
The Impact of Static-Dynamic Coupling on Remodularization

Rick Chern Kris De Volder
University of British Columbia

2366 Main Mall
Vancouver, BC

Canada
{rchern, kdvolder}@cs.ubc.ca

Abstract
We explore the concept of static-dynamic coupling—the
degree to which changes in a program’s static modular
structure imply changes to its dynamic structure. This pa-
per investigates the impact of static-dynamic coupling in
a programming language on the effort required to evolve
the coarse modular structure of programs written in that
language. We performed a series of remodularization case
studies in both Java and SubjectJ. SubjectJ is designed to
be similar to Java, but have strictly less static-dynamic cou-
pling. Our results include quantitative measures—time taken
and number of bugs introduced—as well as a more subjec-
tive qualitative analysis of the remodularization process. All
results point in the same direction and suggest that static-
dynamic coupling causes substantial accidental complexity
for the remodularization of Java programs.

Categories and Subject Descriptors D.2.2 [Design Tools
and Techniques]: Evolutionary prototyping, Modules and
interfaces; D.3.3 [Language Constructs and Features]:
Modules, packages; D.2.6 [Programming Environments]:
Integrated environments; D.2.3 [Coding Tools and Tech-
niques]: Object-oriented programming

General Terms languages, experimentation

Keywords remodularization, subject-oriented programming,
hyperslices, static-dynamic coupling, refactoring, language
design

1. Introduction
We consider two kinds of program structure: static and dy-
namic. Static program structure is concerned with how in-
formation in program text is organized in terms of document

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
Copyright c© 2008 ACM 978-1-60558-215-3/08/10. . . $5.00

structure. Dynamic program structure is concerned with the
structure of computations during program execution—for
example, dynamic program structure in an object-oriented
language corresponds to the structure of objects and their
run-time interactions.

In the remainder of this paper, we refer to “remodular-
ization” as the evolution of a program’s coarse static modu-
lar structure. Language design can impact the complexity of
remodularizing programs. In particular, some language de-
signs can make it harder to move code around within the
static modular structure without changing dynamic program
structure; we call this static-dynamic coupling.

The key contribution of our paper is providing exper-
imental results towards answering the following research
question:

How and to what extent does static-dynamic coupling
in a language impact the complexity of remodulariz-
ing programs?

To investigate this question, we performed a series of re-
modularization case studies in two languages—Java [13] and
SubjectJ. SubjectJ was designed to be similar to Java but
have less static-dynamic coupling. We collected quantitative
data—time taken and number of bugs introduced—and also
performed a more subjective qualitative analysis of the re-
modularization process.

All results point in the same direction and suggest that
static-dynamic coupling in Java causes substantial accidental
complexity1. Quantitative results show that remodularizing
in Java takes more time and results in more frequent intro-
duction of bugs; qualitative results provide insight into how
static-dynamic coupling in Java leads to accidental complex-
ity.

Note that we do not claim SubjectJ itself as a novel
contribution. SubjectJ is only a guinea pig. The ideal pair
of guinea pigs would be two languages that significantly
differ from each other in terms of static-dynamic coupling,

1 The term “accidental complexity” coined by Brooks [2] means “complex-
ity that arises in computer programs or their development process which is
non-essential to the problem to be solved”.

public class Counter extends JPanel {
private int count = 0;
private JButton button;
private JLabel label;

public Counter() {
label = new JLabel(""+getCount());
add(label);
button = new JButton("Increment");
add(button);
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
increment();

}
});

}
public int getCount() {

return count;
}
public void increment() {

count++;
updateDisplay();

}
private void updateDisplay() {

label.setText(""+getCount());
}

}

Figure 1. GUI and model code tangled.

but are identical in all other respects. We chose Java as the
first guinea pig, because it has particularly strong static-
dynamic coupling, and because it is a mainstream language
for which it is easy to find existing code bases. To be close
to an ideal second guinea pig, SubjectJ was not designed to
be innovative, but rather to be very similar to Java, while
removing what we perceived to be Java’s greatest source of
static-dynamic coupling.

The remainder of this paper is structured as follows. We
start by presenting a concrete example illustrating that Java
has strong static-dynamic coupling and how this complicates
remodularization. In Section 3 we describe SubjectJ. Sec-
tion 4 presents the case-study experiment comparing remod-
ularization in Java and SubjectJ. Related work is reviewed
in Section 6, and we provide concluding statements in Sec-
tion 7.

2. Static-Dynamic Coupling Example
The following example illustrates the concept of static-
dynamic coupling, and shows how it complicates Java re-
modularization. More specifically, we will argue that static-
dynamic coupling compels Java developers to adopt a solu-
tion that modifies dynamic program structure, even if they
only wanted to change static structure. The complexity of
the dynamic structure transformations makes them hard to
support by refactoring tools, and the developer must resort
to an error-prone “cut-and-paste and fix compiler errors”
approach.

Figure 1 shows a Java “Counter” program, which has a
single “Increment” button and displays the number of times
this button has been pressed.

For presentation purposes, this example is deliberately
simplistic, but its structure is representative of many real-

public interface CounterListener {
public void valueChanged();

}
public class CounterModel extends JPanel {

List<CounterListener> listeners = new ArrayList<CounterListener>();
private int count = 0;

public CounterModel() {}

public void increment() {
count++;
notifyListeners();

}
private void notifyListeners() {

for (CounterListener l : listeners)
l.valueChanged();

}
public void addListener(CounterListener l) {

listeners.add(l);
}
public int getCount() {

return count;
}

}

Figure 2. A separate model with a listener infrastructure

public class Counter extends JPanel implements CounterListener {
private CounterModel count;
private JButton button;
private JLabel label;

public Counter() {
count = new CounterModel();
label = new JLabel(""+count.getValue());
add(label);
button = new JButton("Increment");
add(button);
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
count.increment();

}
});
count.addListener(this);

}
public void valueChanged() {

label.setText(""+count.getCount());
}

}

Figure 3. GUI code as a client of the model

istic Java GUIs. The code that maintains the counter state
is tangled with the GUI code. This is not good modularity,
but nevertheless many GUIs are initially written in this way
[25]. The simplicity of the example makes for clearer presen-
tation, but may make the “problems” we are about to discuss
seem trivial. We ask the reader to bear in mind that, in more
realistic programs, the scattering and tangling of UI code
could span across multiple classes of considerable complex-
ity.

Now, suppose we wanted to remodularize this code to
separate the model code from the GUI code, creating a
clear interface between the two code modules, while pre-
serving external program behavior. A typical way to achieve
these remodularization goals is to implement a model-view-
controller architecture, with a listener registration protocol
on the model class(es). The result is shown in Figures 2
and 3.

The type of transformation needed here—implementing
a design pattern—cannot easily be broken down into refac-
toring steps supported by a typical IDE. Therefore, typically
an ad-hoc “cut-and-paste and fix compiler errors” process
will be used. This process is tedious, unpredictable, and er-
ror prone.

Recall however that our original intent was to change the
coarse static program structure. As such, the implementation
of a listener infrastructure, which is a transformation of
dynamic structure, was strictly speaking uncalled for. At the
same time, the listener implementation seems to be the main
source of complexity.

To be clear, we do not imply that implementing a listener
might not be useful, only that it was not an explicitly stated
goal in this example. Even if we might eventually want to
move to a listener based solution, being forced to adopt a
particular implementation earlier than needed is poor incre-
mentality. As such, we would like to avoid its complexity, or
at least postpone it until it is really needed.

Unfortunately, in Java the complexity is unavoidable be-
cause of strong static-dynamic coupling: Java imposes struc-
tural limitations which imply that the remodularization goals
cannot be met without changing dynamic structure. The
main reason is that in Java, each class declaration is con-
tained entirely within one .java file. This constraint makes
it as good as impossible to separate model code from GUI
code without creating separate runtime objects.

3. SubjectJ
In this section we provide an overview of SubjectJ, focussing
on the aspects that are relevant for this paper. For a more
detailed description of the SubjectJ language and tools we
refer to [6].

Note that we do not claim SubjectJ itself as a novel contri-
bution; it only serves as a guinea pig. To be close to an ideal
guinea pig, it was designed explicitly to be very similar to
Java, while relaxing what we perceived to be Java’s great-
est source of static-dynamic coupling: the constraint that a
class’s declaration must be wholly contained within a sin-
gle Java source file. Thus, SubjectJ’s primary design goal
is to allow classes to be split across coarse-grained static
modules. To be meaningful, we believe this goal should
be achieved without diluting the module concept. This is
captured by the second design goal—that SubjectJ modules
should have well-defined explicit interfaces that allow hiding
implementation details from other modules.

Finally, we adopted two pragmatic design goals. The first
pragmatic goal was that Java programs should be valid Sub-
jectJ programs. This allows experimenting on the same re-
alistic Java code bases for both Java and SubjectJ remodu-
larization case-studies. The second goal was that SubjectJ
syntax should not radically break existing Java tools in the
Eclipse2 IDE. This allows the use of Eclipse tools with both

2 http://eclipse.org/ verified December 2007.

@Shared public class Counter extends JPanel {
private JButton button;
private JLabel label;

public Counter() {
label = new JLabel(""+getCount());
add(label);
button = new JButton("Increment");
add(button);
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
increment();

}
});

}
@Import public int getCount();
@Import public void increment();

@Export private void updateDisplay() {
label.setText(""+getCount());

}
}

Figure 4. Version of Counter in the “UI” subject’s source
tree.

Java and SubjectJ, so that SubjectJ and Java are comparable
in terms of realistic IDE support.

The design of SubjectJ builds heavily on the ideas of
subject-oriented programming [17, 28] and multi-dimension-
al separation of concerns [32]. SubjectJ is essentially a
“light” variant of Hyper/J [31], supporting only two dimen-
sions of concern (class and subject) and a single built-in
composition rule. However, SubjectJ modules have explic-
itly defined interfaces and can encapsulate implementation
details. In contrast, Hyper/J hyperslices as described in [31]
do not distinguish between exported and non-exported dec-
larations, and thus do not truly encapsulate implementation
details by hiding declarations from other hyperslices3.

In the following sections, we describe in more detail the
modular units of SubjectJ, and overview the tool support
for transforming source code in SubjectJ. We then illustrate
how SubjectJ can be used for remodularizing existing Java
programs.

3.1 Modular Units in SubjectJ: Subjects
SubjectJ allows decomposing a Java program into modular
units called “subjects”. A subject is a partial Java program,
with a well-defined public interface. Figures 4 and 5 show
an example of the SubjectJ code we might end up with
after separating the code from Figure 1 into two subjects,
one for the UI related code (Figure 4) and one for the rest
(Figure 5). Note that due to the simplicity of this example,
each subject only contains declarations for a single class. In
general however, a subject can contain multiple partial or
complete classes from different Java packages, and is thus
represented by a source tree with multiple .java files.

3 Although the composition tools presented in [31] do not support true
encapsulation of hyperslices, the limitation is not a conceptual constraint of
the Hyper/J language, and is addressed by the composition engine described
in [18].

Annotation Attached to Meaning
@Export Field, Method, Constructor The signature of this declaration can be imported by other subjects.
@Import Field, Method, Constructor The signature of this declaration must be exported by another subject. This

annotation should only be attached to method declarations without a body,
and field declarations without an initializer.

@Shared Class The class header (including “extends” clause, but not necessarily all “im-
plements” clauses) can be shared with other subjects. “Implements” clauses
are shared automatically if the corresponding interface is shared.

@Shared Interface The interface header (but not necessarily all “extends” clauses) can be
shared with other subjects. “Extends” clauses are shared automatically if
the corresponding interface is shared.

Table 1. Annotations defining a subject’s interface

@Shared public class Counter extends JPanel {
private int count = 0;

@Export public void increment() {
count++;
updateDisplay();

}
@Export public int getCount() {

return value;
}
@Import private void updateDisplay();

}

Figure 5. Version of Counter in the “OTHER” subject’s
source tree.

SubjectJ syntax is essentially Java syntax with custom
Java 1.5 annotations. The purpose of the annotations is to
define a subject’s public interface; an overview of these
annotations is shown in Table 1. The public interface of a
subject is independent from Java’s public/private modifiers,
and is scoped relative to subjects rather than classes. When
subjects are composed, we verify whether their interfaces are
consistent with each other.

The annotations make it explicit how a subject depends
on other subjects, and also what parts of the subject are visi-
ble to other subjects. For example, in Figure 4 and Figure 5
the @Shared annotation attached to the Counter class signi-
fies that the declaration of the Counter class may be shared
by other subjects. This places the name “Counter” concep-
tually in a public global namespace, allowing multiple sub-
jects to refer to it and contribute their own field, constructor
and method declarations to the class. Similarly, an @Export

placed on a member means the signature of the member dec-
laration is visible to other subjects, while an @Import on
a member means the subject depends on the signature of
the member declaration being made available by an @Export

from another subject.
Note that although the Counter class is shared, this does

not mean that all of its members must be shared. For exam-
ple, the button and label fields are not exported and so they
are private to the UI subject. This means that other subjects
are not allowed to have (direct) dependencies on these fields,
even though they may contribute code to the same class.

Only subjects that are declaratively complete [32] are
considered valid. Declarative completeness means that a
subject needs to include at least the signatures or headers
of anything it depends on. This constraint ensures that a
subject, although not a complete Java program, is relatively
self-contained and can be understood and worked on in rela-
tive isolation. Declarative completeness also strengthens the
notion of subject interfaces because it forces any dependency
a subject has on other subjects to be explicitly represented
by @Import or @Shared annotations.

The reader may have noticed our asymmetric treatment
of “extends” clauses in classes versus interfaces, and the un-
necessary extends JPanel clause in Figure 5 that is a conse-
quence of this. Conceptually, SubjectJ breaks up Java classes
into smaller syntactic units and allows these units to be re-
arranged into subjects. To decide on the granularity of these
units, we performed some preliminary experiments remod-
ularizing Java code into SubjectJ subjects. We only broke
up a unit if we encountered scenarios where separating the
unit across subjects would help achieve a remodularization
goal from our preliminary experiments. So, we decided to al-
low individual separation of “implements” clauses (and “ex-
tends” clauses for interfaces), because we observed that en-
tire interfaces were often irrelevant to a subject, but we de-
cided not to allow “extends” clauses to be separated from
their class headers, because we did not encounter scenar-
ios in our preliminary experiments where a class declara-
tion needed to be separated from its superclass. We did en-
counter such scenarios later on while performing the case
study experiment described in Section 4; but, having already
performed a number of case studies at this time, we decided
not to remove the constraint on separating “extends” clauses.
Although this constraint clearly impedes the movement of
code undesireably, SubjectJ still legitimately serves as a lan-
guage with looser static-dynamic coupling than Java in our
case study experiments.

3.2 SubjectJ Tools
SubjectJ provides a number of tools for the purpose of edit-
ing, compiling, running and refactoring SubjectJ programs.

Figure 6. Overview of SubjectJ tools—Decompose, Com-
pose, and Checker.

@Subject({"UI","OTHER"})
public class Counter extends JPanel {

private int count = 0;

@Subject("UI") private JButton button;
@Subject("UI") private JLabel label;

@Subject("UI") public Counter() {
label = new JLabel(""+getCount());
add(label);
button = new JButton("Increment");
add(button);
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
increment();

}
});

}
@Export("UI") private int getCount() {

return count;
}
@Export("UI") public void increment() {

count++;
updateDisplay();

}
@Subject("UI") @Export("OTHER")
private void updateDisplay() {

label.setText(""+getCount());
}

}

Figure 7. Composed Java program with “Tracking” annota-
tions.

Figure 6 shows an overview of these tools. The following
subsections describe each of the SubjectJ-specific tools in
more detail.

3.2.1 Compose
The Compose tool is conceptually very simple: it computes
the union of all its input subjects, linking any @Import to a
corresponding @Export, and generates a Java program. This
Java program can then be compiled and run with standard
Java tools.

The Compose tool also checks that subject interfaces are
being respected. For example, consider two independent de-
velopers working on the UI and OTHER subjects. Suppose
both added a helper method with an identical signature to the
Counter class. Lacking appropriate @Import and @Export an-
notations, these methods should be considered hidden within
their respective subjects. The fact that they would be mapped
onto the same method declaration in the composed Java
program violates this intent and is therefore a composition
conflict. The current implementation of the Compose tool
checks for conflicts and issues error messages. A more so-
phisticated implementation could automatically resolve such
conflicts by renaming hidden declarations.

3.2.2 Decompose
The Decompose tool is the inverse of the Compose tool.
The Compose tool inserts subject “tracking” annotations
into a composed program. These annotations track what
subjects the code in the composed program belonged to. The
Decompose tool uses this information to invert the compose
operation.

An overview of the tracking annotations is shown in Ta-
ble 2. Figure 7 shows the result of composing the UI subject
from Figure 4 and OTHER subject from Figure 5. Tracking
annotations mark the code in the composed program with
the names of the subjects they belong to. Note that differ-
ent types of annotations apply to different parts of the code
they are attached to. For example, the @Export annotation
on updateDisplay indicates that its signature is exported
to the OTHER subject, while the @Subject annotation on
updateDisplay indicates that its body belongs only to UI.

Also note that an annotation like @Export("UI") implies
both that the declaration it is attached to is imported by the
UI subject and exported by whatever subject it belongs to.
This is because composition fuses imports and exports into
a shared declaration. A further detail to note is that any dec-
laration that doesn’t have an explicit @Subject is treated as
having a @Subject("OTHER") annotation. Thus, the annota-
tion on getCount implies that it belongs to OTHER (and is
exported to UI). Finally, the @Implement annotation, which
is not used in this simple example, marks individual “imple-
ments” clauses.

3.2.3 Checker
The Checker tool accepts a Java program, marked up with
annotations as if produced by the Compose tool, and verifies
whether the mark-up represents a valid decomposition of the
Java program into subjects. This tool is intended to support
use cases where the Decompose tool is run on “composed”
programs that were produced or modified by the developer
rather than the Compose tool.

Essentially, the Checker tool checks for declarative com-
pleteness. This is a relatively straightforward static analysis,
verifying whether code marked as belonging to any given
subject has static dependencies on declarations not included
or imported in the subject.

Optionally, the Checker tool can automatically insert an-
notations to include the missing code. This is useful support
for use cases involving user-generated or edited “composed”
programs. Essentially, it allows a developer to only annotate
the fields, methods, and constructors that belong to a given
subject, and let the Checker tool infer proper subject inter-
faces from static dependencies.

3.3 Implementation
The SubjectJ Decompose, Compose and Checker tools are
implemented as a single Eclipse plugin. Its implementation
consists of approximately 4000 lines of code, of which ap-

Attached to Meaning
@Subject(S1, . . .)
Class The class header (including “extends” clause but not necessarily “implements” clauses)

belongs to subjects S1,. . .
Interface The interface header (not necessarily including “extends clauses”) belongs to subjects

S1,. . .
@Subject(S)
Field The field (signature plus optional initialer) belongs to subject S
Method, Constructor The signature and optional body belong to subject S

@Export(S1, ...)

Field, Method, Constructor The declaration’s signature is imported by subjects S1,. . . and is exported by the subjects
the declaration belongs to.

@Implement(@Mapping(key=S1, values = I1
1 ,I2

1 ,. . .),. . .)
Class For each subject Si, only the “implements” clauses for interfaces I1

i , I2
i , . . . belong to Si.

For subjects not explicitly mapped, implicitly include all “implements” clauses.
Interface Like for a class, but applies to “extends” instead of “implements” clauses.

Table 2. “Tracking” annotations that allow decomposing Java programs into subjects.

proximately 300 lines implement a rudimentary SWT UI
that lets the user launch the SubjectJ tools from within
Eclipse.

The running times of the tools are approximately linear
to the size of the code base to which the tools are applied.
Using a PC with a 2.13 GHz Intel Core 2 processor and 1GB
of memory, we ran the tools on the largest code base in our
case studies, with 70833 lines of code (see Section 4). The
Decompose and Compose tools each required approximately
1 minute to run, while the Checker tool required approxi-
mately 2 minutes to run.

3.4 Remodularizing Java Programs with SubjectJ
In this section, we describe the typical way in which the Sub-
jectJ tools just discussed would be used in the use case cor-
responding to our remodularization case studies: remodular-
izing an existing Java code base into two subjects. Variants
of this use case to further remodularize a program already
divided into subjects can also be supported, but discussion
of them is not relevant to our experiment.

Reconsider the Java program from Figure 1. Suppose we
wanted to remodularize this, separating all UI related code
into its own UI subject and keeping the remaining code in
the OTHER subject. To do this, we basically need to insert
appropriate annotations to mark UI related code in the Java
program, and then run the Decompose tool. The Checker
tool can be used to assist in this process.

For our example it might go as follows. We start by plac-
ing four @Subject("UI") annotations: on the constructor; the
label and the button fields; and the updateDisplay method.
Recall that everything not explicitly annotated is treated as
belonging to the OTHER subject. However, to make this a
valid decomposition, we need more annotations to describe
the interface between the UI and OTHER subject. We run the

Checker tool to infer the needed annotations, producing the
mark-up shown in Figure 7. Running the Decompose tool on
this produces the remodularized program shown in Figure 4
and Figure 5.

4. Experiment
We now present our case study experiment, aimed at ad-
dressing our research question, “How and to what extent
does static-dynamic coupling in a language impact the com-
plexity of remodularizing programs written in that lan-
guage?”. In our experiment, we compared remodularization
complexity between Java and SubjectJ, a language designed
for reduced static-dynamic coupling compared to Java.

To compare remodularization complexity between Java
and SubjectJ, we carried out a series of 8 case studies on
8 different open source Java software packages. Each case
study involved performing a remodularization task twice—
once in Java and once in SubjectJ. We then compared the re-
sults to each other. To quantify complexity, we measured the
time taken to perform the remodularizations, and counted the
number of bugs introduced while performing each remodu-
larization. We also performed a qualitative analysis focused
on finding anecdotal evidence of accidental complexity.

Qualitative and quantitative results complement each
other. The quantitative results provide reasonably objective
evidence that remodularization is easier in SubjectJ, while
the qualitative results provide insight into how, by providing
concrete examples of the problems encountered in the Java
remodularizations.

We start by presenting our experimental setup in more de-
tail in Section 4.1. We discuss the threats to validity of our
experiment in Section 4.2. Then we present the quantitative
results in Section 4.3, followed by the results of the anec-

dotal analysis in Section 4.4. Conclusions and limitations of
the experiment are discussed in Section 4.5.

4.1 Experimental Setup
For each of the 8 case studies in the experiment, we se-
lected a different open source Java code base. Table 3 has
an overview of the selected code bases. We also defined
for each case study a remodularization, which required the
identification and separation of a certain subset of the ex-
isting code base, characterized by the high-level description
shown under “Code to Separate” in Table 3. We defined an
acceptable remodularization to be the creation of either a
Java package or a SubjectJ subject containing all and only
the identified source code (with any required interface code).

The 8 case studies were performed by the first author of
this paper (who we call “the programmer”), in the order in
which they are shown in Table 3. With the exception of the
JHotDraw code base, he was unfamiliar with the selected
code bases prior to performing the experiment.

For each case study the remodularization was performed
twice consecutively, once using Java and once using Sub-
jectJ. For the first 4 case studies the SubjectJ remodular-
ization was performed first; for the last 4, the Java remod-
ularization was performed first. The programmer was not al-
lowed access to any data or results produced during the first
remodularization process, while performing the second. The
programmer was otherwise allowed to use all available tools,
including automated Java refactoring tools in an installation
of Eclipse 3.2.2. Since SubjectJ was designed not to break
existing Java tools, Eclipse already provides some support
for working with SubjectJ. However, Eclipse’s Java brows-
ing and refactoring tools do not understand the semantics of
SubjectJ annotations. To bridge this gap and provide brows-
ing and refactoring support for SubjectJ programs compara-
ble to the level of support Java programs receive from the
Eclipse JDT, we did two things. First, we installed version
3.1.13 of the JQuery [21] plugin and customized it to pro-
vide some rudimentary support for browsing Java elements
marked with @Subject and @Export annotations. Second, we
allowed the SubjectJ programmer to use the SubjectJ tools as
described in Section 3.2. Used in this way, the Checker and
Decomposer together function as simple refactoring tools
for moving declarations from one subject to another with-
out breaking static dependencies. This provides functional-
ity similar to the Eclipse “Move Method” refactoring, but
with SubjectJ subjects.

For each remodularization performed, we measured the
total time needed to complete the task, made detailed notes
of the steps performed during the remodularization process,
and saved a copy of the code base upon completion of the
task. The time data is presented and analyzed in Section 4.3.
The notes and saved code are the basis for the more qualita-
tive results presented in Section 4.4.

4.2 Threats to Validity
Our central research question is, “How and to what ex-
tent does static-dynamic coupling in a language impact the
complexity of remodularizing programs written in that lan-
guage?”. In this section, we discuss the construct, internal,
and external validity of our experiment with respect to this
research question.

4.2.1 Construct Validity
We are interested in the theoretical constructs of our central
research question—static-dynamic coupling and remodular-
ization complexity. Construct validity describes how well
the variables and observations in our experiment map to
these theoretical constructs. There are two sources of threats
to the construct validity of our experiment. One is that the
variable we designed to vary in our experiment (program-
ming language) is not precisely the theoretical cause we wish
to understand (static-dynamic coupling). The other is that the
set of outcomes we observe (remodularization time, number
of bugs, and anecdotal evidence) is not precisely the theo-
retical effect we wish to understand (remodularization com-
plexity).

First, our central research question concerns the impact of
static-dynamic coupling. To understand the impact of static-
dynamic coupling in our experiment, we compare two pro-
gramming languages—Java; and SubjectJ, a language de-
signed to have looser static-dynamic coupling than Java. A
possible threat to construct validity is that SubjectJ does not
in fact have looser static-dynamic coupling than Java. An-
other possible threat to construct validity is that SubjectJ
and Java differ in more than just static-dynamic coupling,
and that these differences can impact remodularization com-
plexity. We have attempted to address these threats by ex-
plicitly identifying and removing Java’s greatest source of
static-dynamic coupling from SubjectJ, while otherwise de-
signing the language to be very similar to Java. As described
in Section 4.1, we also tried to design SubjectJ tool support
to be comparable to Java tool support in Eclipse. However,
the SubjectJ and Java tools are inevitably different. Since
static-dynamic coupling in a language is partly reflected by
its tool support, it is difficult to assess the extent to which
tool differences are a threat to construct validity.

Secondly, our research question concerns remodulariza-
tion complexity. To assess the extent of remodularization
complexity in our experiment, we measured the time taken
to complete each remodularization task, and the number of
bugs produced during remodularization tasks. A possible
threat to construct validity is that these measurements are not
general indicators of complexity. However, to complement
our reasonably objective quantitative measurements, we pro-
vide the qualitative observations of Section 4.4—which con-
cern aspects of complexity that are more difficult to objec-
tively measure. Our qualitative and quantiative results are

Application and Description† LOC Code to Separate
Tetris—game of Tetris
http://cslibrary.stanford.edu/112/

1036 GUI handling.

TyRuBa—logic programming language
http://tyruba.sourceforge.net/

22116 Storing and persisting “facts” used by the language.

JHotDraw—simple drawing application
http://www.jhotdraw.org/

14611 All functionality for creating and modifying text figures.

Chinese Chess—game of Chinese chess
https://chinese-chess-xiang-qi.dev.java.net/

3073 Logic for AI opponent.

MineRay—game of minesweeper
https://mineray.dev.java.net/

3478 Logic for populating map with mines.

DrawSWF—simple animation application
http://drawswf.sourceforge.net/

7540 All functionality for creating and modifying text figures.

FindBugs—Java source code bug finder
http://findbugs.sourceforge.net/

70833 Saving of bug analysis results.

JChessBoard—game of chess
http://jchessboard.sourceforge.net/

6190 GUI handling.

† All website references verified February 2008.

Table 3. Overview of selected code bases and corresponding refactoring tasks for case studies. LOC is the total number of
non-blank and non-comment lines in the code base.

consistent with each other, together providing a more confi-
dent indicator of remodularization complexity.

4.2.2 Internal Validity
There are threats to the internal validity of our experiment–
i.e., alternative causes (other than difference in program-
ming language) that could affect our observed outcomes.
One source of threats comes from learning effects. By per-
forming the same remodularization task twice, there is bias
that comes from knowledge gained by the programmer dur-
ing the first iteration of the task. Our experimental setup
addresses this by having the programmer perform half of
the remodularizations using Java first, and half using Sub-
jectJ first. However, the strength of the learning bias possibly
varies depending on which language is first used to perform a
remodularization, and there is likely a learning bias based on
the order the 8 remodularizations were performed in the ex-
periment. Our analysis in Section 4.3.1 considers how these
threats limit the scope of our conclusions.

Another threat comes from the comparability of the 8 re-
modularization tasks given to the programmer. We address
one threat in this respect, by limiting all remodularization
tasks to be of the same type—identification and separation of
a given functionality from a given code base. We also assign
similar functionalities between the set of remodularizations
performed using Java first, and the set of remodularizations
performed using SubjectJ first. In particular, both sets of re-
modularizations require separation of GUI handling, data
persistence, text figure creation and modification, and ad-
versarial AI logic (population of game maps, or chess player
opponent) functionalities.

A potential threat is the difference in code bases associ-
ated with each remodularization task. In particular, the code
bases for Java-first remodularizations have more lines of
code in total than the code bases for SubjectJ-first remodu-
larizations. It is possible that this difference could introduce
bias, but an analysis in Section 4.3.1 of our quantitative re-
sults suggests that this bias is limited for our experiment.

Finally, a social threat to internal validity comes from the
use of the first author of this paper as the programmer who
performs the remodularizations in the experiment. While the
programmer strived to not allow his role as an author bias
his performance, we concede that such bias is nevertheless
possible, and recognize this threat as a limitation of our
experimental setup.

4.2.3 External Validity
External validity involves the generalizability of our experi-
ment results. Our central research question concerns the gen-
eral impact of static-dynamic coupling in languages on re-
modularization complexity. In our experiment however, we
compare only two specific languages (SubjectJ and Java)
that differ in static-dynamic coupling, and remodularization
complexity is measured based on tasks of a specific type
(identification and separation of a certain subset of an ex-
isting code base) given to one programmer (the first author
of this paper). Our results provide only one set of data, and
may not be generalizable to other languages, tasks, and pro-
grammers.

In particular, our results may not be generalizable to
languages that have static-dynamic decoupling at the sub-
method granularity, such as AspectJ [23]. Even though our

results suggest that inter-type declarations probably sub-
stantially reduce remodularization complexity, there is little
grounds to draw similar conclusions about pointcut advice
because these features operate at a finer level of granularity,
and have no counterpart in SubjectJ.

In addition, the remodularization tasks in our experiment
were intentionally selected to be of a specific type, and as
such, determining the impact of static-dynamic coupling on
other types of remodularization tasks (e.g. tasks based on
concerns other than high-level software functionality) would
require further investigation.

Finally, a significant threat to external validity is that
all the remodularization tasks were performed by a single
programmer—the developer of SubjectJ. Although the pro-
grammer was experienced with both the SubjectJ and Java
languages and their refactoring tools, it is possible that he
was better at using SubjectJ tools than Java tools. Also,
different programmers could apply different programming
styles and problem solving techniques to the same remodu-
larization tasks. Experiments on larger samples of program-
mers would produce more generalizable results.

4.3 Quantitative Results
For each remodularization task, we measured the total time
taken to complete the task, and recorded the bugs intro-
duced while performing the task. Taking into account po-
tential learning biases and other threats to internal validity
described in Section 4.2.2, our results suggest that remod-
ularization takes substantially less time in SubjectJ than in
Java. The programmer also introduced significantly more
bugs while remodularizing in Java than in SubjectJ.

4.3.1 Time Results
Table 4 provides an overview of time data, listed in the order
the case studies were performed. The “SubjectJ” and “Java”
columns show the time taken to perform the refactoring
task in the respective language. The “Difference” column
shows the difference between SubjectJ and Java times given
as a percentage of the SubjectJ time. A positive difference
indicates that the Java remodularization took more time. A
negative difference indicates SubjectJ took more time.

The table is divided in two sections, based on which
remodularization was performed first, implying a different
learning bias caused by performing the same task twice.
Note however, that the SubjectJ time is always placed in
the first column. Similarly, the difference column is always
computed relative to the SubjectJ time. This is not to suggest
both sections should be interpreted in the same way, but to
facilitate contrasting the numbers in both sections to each
other.

In the top half of the table, the time differences are ex-
pected to be biased negatively, due to performing the Sub-
jectJ remodularization before the Java remodularization for
each case study. Despite this negative bias, the top half of the
table shows a positive trend in time differences: two cases

yield mildly positive differences, one case a strong positive
difference, and one case yields a mildly negative difference.

The time differences in the bottom half of the table are
expected to be biased positively, so a positive trend in this
half is not surprising. However, the differences are consis-
tently and significantly greater than in the top half the table.
This suggests that the learning advantage for the second it-
eration of a task is substantial, and the negative bias on the
top half of the table is strong.

We can compute an aggregate score that is not partic-
ularly weighted towards either half of the table. The two
halves of the table have different biases, but time spent re-
modularizing was almost equal in the two halves (63.4 hours
vs. 66.9 hours). Combining the 8 case studies, a total of 44.6
hours were spent using SubjectJ, and 85.7 hours were spent
using Java. Thus, over the entire course of our experiment,
about 92% more time was spent remodularizing in Java than
in SubjectJ.

As we mentioned in Section 4.2.2, internal validity threats
limit the scope of our conclusions. First, in light of our qual-
itative results (see Section 4.4), we believe that there is a
stronger learning bias when the Java remodularization is per-
formed first, as we observed that remodularizing in Java re-
quires a more in-depth understanding of the code base. We
also believe that the programmer may have become more
fluent in performing case studies during the course of the ex-
periment, as he became more familiar with remodularization
techniques (e.g. “separation strategies” for Java).

It is also possible that bias could be introduced by the
code bases in the bottom half of the table having more total
lines of code than the code bases in the top half. However,
this bias is likely limited in our experiment, as we do not see
a significant correlation between lines of code and percent-
age differences in remodularization time. For instance, the 4
differences in the bottom half of the table range from 183%
to 325%, but the case studies in this half with the largest
code base (FindBugs, with 70833 LOC) and smallest code
base (MineRay, with 3478 LOC) have differences that fall in
between this range at 210% and 252%, respectively.

In summary, we believe our aggregate score of 92%
should not be taken to say anything more precise than “there
is a substantial effect”. In particular, this score does not al-
low us to draw a general conclusion that SubjectJ cuts re-
modularization time in half. In any case, even if we consider
only the first four case studies—where performing remodu-
larizations in SubjectJ before Java negatively biased the time
differences—we still see a positive 19% trend.

4.3.2 Number of Bugs Introduced
The programmer introduced many more bugs while remod-
ularizing in Java than in SubjectJ4: 8 bugs were introduced
in Java remodularizations, and only one bug was introduced

4 We considered bugs to be distinct if they were detected and fixed between
different test runs of the application being remodularized.

Code Base SubjectJ (hours) Java (hours) Difference
SubjectJ remodularization performed first (total hours = 63.4)
Tetris 3.0 3.5 +17%
TyRuBa 18.0 20.3 +13%
JHotDraw 4.2 4.0 -5%
Chinese Chess 3.8 6.6 +74%
Sum(1) 29.0 34.4 +19%
Java remodularization performed first (total hours = 66.9)
MineRay 0.7 2.3 +252%
DrawSWF 2.0 5.8 +183%
FindBugs 9.9 30.7 +210%
JChessBoard 3.0 12.5 +325%
Sum(2) 15.6 51.3 +229%
Aggregated results (total hours = 130.3)
Sum(1)+Sum(2) 44.6 85.7 +92%

Table 4. Overview of time data results from case studies.

in a SubjectJ remodularization. The manifestation of these
bugs and how they contributed to remodularization complex-
ity is described in Section 4.4.4.

4.4 Qualitative Results
After performing each case study, we analyzed our notes
and the resulting code bases. The main focus of this anal-
ysis was to find anecdotal evidence explaining how static-
dynamic coupling made performing the same remodulariza-
tion in Java more complex than in SubjectJ.

Overall, the Java remodularization process seemed cog-
nitively harder. In both cases the programmer needed to ex-
plore the code to find sections relative to the concern of inter-
est. However, in SubjectJ the general remodularization pro-
cess itself was centered almost exclusively around this type
of activity. This was facilitated by the use of SubjectJ Java
annotations to mark code of interest, and tracking static de-
pendencies using the Checker tool. In contrast, with standard
Java, the programmer needed to not just identify code of in-
terest, but also decide on a separation strategy for chang-
ing dynamic structure to allow separating the code into its
own Java package. The listener infrastructure from our mo-
tivating example is one separation strategy. Four additional
strategies were used in the case studies.

Separation strategies added complexity to the Java re-
modularization process. The complexity manifested itself in
multiple ways: difficulties deciding on the “right” strategy;
complex transformations not well supported by available au-
tomated refactoring tools; and the introduction of bugs.

We will begin by discussing different separation strate-
gies used in the case studies. Then we will go into each of
the above problems related to using them in more detail, il-
lustrating each problem with anecdotes from our case stud-
ies.

public class BugInstance {
private BugProperty propertyListHead;
private SAVE_BugInstance saveBugInstance;
...
public BugInstance(...) {

...
saveBugInstance = new SAVE_BugInstance(this);
...

}
public BugProperty getPropertyListHead() {

return propertyListHead;
}

}
public class SAVE_BugInstance {

private BugInstance bugInstance;
public SAVE_BugInstance(BugInstance bugInstance) {

this.bugInstance = bugInstance;
}
public void writeXML() {

...
BugProperty prop = bugInstance.getPropertyListHead();
...

}
...

}

Figure 8. “Dual Object” implementation of saving XML
bug reports.

4.4.1 Separation Strategies
Over the course of the 8 case studies, changes to dynamic
program structure were frequently needed to achieve the de-
sired code separation. The need to change dynamic struc-
ture was much more prevalent in the Java remodulariza-
tions than in the SubjectJ remodularizations—this was par-
tially reflected in the number of different separation strate-
gies used.

In the SubjectJ remodularizations, dynamic structure
changes were only needed when a method contained code
that was related to a concern of interest, and code that was
not. The “split method” strategy (supported as the “Extract
Method” refactoring in Eclipse) was used to extract the code
of interest into a separate method.

In the Java remodularizations, the split method strategy
was also needed, but four additional strategies were used.
One of the strategies involved applying the listener infras-
tructure, as in the motivating example. We now describe the
three other strategies.

One strategy, which we call “dual object”, is generally
applicable and was used in every case study except the first.
It splits objects of a given class into two objects: one object
containing the methods and fields we want to separate, and
one containing the rest. For example, the code in Figure 8 is
the result of applying dual object to separate the writeXML

method from a class called BugInstance. Each BugInstance

object becomes two objects, with the SAVE BugInstance ob-
jects containing the writeXML() method. The dual objects
have mutual references to each other; constructor code needs
to be added to initialize these references. Accesses from one
object to the other are accesses to this in the original code,
and need to be updated.

Another strategy, which we call “static method”, was
used only in the TyRuBa case study. This strategy converts
a group of instance methods from several classes into a sin-
gle static method. The receiver object becomes one of the
parameters of the static method and method dispatch is con-
verted to “if instanceof” tests. This static method can then be
moved around relatively freely because static methods have
loose static-dynamic coupling. This strategy avoids the com-
plexity of dual object’s mutual references, but is less gener-
ally applicable—it can only be applied to move methods, not
instance fields. It introduces complexity of its own by using
“if instanceof” tests and typecasts.

A final strategy, used only in the DrawSWF case study,
splits a class into a superclass and a subclass. The subclass
contains the field and method declarations that need to be
separated, while the remaining field and method declarations
stay in the superclass. References are updated to create and
use objects of the subclass. This strategy results in weaker
encapsulation than dual object—all protected members of
the superclass are exposed to the subclass; and multiple
constructor calls must be changed to create the subclass
instead of the superclass.

4.4.2 Deciding on the “Right” Strategy
When separating source code from classes in Java, it was
often difficult to decide what separation strategy to use.
In most cases, the programmer decided to apply the “dual
object” strategy, because he found it hard to predict whether
all code of interest could be captured by other (possibly more
elegant, but less general) strategies.

However, there were situations where experimentation
with dual object, and careful consideration of strategy ben-
efits and limitations, led to the use of a different separation
strategy. For example, in the “TyRuBa” case study, the ab-
stract QueryEngine.getStoragePath() method (and every
implementation of it) was identified as one of the methods
to be separated from the rest of the code. While starting

to apply dual object, the programmer realized that addition
of code in SimpleRuleBaseBucket to initialize its dual ob-
ject reference would be necessary. This was complicated
because this code could only be placed after super() con-
structor calls, causing potential problems if the dual object
needed to be accessed during the execution of super(). To
avoid potential problems, the programmer observed that no
fields needed to be moved, and decided to use the static
method strategy instead. Although static method caused
other complications—typecasts and “if instanceof” tests—
these complications seemed more predictable.

In a scenario from the “DrawSWF” case study, separa-
tion of code into a subclass was chosen over the dual ob-
ject strategy. While exposing protected members from super-
classes to subclasses results in weaker encapsulation, it was
for this reason that the programmer chose to use subclass-
ing in this scenario. In particular, the programmer needed to
separate some code from a class which extended the library
class DefaultCellEditor. The code required access to a
protected inner class DefaultCellEditor.EditorDelegate.
The programmer thus needed to extend DefaultCellEditor

in the separated code. However, applying dual object and
directly extending DefaultCellEditor would involve many
delegations between the duals, simply to override default
implementations of methods in both classes. Noticing that
the disadvantages of subclassing would be minimal in this
scenario—the original class extending DefaultCellEditor

was instantiated at only one place in the code—the program-
mer chose instead to subclass this original class, preserv-
ing implementations of overriden methods from the origi-
nal code. In this particular scenario, applying the subclass-
ing strategy avoided complexity that would be introduced by
applying dual object.

In contrast to the above scenarios, remodularizations in
SubjectJ did not require making these kinds of decisions
because only one strategy, split method, was ever used.

4.4.3 Automation of Transformations
The more complex separation strategies used in the Java
remodularizations usually involved manual transformations
not well-supported by the available automated refactoring
tools. In contrast, the only strategy used in SubjectJ remod-
ularizations was the “split method” strategy, which is rel-
atively well-supported by Eclipse. Other program structure
changes in SubjectJ remodularizations were static in nature
and well-supported by the SubjectJ tools.

We provide an anecdote from the “FindBugs” case study
to illustrate the difference in automated transformation sup-
port between SubjectJ and Java remodularizations. While re-
modularizing using Java, the programmer applied the dual
object strategy on 38 classes to separate their writeXML()

method declarations. An example of the resulting code from
one of the classes—BugInstance—is shown in Figure 8.
Lack of automated refactoring support for this strategy re-

quired the programmer to manually change a large number
of different places in the code in a coordinated fashion.

While remodularizing using SubjectJ, the programmer
also decided to separate the writeXML method declaration
from the same 38 classes. However, manual code modi-
fications were limited to adding @Subject annotations to
each writeXML method. Further code modifications were
largely performed by using the Checker and Decomposer
tools. While the changes where similar in extent to the Java
remodularization, the programmer did not need to spend
much effort manually performing changes.

This anecdote illustrates that the difference between the
SubjectJ and Java remodularizations is less in the extent of
the changes than it is in how well the changes could be sup-
ported by reliable automated tools. Although Eclipse has
refactorings to move methods and fields, the programmer did
not use them here because they were felt to be unreliable.
Indeed, he did try to use Eclipse “move” refactoring tools
in the first case study, but found they often introduced er-
rors into the code. We later verified that the “move method”
tool in Eclipse passes the receiver object as an argument to
the method, essentially using the method as a static method.
Thus, if the method is used in a polymorphic way, then ref-
erences to the method are not updated. The “move field” tool
appears to never update references. We do not believe these
shortcomings are because of a lack of effort on the part of the
Eclipse developers, but rather because strong static-dynamic
coupling makes moving instance members in Java a com-
plex problem. In comparison, moving declarations between
SubjectJ subjects is relatively uncomplicated because it only
affects the (static) interfaces between the subjects.

4.4.4 Introduction of Bugs
Table 5 provides a brief overview of the bugs introduced dur-
ing the case studies. All 9 bugs were introduced because of
mistakes made while making manual code changes to apply
separation strategies. More specifically, Bugs #1 to #6 were
related to applying the dual object strategy. Bugs #7 and #9
were caused by mistakes made when manually extracting
method code. Finally, Bug #8 was related to applying the
“subclassing” strategy. We now describe two bugs in more
detail—Bug #2, introduced during a Java remodularization;
and Bug #9, the only bug introduced during a SubjectJ re-
modularization.

The programmer introduced Bug #2 while applying dual
object, to separate “brain” code from the abstract class Piece
into BRAIN Piece. The bug resulted from forgetting to prop-
erly initialize the references from BRAIN Piece objects to
their dual objects. A possible cause for this forgetfulness is
the added complexity of applying dual object to an abstract
class: the Piece class does not (and cannot) call a construc-
tor of the abstract BRAIN Piece class, so the programmer was
not alerted to the lack of an explicit BRAIN Piece constructor
by compiler errors.

Bug #9 was introduced by the programmer when manu-
ally extracting method code in a situation that was not sup-
ported by the Eclipse “extract method” tools. A careless mis-
take resulted in the extracted method shown below:
@Subject("Text")
@Export("OTHER")
private static DrawObject createObject2_TEXT(int drawing_mode) {

if (drawing_mode == TEXT) {
new Text();

}
return null;

}

The programmer wrote “new Text();” when he intended
to write “return new Text();”. The programmer was not
alerted by a compilation error because the method still ended
with a return statement, resulting in a NullPointerException.

4.5 Experiment Conclusions
The case study results reported on here were focussed on
the research question “How and to what extent does static-
dynamic coupling in a language impact the complexity of
remodularizing programs written in that language?”. To this
end, we compared remodularization complexity in Java ver-
sus SubjectJ. The main difference between SubjectJ and Java
is that SubjectJ removes what we perceived to be the greatest
source of static-dynamic coupling from Java, by allowing in-
dividual class members to be moved easily from one subject
to another.

To assess and compare complexity, a series of 8 case stud-
ies was performed. Each case study consisted of perform-
ing a remodularization task once using Java, and once us-
ing SubjectJ. Two quantitative indicators of complexity—
time taken and number of bugs introduced—both suggest
that remodularizing code is significantly more complex in
Java than SubjectJ. The qualitative anecdotal analysis pro-
vides some insight into the causes of the complexity.

Central to the complexity of Java remodularizations was
the use of complex separation strategies, which led to diffi-
culties not encountered in SubjectJ remodularizations. De-
cisions on which strategy to use were trivial in SubjectJ—
only one strategy was used—but were more complex in
Java: multiple strategies were used, and, since they involve
changes to dynamic structure, they required a more in depth
understanding of how the program works. The extent of the
changes between SubjectJ and Java remodularizations was
similar. However, the more complex separation strategies
used in Java remodularizations are difficult to support via
refactoring tools, and hence are typically carried out via an
ad-hoc and error-prone “copy and paste and fix errors” ap-
proach.

5. Future Work
This paper is focussed specifically on examining the impact
of static-dynamic coupling in a language on remodulariza-
tion complexity. The experimental results are thus based on
performing given remodularization tasks with well-defined

Code Base Behavior Cause
Bugs introduced during Java remodularization tasks
1 JHotDraw NullPointerException Dual is referenced before it is created.
2 Chinese Chess NullPointerException Reference to dual is not initialized.
3 FindBugs NullPointerException “Getter” method returns null instead of reference.
4 FindBugs Program freeze “Getter” method calls itself infinitely.
5 JChessBoard NullPointerException Dual of JChessBoard used before it is fully initialized.
6 JChessBoard NullPointerException Dual of History used before it is fully initialized.
7 DrawSWF NullPointerException Manually extracted code from method erroneously sets local vari-

able to null.
8 DrawSWF IllegalArgumentException Reference to original class instead of new subclass.
Bugs introduced during SubjectJ remodularization tasks
9 DrawSWF NullPointerException Manually extracted code from method erroneously returns null.

Table 5. Overview of bugs introduced during case studies (arbitrarily numbered for reference convenience).

outcomes. The paper does not, however, examine the moti-
vations for performing remodularizations, nor the extent to
which remodularized code satisfies motivating goals. In par-
ticular, issues such as the resulting understandability, main-
tainability, and evolvability of remodularized code are out-
side the scope of our central research question. However, an
understanding of such broader issues is important for deter-
mining how our experimental results are relevant to practical
software engineering processes.

In general, it would be useful to have a better under-
standing of when and how purely static program structure
changes are applicable. For example, although our experi-
mental results suggest that reduced static-dynamic coupling
decreases complexity of remodularization tasks, dynamic
structure changes have benefits as well. Future work could
examine the resulting benefits and disadvantages from static
versus dynamic separations of code (e.g. for providing run-
time pluggability of different modules). Future work could
also explore the merits of using remodularization to achieve
better incrementality. As mentioned in our illustrative exam-
ple of Section 2, implementing a listener infrastructure is
sometimes useful, depending on the broader goals behind
the code restructuring. In such cases, purely static changes
to program structure could be used to improve incremental-
ity of a restructuring effort that eventually leads to dynamic
structure changes for a listener based solution.

6. Related Work
This paper is about the impact of static-dynamic coupling
on remodularization. Since remodularizations are program
transformations intent on preserving program behavior, we
can regard them as a specific type of refactorings.

In this section we discuss related work in three broad cat-
egories. In Section 6.1 we provide a historical perspective
on the concept of static-dynamic coupling. Section 6.2 dis-
cusses related work on programming systems that provide

loose static-dynamic coupling. Finally, Section 6.3 discusses
related work on automated refactoring tools.

6.1 Historical Perspective
An interesting point to note, is that as early as 1969, Dijk-
stra talked about language design in terms of coupling be-
tween static and dynamic program structure and its poten-
tial impact on the understandability of programs [9]. Dijk-
stra motivates structured programming, by arguing that it
needs to be easy to map a program’s textual structure onto
the structure of its execution and vice versa. Essentially, Di-
jkstra is arguing for strong static-dynamic coupling at the
intra-procedural level.

Even though our results seem to argue for loose static-
dynamic coupling, we do not believe they inherently contra-
dict Dijkstra’s view. First, our results concern static-dynamic
coupling in the context of code restructuring, leaving ques-
tions on understandability open for future work (see 5). Sec-
ondly, we are mainly interested in coupling at the coarse-
grained modular level, not the level of sub-method granular-
ity.

Arguably, despite Dijkstra’s eloquent arguments for strong
static-dynamic coupling, we have seen a trend in program-
ming language evolution that moves away from strong cou-
pling between dynamic and static structure at the coarser
level. Examples include the introduction of object-oriented
inheritance and dynamic method dispatch [12].

6.2 Static-Dynamic Coupling and Languages
SubjectJ was designed to remove what we perceived to be
Java’s greatest source of static-dynamic coupling. Besides
Hyper/J (the inspiration for SubjectJ, as we described in
Section 3), there are many other programming systems that
can be considered to have loose static-dynamic coupling.
In this section we provide an overview and discuss how
SubjectJ relates to these other systems.

The main difference between SubjectJ and Java is that
it allows splitting declarations that belong to a single class

across multiple source files. There are many other object-
oriented programming systems that provide similar func-
tionality. For example, C# [19] supports partial classes.
Ruby [11] allows class members to be declared outside of a
class. Multi-method languages (e.g. [5, 8, 7]) also decouple
the declaration of methods from the declaration of classes.

Some programming systems based on mixins [1] provide
mixin layers as units of modularity that crosscut classes
[29, 3, 20]. MixJuice is based on the concept of difference-
based modules [20]. The idea is that a mixin-layer module
implements a particular software feature. Each module can
extend existing classes or interfaces, or define additional
classes and interfaces.

Aspect-oriented programming languages (e.g. [23, 22,
30]) provide inter-type declarations and advice. Intertype
declarations make it easy to move whole declarations out of
classes and into aspects, providing a kind of static-dynamic
coupling at the granularity of member declarations, similar
to SubjectJ. Aspect-oriented languages also provide point-
cuts and advice, which in some sense extend static-dynamic
decoupling to sub-method granularity.

The above technologies differ in mechanism, but, like
SubjectJ, they provide flexibility in organizing the coarse
static structure of the programs without changing dynamic
structure. So this idea is not new. Recall however that Sub-
jectJ in itself was not intended to be a novel contribution.
Indeed, to be close to an ideal guinea pig, SubjectJ was not
designed to add novel features, but rather to be very simi-
lar to Java, while removing what we perceived to be Java’s
greatest source of static-dynamic coupling.

We claim the value of our contribution is not the inven-
tion of new language features, but rather that we provided
tangible evidence that existing features which reduce static-
dynamic coupling may reduce accidental complexity for re-
modularization. This idea in itself is also not new. In fact, we
believe language designers intuitively understand this. For
example, the MixJuice authors explicitly mention that mov-
ing code between MixJuice super-modules and sub-modules
retains the semantics of the code. They suggest that this
could make some refactorings easier. However, as far as we
know we are the first to attempt quantifying this effect with
empirical data.

As noted in Section 4.2.3 however, we should be cautious
in trying to generalize too much from our experiment; in par-
ticular, there is little grounds to draw conclusions about the
impact of pointcut advice on remodularization complexity in
AspectJ.

6.3 Refactoring Tools
Refactoring tools can provide substantial support for achiev-
ing remodularization goals. There is a large amount of work
directed towards providing semi-automated (e.g. [33, 34,
15]) and fully-automated [27, 4] refactoring support for
complex refactorings. Some combine this with program slic-

ing [35] to aid in the selection of what code to extract and
make refactoring tools more precise [14, 24].

However, we believe that the level of support that can
be provided by automated refactoring tools is indirectly af-
fected by static-dynamic coupling, because it is dependent
on the complexity of program transformations performed by
the tools. In other words, refactorings that require more sub-
tle or complex tranformations are less likely to be imple-
mented, or, if they are implemented, more likely to be un-
reliable. Indeed, we found in our experiment that the differ-
ence between the SubjectJ and Java remodularizations was
less in the extent of the changes than it was in how well
the changes could be reliably supported by available tools.
In particular, the Eclipse IDE does not provide a reliable
refactoring for moving instance methods between classes.
It should be noted that moving static methods does not have
the same problem. Similarly, moving methods between Sub-
jectJ subjects is relatively uncomplicated because it only af-
fects the static interfaces between subjects. Thus SubjectJ is
able to reliably support this type of transformation through
tools that are of comparable complexity to tools for moving
Java static methods.

This is not to suggest that developing reliable and sophis-
ticated refactoring tools is not a useful endeavour. In fact,
we believe that work on refactoring tools, and work on pro-
gramming language features that reduce static-dynamic cou-
pling and make code easier to move, are complementary and
should go hand in hand. For example, aspect-oriented pro-
gramming languages which reduce static-dynamic coupling
create opportunities to catalogue whole new classes of refac-
torings for remodularizing code into aspects [26], and auto-
mate the refactoring process [10, 15, 16].

7. Conclusion
In this paper we asked the following central research ques-
tion:

How and to what extent does static-dynamic coupling
in a language impact the complexity of remodulariz-
ing programs written in that language?

The key contribution of our paper is that we provide
experimental results towards answering this research ques-
tion. We performed a series of remodularization case studies
in both Java and SubjectJ. To be close to an ideal guinea
pig, SubjectJ was designed explicitly to be very similar to
Java, while relaxing what we perceived to be Java’s great-
est source of static-dynamic coupling: the constraint that a
class’s declaration must be wholly contained within a single
Java source file.

Our results include quantitative data suggesting that the
impact of relaxing this restriction is substantial. In particu-
lar, analysis of the quantitative results suggests that remodu-
larizing in Java takes considerably more time and results in
more frequent introduction of bugs than remodularizing in

SubjectJ. Our results also provide some insight into how ac-
cidental complexity arises in remodularization of Java pro-
grams because of the constraint. Specifically, remodulariz-
ing in Java involves more complex separation strategies—
strategies for changing dynamic structure solely to allow
code separation. The complexity of these strategies is such
that they are often poorly supported by available refactoring
tools and hence are carried out via an ad-hoc and error-prone
“copy and paste and fix compiler errors” approach.

References
[1] Gilad Bracha and William Cook. Mixin-based inheritance.

In OOPSLA/ECOOP ’90: Proceedings of the European
conference on object-oriented programming on Object-
oriented programming systems, languages, and applications,
pages 303–311, New York, NY, USA, 1990. ACM.

[2] Frederick P. Brooks, Jr. No silver bullet: Essence and acci-
dents of software engineering. IEEE Computer, 20(4):10–19,
April 1987.

[3] Richard Cardone and Calvin Lin. Comparing frameworks
and layered refinement. In ICSE ’01: Proceedings of the 23rd
International Conference on Software Engineering, pages
285–294, Washington, DC, USA, 2001. IEEE Computer
Society.

[4] Eduardo Casais. Automatic reorganization of object-oriented
hierarchies: A case study. Object-Oriented Systems, 1(2):95–
115, December 1994.

[5] Craig Chambers. Object-oriented multi-methods in Cecil.
In O. Lehrmann Madsen, editor, Proceedings ECOOP ’92,
volume 615 of LNCS, pages 33–56, Utrecht, the Netherlands,
June 1992. Springer-Verlag.

[6] Rick Chern. Reducing remodularization complexity through
modular-objective decoupling (in progress). Master’s thesis,
The University of British Columbia, 2008.

[7] Curtis Clifton, Gary T. Leavens, Craig Chambers, and
Todd D. Millstein. MultiJava: modular open classes and
symmetric multiple dispatch for Java. In Proceedings of
the Conference on Object-Oriented Programming, Systems,
Languages and Application (OOPSLA-00), volume 35.10 of
ACM Sigplan Notices, pages 130–145, N. Y., October 15–19
2000. ACM Press.

[8] Linda G. Demichiel. Overview: The Common Lisp Object
System. Lisp and Symbolic Computation, 1(2):227–244,
September 1988.

[9] Edsger W. Dijkstra. Notes on Structured Programming,
chapter 1, pages 1–82. Academic Press, 1972.

[10] Ran Ettinger and Mathieu Verbaere. Untangling: a slice
extraction refactoring. In Karl Lieberherr, editor, Proc. 3rd
Int’ Conf. on Aspect-Oriented Software Development (AOSD-
2004), pages 93–101. ACM Press, March 2004.

[11] David Flanagan and Yukihiro Matsumoto. The Ruby
Programming Language. O’Reilly, 2008.

[12] A. Goldberg and D. Robson. Smalltalk-80: The Language
and its Implementation. Addison-Wesley, 1983.

[13] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The
Java Language Specification, Third Edition. The Java Series.
Addison-Wesley, Boston, Mass., 2005.

[14] William G. Griswold and David Notkin. Automated
assistance for program restructuring. ACM Transactions
on Software Engineering and Methodology, 2(3):228–269,
July 1993.

[15] Jan Hannemann, Thomas Fritz, and Gail C. Murphy.
Refactoring to aspects: an interactive approach. In eclipse
’03: Proceedings of the 2003 OOPSLA workshop on eclipse
technology eXchange, pages 74–78, New York, NY, USA,
2003. ACM.

[16] Jan Hannemann, Gail Murphy, and Gregor Kiczales. Role-
based refactoring of crosscutting concerns. In Peri Tarr,
editor, Proc. 4rd Int’ Conf. on Aspect-Oriented Software
Development (AOSD-2005), pages 135–146. ACM Press,
March 2005.

[17] William H. Harrison and Harold Ossher. Subject-oriented
programming (A critique of pure objects). In OOPSLA,
pages 411–428, 1993.

[18] William H. Harrison, Harold Ossher, and Peri L. Tarr. General
composition of software artifacts. In Welf Löwe and Mario
Südholt, editors, Software Composition, volume 4089 of
Lecture Notes in Computer Science, pages 194–210. Springer,
2006.

[19] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde.
C# Language Specification. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2003.

[20] Yuuji Ichisugi and Akira Tanaka. Difference-based modules:
A class independent module mechanism. In Proceedings
ECOOP 2002, volume 2374 of LNCS, Malaga, Spain, June
2002. Springer Verlag.

[21] Doug Janzen and Kris De Volder. Navigating and querying
code without getting lost. In AOSD, pages 178–187, 2003.

[22] Kabir Khan, Bill Burke, Flavia Rainone, Staale Pedersen,
Marc Fleury, Adrian Brock, Claude Hussenet, and Marshall
Culpepper. JBoss AOP. http://labs.jboss.com/jbossaop/.

[23] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William G. Griswold. An overview of
AspectJ. In J. Lindskov Knudsen, editor, ECOOP 2001 —
Object-Oriented Programming 15th European Conference,
volume 2072 of Lecture Notes in Computer Science, pages
327–353. Springer-Verlag, Budapest, Hungary, June 2001.

[24] Raghavan Komondoor and Susan Horwitz. Effective,
automatic procedure extraction. In IWPC, page 33. IEEE
Computer Society, 2003.

[25] P. Li and E. Wohlstadter. View-based maintenance for
graphical user interfaces. In Proc. of the International
Conference on Aspect-Oriented Software Development, 2008.

[26] Miguel P. Monteiro and João M. Fernandes. Towards
a catalog of aspect-oriented refactorings. In AOSD ’05:
Proceedings of the 4th international conference on Aspect-
oriented software development, pages 111–122, New York,
NY, USA, 2005. ACM.

[27] Ivan Moore. Automatic inheritance hierarchy restructuring
and method refactoring. In OOPSLA, pages 235–250, 1996.

[28] Harold Ossher, Matthew Kaplan, William Harrison, Alexan-
der Katz, and Vincent Kruskal. Subject-oriented composition
rules. In OOPSLA ’95: Proceedings of the tenth annual
conference on Object-oriented programming systems, lan-
guages, and applications, pages 235–250, New York, NY,
USA, 1995. ACM.

[29] Yannis Smaragdakis and Don Batory. Implementing layered
designs with mixin layers. In Eric Jul, editor, ECOOP ’98—
Object-Oriented Programming, volume 1445 of Lecture
Notes in Computer Science, pages 550–570. Springer, 1998.

[30] Olaf Spinczyk, Andreas Gal, and Wolfgang Schröder-
Preikschat. AspectC++: An aspect-oriented extension to
the C++ programming language. In Proceedings of the
Fortieth International Conference on Tools Pacific, pages
53–60. Australian Computer Society, Inc., 2002.

[31] P. Tarr and H. Ossher. Hyper/J user and installation manual.
Technical report, IBM T. J. Watson Research Center, 2000.

[32] Peri Tarr, Harold Ossher, William Harrison, and Stanley M.
Sutton, Jr. N degrees of separation: Multi-dimensional
separation of concerns. In Proceedings of ICSE ’99, pages
107–119, Los Angeles CA, USA, 1999.

[33] Frank Tip. Refactoring using type constraints. In Hanne Riis
Nielson and Gilberto Filé, editors, SAS, volume 4634 of
Lecture Notes in Computer Science, pages 1–17. Springer,
2007.

[34] Lance Tokuda and Don S. Batory. Evolving object-oriented
designs with refactorings. In Proceedings of Automated
Software Engineering, page 174, 1999.

[35] Mark Weiser. Program slicing. IEEE Transactions on
Software Engineering, SE-10(4):352–357, July 1984.

