Patti Maes. Social information filtering: Algorithms for automat-
ing ‘word of mouth’. In Proceedings of ACM SIGCHI Conference on Human Factors in
Computing Systems (CHI’95), volume 1, pages 210–217, 1995.108

[106] Ben Shneiderman and John M. Carroll. Ecological studies of professional programmers: An
overview.Communications of the ACM, 31(11):1256–1258, November 1988.72

[107] Marko Balabanovíc and Yoav Shoham. Fab: content-based collaborative recommendation.
Communications of the ACM, 40(3):66–72, March 1997.25, 107

[108] Simon Buckingham Shum. Analyzing the usability of a design rationale notation. In
Thomas P. Moran and John M. Carroll, editors,Design Rationale: Concepts, Techniques,
and Use, pages 185–216. Lawrence Erlbaum, Hillsdale, NJ, 1996.7

129

[109] Simon J. Buckingham Shum, Allan MacLean, Victoria M. E. Bellotti, and Nick V. Hammond.
Graphical argumentation and design cognition.Human-Computer Interaction, 12(3):267–
300, 1997.7

[110] Susan Elliott Sim and Richard C. Holt. The ramp-up problem in software projects: A case
study of how software immigrants naturalize. InProceedings of the 20th International Con-
ference on Software Engineering (ICSE’98), pages 361–370, Kyoto, Japan, 19–25 April
1998. IEEE Computer Society Press / ACM Press.1

[111] Janice Singer, Timoth Lethbridge, Norman Vinson, and Nicolas Anquetil. An examination
of software engineering work practices. InProceedings of CASCON’97, pages 209–223,
Toronto, Canada, 10–13 October 1997.3

[112] Elliot Soloway, Robin Lampert, Stan Letovsky, David Littman, and Jeannine Pinto. De-
signing documentation to compensate for delocalized plans.Communications of the ACM,
31(11):1259–1267, November 1988.6

[113] Margaret-Anne Storey and Hausi Mueller. Manipulating and documenting software struc-
tures using SHriMP views. InInternational Conference in Software Maintenance, pages
275–285. IEEE Computer Society Press, 1995.4

[114] Chunqiang Tang, Sandhya Dwarkadas, and Zhichen Xu. On scaling latent semantic indexing
for large peer-to-peer systems. InProceedings of the 27th Annual International Conference
on Research and Development in Information Retrieval (SIGIR’04), pages 112–121. ACM
Press, 2004.110

[115] Warren Teitelman and Larry Masinter. The Interlisp programming environment.Computer,
14. 3

[116] Loren G. Terveen, Peter G. Selfridge, and M. David Long. From “folklore” to “living design
memory”. InProceedings of the SIGCHI conference on Human factors in computing systems,
pages 15–22. ACM Press, 1993.21, 113

[117] Robert J. Walker, Gail C. Murphy, Bjorn Freeman-Benson, Darin Wright, Darin Swanson,
and Jeremy Isaak. Visualizing dynamic software system information through high-level mod-
els. InProceedings of the 13th Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA-98), pages 271–283. ACM Press, October 18–22 1998.
61

[118] Larry Wall and Randal L. Schwartz.Programming Perl. O’Reilly & Associates, 1990.134

[119] James P. Walsh and Gerrardo Rivera Ungson. Organizational memory.Academy of Manage-
ment Review, 16:57–91, January 1991.20

[120] Gerald E. Weinberg.The Psychology of Computer Programming. Van Nostrand Reinhold,
Toronto, 1971.120

130

[121] Alan Wexelblat and Pattie Maes. Footprints: History-rich tools for information forag-
ing. In Proceedings of ACM SIGCHI Conference on Human Factors in Computing Systems
(CHI’99), volume 1, pages 270–277, 1999.108

[122] Steve Whittaker and Candace Sidner. Email overload: Exploring personal information man-
agement of email. InProceedings of ACM SIGCHI Conference on Human Factors in Com-
puting Systems (CHI’96), volume 1, pages 276–283, 1996.23

[123] Yunwen Ye and Gerhard Fischer. Information delivery in support of learning reusable soft-
ware components on demand. In Yolanda Gil and David B. Leake, editors,Proceedings of
the 2002 International Conference on Intelligent User Interfaces (IUI-02), pages 159–166,
New York, January 13–16 2002. ACM Press.25

[124] Annie T. T. Ying, Gail C. Murphy, Raymond Ng, and Mark C. Chu-Carroll. Predicting
source code changes by mining revision history.IEEE Transactions on Software Engineering,
30:574–586, September 2004.27, 119

[125] Thomas Zimmermann, Peter Weisgerber, Stephan Diehl, and Andreas Zeller. Mining version
histories to guide software changes. InProceedings of the 26th International Conference on
Software Engineering (ICSE’04), pages 563–572. IEEE Computer Society, 2004.27, 106,
119

131

Appendix A

Open-source software development

A.1 Introduction

In recent years a form of software development that was previously dismissed as too ad-hoc and
chaotic for serious projects has suddenly taken the front stage. With products such as Apache,
Linux, Perl, and others, open-source software has emerged as a viable alternative to traditional
approaches to software development. With its globally distributed developer force and extremely
rapid code evolution, open source is arguably the extreme in “virtual software projects” [2], and
exemplifies many of the advantages and challenges of distributed software development.

According to its (trademarked) definition, open-source software (OSS) is software for which
the source code is distributed or accessible via the Internet without charge and without limitations
on modifications and future distribution by third parties [83]. While much of the early ARPANet
and Unix software was distributed in this manner, more ambitious open-source projects such as
Free Software Foundation’s GNU began in the 1980’s, and gained support of developers across the
Internet. However, it wasn’t until the 1990’s that open-source software development truly gained
momentum and became synonymous with highly distributed development characterized by frequent
iterations, thanks to the wide availability of the source code and openness to contributions from the
community.

Today, open-source software dominates the Internet infrastructure. For example, according to
Netcraft’s survey conducted in September 2004, over 67% of web servers run Apache server soft-
ware, over three times as much as its next competitor, Microsoft’s Internet Information Server,1.
Programming languages that are developed and controlled by open-source communities—for ex-
ample, Perl and Python—are among the few serious alternatives for interpreted languages used in
“real-world” applications. Established computer companies such as IBM and Apple are including
OSS into their products and actively support OSS projects.

The main reason for the success of open-source software is the growth of the Internet, which
made collaboration between programmers feasible on a scale much larger than was possible before.
With the global computer network in place, a huge pool of potential developers and testers became

1http://news.netcraft.com/archives/2004/08/31/september 2004 web server -
survey.html

132

available. Not surprisingly, this openness and fluidity also put unique demands on the development
process. To cope with these issues, open-source software projects evolved their own methods and
organization.

In this appendix, we look at the development tools and practices used by some of the major
and most successful open-source projects to deal with the issue of coordination among their many
contributors. Although each of the projects examined here developed some unique practices, there
are also significant commonalities.

A.2 Current Practices

There are thousands of open-source projects that are currently under development. The ones we
include in this section are examples that are notable for their influence, size, and success. They are
in many ways the community leaders: a lot of tools and practices pioneered by these projects have
been adopted by other open-source projects. Consequently, practices described in this section are
arguably representative of open-source software in general.

A.2.1 Representative Open-Source Projects

Linux. Linux is arguably the best-known open-source project today. It is a Unix-type operating
system kernel which aims for a complete implementation of the POSIX specification, with System
V and BSD extensions. What started off in 1991 as a hobby project of Linus Torvalds, then a student
at University of Helsinki, has evolved into a full-featured modern OS (consisting of more than 1.5
million lines of code) that today even comes installed on some models of computers from vendors
like IBM and Sun, who have their own versions of UNIX that they sell. The development of Linux
is still led by Torvalds, although there is no formal organization like that used in the other projects
described here.

Apache web server The Apache web server originated in early 1995 as a set of patches to the
then-popular HTTP server from NCSA (the name was also a pun, “A PAtCHy server”). These
patches were collected by a group of volunteers from contributions from webmasters frustrated by
NCSA’s lack of further development and then released back to the web community. The patches
were a big success, and soon the group moved on to a complete overhaul and redesign of the server.
Apache 1.0 was released to the general public on December 1, 1995 and has dominated the web
server market ever since.2 The initial volunteers then formed the Apache Group, which in 1999
was transformed into a not-for-profit corporation, the Apache Software Foundation, which has been
guiding the project ever since.

Mozilla web browser The Mozilla web browser is probably one of the most interesting experi-
ments in open-source software development. It has been hugely influential in terms of project man-

2Netcraft’s monthly surveys of web servers show Apache’s share has been stable at around 67% since
September 2003.

133

agement tools and practices used by large open-source software projects. In March 1998, Netscape
released the source code for the next version of its Communicator web browser under an open-
source style license, an unprecedented step at the time. Netscape created an independent entity,
the Mozilla Organization or “Mozilla.org”, to coordinate the developers’ effort and act as a central
point of contact for those interested in participating in the project. Mozilla.org provides support
for the developers, including a web site and mailing lists, and publishes the Mozilla browser as its
integrated version of the project’s effort. Netscape remained actively involved in the project for
several years, providing funding and personnel for mozilla.org and doing much of the development
work. In 2003, Netscape (by then a division of AOL-Time Warner) established a not-for-profit in-
dependent corporation, the Mozilla Foundation, to provide a legal and organizational framework to
the project.

Perl Perl is a general-purpose programming language, invented in 1987 by Larry Wall as a quick
hack to simplify generating reports from systems logs [118]. It has since become the language of
choice for small-to-medium projects, especially in the areas of World Wide Web development, sys-
tem administration, and text processing. Today, the infrastructure for communication and coordina-
tion in support of the Perl community is provided by the Perl Foundation, a non-profit organization.

Eclipse Eclipse is an extensible integrated development environment (IDE) that began as an inter-
nal project at IBM and was released under an open source license in 2001. It is rapidly increasing
in popularity among IDEs for Java development in particular, and is also used as a platform un-
derlying commercial products, such as IBM’s WebSphere family of development tools. When IBM
turned Eclipse into an open-source project, it also created the Eclipse Consortium to guide and over-
see its development. In early 2004, the Consortium was superseded by the Eclipse Foundation, an
independent not-for-profit corporation.

A.2.2 Communication and Coordination

One of the most important characteristics of distributed software development is that developers can
no longer rely on face-to-face meetings, but instead have to make use of technology to allow them
to communicate over distance. Open-source projects rely on remarkably simple computer-based
communication technologies, such as mailing lists and newsgroups, for almost all communication
activities. Furthermore, coordination among the participating developers regarding the direction of
the project, code review, and for some projects even bug reporting and code contributions, is all
conducted through such media.

There are two main reasons for choosing such a relatively low-tech approach. First, the ex-
tremely distributed nature of even a core group of developers of OSS projects—for example, Apache’s
20 core developers are located in five different countries across three continents—all but precludes
the usage of synchronous communication. Second, open-source development is extremely fluid,
where structure is minimal and developers’ contributions vary with time depending on their interest
and other commitments. In such circumstances, it would be very difficult to impose a prescrip-

134

tive coordination technology, such as workflow systems. Thus, most projects prefer to continue
using email, or email-like mechanisms, even after they have grown beyond the initial small group
of developers because it lets humans resolve any unexpected situations that may arise.

Many OSS projects maintain web-based archives of their mailing lists, which ensure the fu-
ture availability of information, and the archived discussions represent a form of a project’s “self-
documentation.”

A.2.3 Version and Configuration Management

By the very definition of open-source software, such projects have to have a code repository on the
Internet, where developers and other interested parties can access it for download. In the past, this
was done mainly through anonymous FTP access to the recent versions (often there are at least two:
the current “leading-edge development” and “stable” versions). Also, typically the changes from
the previous version are available aspatch files, available to those who want to minimize the amount
of necessary downloading while keeping current with the ongoing development.

As projects grew in code and team size, they began to use configuration management tools
to control the code repository and ease the burden of version control and merging in individual
submissions. Today, CVS [12] (itself an open-source project) is almost universally the tool used
for this purpose. Linux is a significant holdout in this department, because Linus Torvalds decided
to use a commercial tool, BitKeeper,3 to maintain his, “official,” version of the Linux development
tree.4

The organization of configuration management in open-source projects stems from their internal
developers’ “hierarchy”. Typically, there are two tiers of developers participating in the effort: a
core group that is relatively small (for example, around 20 people in the Apache project), and a
much larger pool of contributors. The core developers are actively involved (often on a daily basis)
in the development of the product, and some minimum amount of commitment in terms of time
and effort is usually implicitly expected. Contributors might submit an occasional bug fix or feature
enhancement, when they have time, interest, or ideas. The core developers are then expected to
receive and review those contributions, and integrate the accepted ones into the code base. Over
time, contributors who have distinguished themselves by the quality and frequency of their work
may be invited to join the core group and gain more responsibility in the project. In other words,
open-source projects operate asmeritocracies.

Despite similarities across projects, there are individual project differences evident. In Linux,
the final authority and say on what goes into the kernel rests with Linus Torvalds, although most
responsibility over subsystems has been delegated to the so-called “module maintainers” (who have
often also written a major portion of the code they oversee). In Apache, the core developers form

3http://www.bitkeeper.com
4Linux is somewhat unusual among large open-source projects because it still uses email to share mod-

ifications to the source code. These are then manually integrated into code repositories. Anybody is free to
maintain their own version of the kernel, kept in a separate repository and built from a customized selec-
tion of posted modifications. In practical terms, these function roughly like development branches in CVS
repositories. The official releases are always created from Torvalds’s “main” development tree.

135

http://www.bitkeeper.com

a group which maintains control over the whole project without further breakdown of the hierar-
chy by subsystem—essentially, all the members of the group have equal vote if an issue becomes
contentious. Mozilla’s and Eclipse’s development is divided into subsystems. Development in each
subsystem is overseen by “module owners.” “Ownership” is a relative term, however; in theory, the
module owners are only caretakers and can be replaced if the developers’ community is dissatisfied
with their work.

This sort of developer organization is reflected in the setup of the code repositories: in general
the CVS source code repository allows read-only access to anyone on the Internet, while only the
core developers have the permissions to directly modify the tree. Those programmers (the “com-
mitters”) are responsible for evaluating and approving changes submitted by the community and
integrating them into the tree. Mozilla introduces another layer into the hierarchy: all code that is to
be checked into the repository by a committer needs to be reviewed by the relevant module owner
(or one of his designated assistants) and further “super-reviewed” for integration with the rest of the
system by a member of a small group of developers with long experience and broad expertise in the
project.

A.2.4 Bug and issue tracking

A publicly accessible bug and issue tracking tool is used by nearly every significant open source
project, with the notable exception of Linux.5 In general, anyone can enter bug reports and enhance-
ment requests into the system. (The distinction between the bugs and enhancements is sometimes
not a sharp one, and terms “bug” and “bug report” are usually used to include enhancement requests
as well.)

Most bug-tracking systems allow posting of additional comments in bug reports. In such sys-
tems, each bug report becomes, in effect, a tiny public mailing list focused solely on that issue.
Some bugs are resolved rapidly and without discussion (e.g., “not a bug”). In others, the discussion
can involve many participants, last for weeks, and include dozens of messages. In some projects
(such as Mozilla), the code implementing a bug fix (apatch) is also included in the bug’s discus-
sion, where it can be reviewed for correctness and prompt additional discussion of APIs or coding
alternatives. Because there is no restriction on who can add comments in a bug discussion, post-
ing patches is a way for contributing source code to the project from programmers without commit
privileges to the code repository.

The issue tracking tool is also used for project management. Each report has a number of
attributes, such as “state” (starting from “new” and ending in “resolved”), severity (e.g., “minor”
or “critical”), and the developer nominally in charge of the bug. The bug database can be queried
on their description and attribute values, for example to find all bugs related to user interface, or to
check which ones have remained unsolved for a long time.

Bugzilla, the issue-tracking tool that originated in the Mozilla project, is now used by all projects
we described in this review, and is generally considered the dominant issue-tracking system for

5An experimental bug tracking system has been set up in 2003 for the current release of Linux, although
the project’s mailing list still remains the main forum for bug reporting and management.

136

open-source software. Other major issue-tracking tools—for example, SourceForge, used by the
eponymous OSS project-hosting site6—have similar feature sets and are used in similar ways in the
development process.

6http://www.sourceforge.net

137

http://www.sourceforge.net

Appendix B

Sample protocol between Hipikat
client and server

This appendix presents the “gory details” of all exchanges between Hipikat client and server during
the example session used in Section1.2.2. The purpose is to document the details of the protocol at
a level that would have made Chapter3 a very tedious read indeed.

B.1 Acquiring user id

As described in Section3.2.1, queries for Hipikat recommendations contain a unique id to anony-
mously identify the user. Each client locally stores this id once it is obtained. For the purposes
of this example, we will assume that our fictional developer has a freshly installed Hipikat client,
which has not yet been given a user id by the server. The first time the client needs to make a query
to the server, it will first issue a request for a new user id. The request is essentially a SOAP RPC
call to the remote methodcreateUserId , and this is the message that is sent to the server:

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope

y

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

y

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

y

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>

<ns1:createUserId xmlns:ns1="urn:RecommendationFetcher"

y

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

</ns1:createUserId>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The server will respond with a new unique user id, which the client will use in future requests.
In this case, the user id that is returned is “7so”.1

1The user id is currently generated by increasing an integer counting the number of requests so far and
converting it to base 36 so it’s a mixture of letters and digits. The protocol does not depend on any particular

138

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope

y

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
y

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

y
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>

<ns1:createUserIdResponse xmlns:ns1="urn:RecommendationFetcher"

y

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="xsd:string">7so</return>

</ns1:createUserIdResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

B.2 Making the first query

The first user’s query to Hipikat in our example is on the assigned request, bug 6660 in the issue
database. The query is a SOAP RPC call to a remote methodgetRecommendation , with pa-
rameteruserId set to “7so,” as assigned in the previous step. ParameterartifactKey is set
to the key representing bug 6660, “bugzilla:6660” (c.f. Table3.1). The value of the optional third
parameter,contextKey , is set to “null,” to indicate that it is not being used. (This argument is
reserved for future extension to the protocol for describing the context of the query.)

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope

y

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

y

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

y

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>

<ns1:getRecommendation xmlns:ns1="urn:RecommendationFetcher"

y

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<userId xsi:type="xsd:string">7so</userId>

<artifactKey xsi:type="xsd:string">bugzilla:6660</artifactKey>

<contentKey xsi:type="xsd:string" xsi:null="true"/>

</ns1:getRecommendation>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The server responds with a recommendation list visible in Figure1.7. Note that the result re-
turned in the SOAP response in this case is a string encoding an XML structure, and correspondigly
the angle brackets inside the response have been replaced with encodings “<” and “>”. When
the client receives the response, it will extract the contents of thereturn element, convert them
back to regular XML to get theRecommendationList , and then parse it to obtain recommen-
dations that can be presented to the user.

form of the unique id, as long as it is a string of characters.

139

<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope

y

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

y

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

y

xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<SOAP-ENV:Body>

<ns1:createUserIdResponse xmlns:ns1="urn:RecommendationFetcher"

y

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<return xsi:type="xsd:string"><RecommendationList>

<Recommendation>
<key>bugzilla:15739</key>
<name>Bug 15739 - Show breakpoint condition in hover help</name>
<Created>2002-05-10 13:59:00</Created>
<lastModified>2002-05-16 16:22:50</lastModified>
<reason>Text similarity</reason>
<confidence>0.498139442569073</confidence>

</Recommendation>
<Recommendation>

<key>bugzilla:8679</key>
<name>Bug 8679 - Hit count ignored on breakpoints</name>
<Created>2002-01-29 15:57:00</Created>
<lastModified>2002-01-29 16:58:22</lastModified>
<reason>Text similarity</reason>
<confidence>0.370469849983177</confidence>

</Recommendation>
. . .
<Recommendation>

<Key>news:www.eclipse.org/9v4pg0$f4j$1@rogue.oti.com</Key>
<Name>’JDT conditional breakpoints’,

y

posted by ynh@brf.dk on 2001-12-11 03:08:48.0</Name>
<Reason userRecommended="false">Text similarity</Reason>
<Created>2001-12-11 11:08:48</Created>
<lastModified/>
<Confidence>0.399561491312874</Confidence>

</Recommendation>
. . .

</RecommendationList></return>
</ns1:getRecommendationResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

B.3 Making the second query

The user next opens bug report 15739, and upon deciding that it looks relevant to the task, issues a
Hipikat query on it:

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envolope . . .
<SOAP-ENV:Body>

<ns1:getRecommendation . . .
<userId xsi:type="xsd:string">7so</userId>

<artifactKey xsi:type="xsd:string">bugzilla:15739</artifactKey>

<contentKey xsi:type="xsd:string" xsi:null="true"/>

</ns1:getRecommendation>

140

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Server’s response is as before, except in this case log- and activity-matcher give a number of
recommendations that appear at the top of the list. (SOAP headers are omitted below and only the
actualRecommendationList shown.)

<RecommendationList>
<Recommendation>
<Key>cvs:org.eclipse.jdt.debug/model/org/eclipse/jdt/internal/

y

debug/core/breakpoints/JDIDebugBreakpointMessages.properties:1.4</Key>
<Name>org.eclipse.jdt.debug/model/org/eclipse/jdt/internal/

y

debug/core/breakpoints/JDIDebugBreakpointMessages.properties:1.4</Name>
<Reason>Bug ID in revision log</Reason>
<Created>2002-05-15 18:58:50</Created>
<lastModified/>
<Confidence>High</Confidence>
</Recommendation>

<Recommendation>
<Key>cvs:org.eclipse.jdt.debug/model/org/eclipse/jdt/internal/

y

debug/core/breakpoints/JavaBreakpoint.java:1.45</Key>
<Name>org.eclipse.jdt.debug/model/org/eclipse/jdt/internal/

y

debug/core/breakpoints/JavaBreakpoint.java:1.45</Name>
<Reason>Bug ID in revision log</Reason>
<Created>2002-05-15 18:59:32</Created>
<lastModified/>
<Confidence>High</Confidence>
</Recommendation>

<Recommendation>
<Key>cvs:org.eclipse.jdt.debug/model/org/eclipse/jdt/internal/

y

debug/core/breakpoints/JavaLineBreakpoint.java:1.31</Key>
<Name>org.eclipse.jdt.debug/model/org/eclipse/jdt/internal/

y

debug/core/breakpoints/JavaLineBreakpoint.java:1.31</Name>
<Reason>Bug ID in revision log</Reason>
<Created>2002-05-15 18:59:21</Created>
<lastModified/>
<Confidence>High</Confidence>
</Recommendation>

. . .
<RecommendationList>

B.4 Giving a thumbs-up to a recommendation

Because bug 15739 turned out to be so useful in solving this task, the developer goes back to the
recommendation list of bug 6660 and gives the recommendation on bug 15739 a “thumbs up.”
Hipikat client issues a SOAP RPC to the remote methodrateRecommendation , and this is the
message that is sent to the server:

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope . . .
<SOAP-ENV:Body>

<ns1:rateRecommendation . . .
<userId xsi:type="xsd:string">7so</userId>

141

<artifactKey xsi:type="xsd:string">bugzilla:15739</artifactKey>

<queryContext xsi:type="xsd:string">bugzilla:6660</queryContext>

<rating xsi:type="xsd:string">1</rating>

</ns1:rateRecommendation>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

ParameteruserId is used as before. ParametersartifactKey andqueryContext identify
the artifact which is given a thumbs up and the artifact that the query was on, respectively. In this
example, the thumbs-up is being given to bug 15739 that was recommended in response to the query
on bug 6660.

The server’s response is a just an empty message since no value needs to be returned:

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope . . .
<SOAP-ENV:Body>

<ns1:rateRecommendationResponse . . .
</ns1:rateRecommendationResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

B.5 Hipikat search

This section illustrates Hipikat functionality that is not used in the example we followed so far,
although it is mentioned in Section3.2.3: searching the artifact database using search terms given
by the user.

The search functionality is accessed through a “Hipikat search” pane in the Eclipse search dia-
log. The user types in the search terms into the dialog and clicks on the “Search” button. Hipikat
client makes a recommendation request to the server that is just a special case of querying on an arti-
fact. The only difference is that the artifact key used issearch:expression%3D URL-encoded
search terms separated by URL-encoded&’s. For example, user’s search on terms “breakpoint
hover” would be sent in the following SOAP request:

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope . . .
<SOAP-ENV:Body>

<ns1:getRecommendation . . .
<userId xsi:type="xsd:string">7so</userId>

<artifactKey xsi:type="xsd:string">search:expression%3D

y

breakpoint%2Bhover%</artifactKey>

<contentKey xsi:type="xsd:string" xsi:null="true"/>

</ns1:getRecommendation>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The server’s response is aRecommendationList , as described earlier.

142

Appendix C

Informed consent form used in the
Eclipse study

Assessing the usefulness of the Hipikat software engineering
tool

Principal Investigator: Dr. Gail Murphy, Dept. of Computer Science, 822–5169
Co-Investigator(s): Mr. Davor Čubranić, Ph.D. Candidate, Dept. of Computer Science,
822–4912. (The project is part of his graduate thesis research, in which he is co-super-
vised by Dr. Murphy and Dr. Kellogg S. Booth, Dept. of Computer Science, 822–8193.)

Purpose:

The purpose of this study is to help evaluate whether and how a particular new software tool, called
Hipikat, can aid in the performance of software change tasks. The tool directs a software developer
who is unfamiliar with a system to information relevant about the task that they are performing
on the system. The information suggested is derived from the recorded history of prior completed
changes and enhancements to the system. The proposed study has two objectives. The first objective
is to determine whether the tool suggests useful information to developers. The second objective is
to gather realistic information to refine and improve the algorithms used to suggest relevant material.

Study Procedures:

For this study, I will be asked to investigate two problem reports for the Eclipse development envi-
ronment and plan the changes necessary to fix those problems.

At the beginning of the study, I will be asked questions on my prior experience in software
development. I will then be given a tutorial on programming for Eclipse. This tutorial will take
up to four hours. For each problem I am assigned, I will be given two and a half hours in which
to investigate it and plan how to fix it. I will be given access to the documentation for Eclipse, the
developers’ newsgroups and mailing lists, and the problem report database. After the first hour, the

143

experimenter will ask me questions on my progress. Once I have figured out the change plan, I will
describe it to the experimenter and proceed with the change. At the end of the two and a half hours,
I will turn in the written plan of my fixes to the problem and the code implementing the plan, and
the experimenter will ask me questions about the details of my solution and my experiences with
the software tools that I used.

The display of my computer will be recorded while I am working on the problems. The inter-
views will be audio- and videotaped.

Confidentiality:

I am aware that my work on fixing the assigned problems and the responses I make in the interview
will be recorded using field notes and video (if permission is granted) and that the tool will log its
actions while I am using it. All personal and identifying data will be kept confidential. If explicit
consent has been given, pictures and videotapes may be used in the dissemination of research results.

All records from the study will be kept in a locked room or filing cabinet or protected by a
password if in electronic form. These records will be kept for five years after the completion of Mr.
Cubranic’s degree and then destroyed.

Remuneration/Compensation:

I will be paid $20 for each hour I participate in the study. This payment will be made by cheque.

Contact:

If I have any questions or desire further information with respect to this study, I may contact Dr. Gail
Murphy at 822–5169.

If I have any concerns about my treatment or rights as a research subject I may contact the
Director of Research Services at the University of British Columbia, Brent Sauder at 822–8598.

Consent:

I understand that my participation in this study is entirely voluntary and that I may refuse to partic-
ipate or withdraw from the study at any time.
I have received a copy of this consent form for my own records.
I consent to participate in this study.

Initials
I agree to participate in the activities explained above Yes No
I agree to be audio- and videotaped Yes No
I agree to have my use of computer software recorded Yes No
I agree to let the above recordings be used for

presentation of the research results Yes No

144

Appendix D

Participant questionnaire used in
the Eclipse study

In our study of usage of tools and various information sources used in software development, know-
ing a developer’s previous experience with Eclipse and other software development technologies
is important if we are to draw useful conclusions from our observations. For this reason, please
fill out the following questionnaire. It will be used only for the purposes of this research, and no
publications using this data will contain information that could personally identify you.

1. How much experience have you had with Java?

� heard of it

� used it in some classes

� comfortable programming in it, familiar with the standard libraries

� can virtually think in it

� other (please describe)

1b. What other programming languages do you know well (that is, would have answered “com-
fortable” or above on the previous scale)?

2. How much experience have you had with Eclipse?

� heard of it

� used it a few times

� use it as my main development environment (for how long)?

� tried implementing simple plug-ins from tutorials (which ones?)

� programmed plug-ins for it independently and more extensively (please describe below)

� other (please describe)

3. Have you ever worked on a large project (in terms of either or both length and number of
people involved)?

145

� never

� yes: please describe below the nature and size of project and the extent of your involve-
ment with it

4. Have you ever worked on an open-source project?

� never heard of “open source”

� have used open-source software, haven’t worked on one

� released my own code under open-source

� got involved in somebody else’s project (please describe the nature and size of the
project and the extent of your involvement with it)

5. Have you ever worked with a bug report/problem management system (e.g., Bugzilla)?

� never heard of Bugzilla or bug reporting

� have heard of it, never used it

� have written some bug/problem reports myself (using which bug report system?)

� used it as a developer (which bug report system? which project? how extensively?)

6. Have you ever worked with version management system (e.g., CVS, RCS)?

� what is “version management”?

� have heard of it, never used it

� used it in my own project, but didn’t have to share it with others (which system?)

� used it in a team project (which system?)

� other (please describe):

7. How much experience have you had with “design patterns”?

� never heard of them

� heard of them, mentioned in class

� know of a few

� could recognize them in code

� use them regularly

� other (please describe):

8. Do you use “alpha” software? Please describe which products and your reasons for using
them.

8b. What do you do when such software crashes? (For example, go into the code to fix it, report
the problem to its developers, restart it and try again, etc.)

146

9. How do you usually search for documents on the Web?

� type in a few words into a search engine (which one?) and see what happens

� try refining searches (please describe how)

9b. Do you use multiple information sources and search engines? Please describe which ones.

10. How do you typically go about solving a problem or designing a new feature?

11. How do you usually search for information relevant when doing software development?
Which information sources do you usually use? (For each source, please describe how often
you use it compared to others, in which circumstances you tend to use it, and why.) Also, do
you use any special strategies to remember that information? (For example, keep a notebook
or an online journal, bookmarks in a web browser and/or Eclipse.)

147

Appendix E

Participant instructions used in the
Eclipse study

The purpose of this study is to help evaluate whether and how a particular new software tool, called
Hipikat, can aid in the performance of software change tasks. The tool directs a software developer
who is unfamiliar with a system to information relevant about the task that he is performing on the
system. The information suggested is derived from the recorded history of prior completed changes
and enhancements to the system. The proposed study has two objectives. The first objective is to
determine whether the tool suggests useful information to developers. The second objective is to
gather realistic information to refine and improve the algorithms used to suggest relevant material.

E.1 Change Plan

We ask you to make a change to the code of the Eclipse platform. The functionality needed is
described in bugid in Bugzilla.1 You can view the bug report in Eclipse by opening theBugzilla
pane in theSearchdialog and typing the bug number into the “Bug id or summary terms” field.
Please read the bug now and understand what it is asking. Once you have done this, please notify
the investigator.

E.1.1 Task

1. Now try to prepare a change plan. You can write the plan into a file or on a piece of paper.
Try to make the plan as detailed as possible: it should contain the list of files and methods to
be modified, and a summary of the modifications. For example:

File1.java
Add a field and the corresponding getters and setters. . .

1The instructions were identical for each of the two change tasks, regardless of the order in which they
were performed. Only the id of the bug report used in the task was changed. (Bug 6660 for the easy task and
bug 20982 for the hard task.)

148

File2.java
. . .

etc.

2. To make the change plan, try using Hipikat as much as you can. If you want to, you can use
any other Eclipse tools we described earlier (including the debugger), or the documentation
available on Eclipse.org,2 articles,3 online help,4 or search5 the newsgroup and mailing list
archives. If you think you are stuck or are unsure of what to do next, try making a Hipikat
query!

3. You have 1 hour to complete the plan. The investigator will ask you a couple of brief questions
about your progress at the half-way point.

4. Your plan must be as complete as possible.

5. If you are ready to go, please notify the investigator.

E.2 Performing the change

Now start working on implementing the change you have planned.

1. Try to implement the functionality requested in bugid.

2. Feel free to use all the tools at your disposal.

3. Note if your change plan changes: why and how did you decide to deviate from the original
plan?

4. Note if your initial change plan was incomplete: what was missing and how did you find out?

5. You have up to hour and a half to work on this.

6. When you have completed the change, notify the investigator.

2Hypertext link tohttp://www.eclipse.org
3Hypertext link tohttp://www.eclipse.org/articles/index.html
4Link to built-in Eclipse help system
5Hypertext link tohttp://www.eclipse.org/search/search.cgi

149

http://www.eclipse.org
http://www.eclipse.org/articles/index.html
http://www.eclipse.org/search/search.cgi

	Abstract
	Contents
	List of Tables
	List of Figures
	Acknowledgements
	 Introduction
	Difficulties in learning without a mentor
	Techniques for improving understanding of the source code
	Techniques for improving program documentation
	Programming from examples

	An overview of the Hipikat approach
	Overview of implicit project memory approach
	An introduction to the Hipikat tool

	Summary
	Organization of the dissertation

	 Related work
	Group/organizational memory
	Memory of experience
	Memory of interactions

	Unifying information sources
	Recommender systems
	Mining artifact repositories

	 Hipikat
	The principles of the Hipikat approach
	Forming the project memory
	Making recommendations

	The Hipikat tool
	Hipikat client-server protocol
	Hipikat Server
	Hipikat client(s)

	Hipikat instantiation for Eclipse.org
	Artifact update
	Identification heuristics
	Project memory database
	Bugzilla front-end as an Eclipse plug-in

	Summary

	 Validation
	The Avid study
	Design
	Participants and procedures
	Results
	Conclusion

	The Eclipse study
	Design
	Participants
	Procedures
	Data
	Analysis
	Results
	Discussion
	Threats to the study validity
	Conclusion

	A look at the quality of Hipikat's recommendations
	Selecting the sample
	Evaluation criteria
	Results
	Summary

	 Discussion
	Model
	Unit of recommendation
	Better time awareness
	Collaborative recommendation
	Making sense of the group memory

	Implementation
	Presentation of query results
	Scaling up
	Check-in comment and activity-based matching

	Validation
	The choice of methodology
	Types of artifacts most used in the study
	Measure of effectiveness

	Impact of extended use of Hipikat
	Hipikat's applicability
	Environmental pre-conditions
	Hipikat's strengths

	 Conclusion
	Contribution
	Summary and future work

	Bibliography
	Appendix Open-source software development
	Introduction
	Current Practices
	Representative Open-Source Projects
	Communication and Coordination
	Version and Configuration Management
	Bug and issue tracking

	Appendix Sample protocol between Hipikat client and server
	Acquiring user id
	Making the first query
	Making the second query
	Giving a thumbs-up to a recommendation
	Hipikat search

	Appendix Informed consent form used in the Eclipse study
	Appendix Participant questionnaire used in the Eclipse study
	Appendix Participant instructions used in the Eclipse study
	Change Plan
	Task

	Performing the change

