
JQueryScapes: customizable Java code perspectives

[Forum Demonstration Proposal]

Lloyd Markle, Kris De Volder
Department of Computer Science

University of British Columbia
Vancouver, BC, Canada 604-822-1290
{lmarkle, kdvolder}@cs.ubc.ca

ABSTRACT
JQueryScapes is a flexible, query-based source code browser,
developed as an Eclipse plug-in. JQueryScapes builds on
top of JQuery. Like with JQuery a JQueryScapes user can
define his or her own code views on-the-fly by formulating
logic queries and running them against the source code. In
this manner, JQuery provides the developer with a wide va-
riety of crosscutting as well as non-crosscutting views within
a single tool. Additionally, JQueryScapes allows the devel-
oper to create an unlimited number of JQuery views and
link these views together into complex, multi-paned brows-
ing perspectives called “JQuery scapes”. We will demon-
strate how JQueryScapes allows a developer to very quickly
prototype a full-featured browsing environment tailored to
visualizing and navigating crosscutting concerns based on
project and situation specific structural queues such as cod-
ing idioms, naming conventions and custom Java 1.5 anno-
tations.

1. RELEVANCE TO AOSD
IDE-based tools and code browsing tools in particular, can
play an important role in the space of AOSD. This is be-
cause the IDE by and large controls how a developer can
navigate and view their code. This means that a browser
can present a modular view on something that is not ac-
tually modularized in the source code. For example, let’s
say a developer is working on the implementation of a print
operation. The implementation of this concern is scattered
across many different print methods declared in a number
of different classes. Nevertheless, there is an implicit con-
nection between all the methods: they all share the same
method name and are connected to each other via an over-
rides relationship. It is possible for a browser to leverage
this implicit structure to provide the developer with a single
view presenting iconic representations of all the print meth-
ods organized in tree based on how they are related through
inheritance. This view modularizes the print operation con-
cern and lets a developer quickly navigate to different parts

of the concern’s implementation despite the fact that these
parts are scattered in the source code.

Our demonstration will show how JQueryScapes is flexible
enough to allow a user to very quickly prototype customized
browsing perspectives, “JQuery scapes”, that are tailored
to visualizing and navigating crosscutting concerns based
on project and situation specific structural queues such as
coding idioms, naming conventions and custom Java 1.5 an-
notations.

2. PROBLEMS ADDRESSED
Although IDE-based code browsing and searching tools have
great potential to help developers visualize and navigate
scattered and tangled code, we believe that browsing and
code searching tools in modern IDEs suffer from a number of
shortcomings. In this section we will discuss these shortcom-
ings. We will focus our discussion on Java and the Eclipse
[6] JDT programming environment. However, JDT is a rep-
resentative state-of-the-art Java development environment
and similar arguments would apply to other modern IDEs.

A first problem is the inflexibility of built-in browser tools.
Eclipse JDT comes with a number of built-in browsing
views, but these views are too inflexible to let developers
leverage implicit structure that is specific to their particular
code-base. For example, Eclipse JDT comes with built-in a
package explorer, a type-hierarchy viewer, and a call-graph
viewer amongst others. The functionality of these browsers
is hard-coded and therefore difficult to customize. For exam-
ple, the functionality of a package explorer—what types of
information it displays and what kind of hierarchical struc-
ture is shown—is hard-coded into its implementation. What
we need, in order to be able to support browsing many dif-
ferent types of (crosscutting) concerns, is the flexibility to
define browsers that organize code structure in many differ-
ent ways, leveraging different kinds of structural information
that may be present implicitly in a particular code base. As
examples of possible sources of such structural information,
consider naming conventions and project-specific Java an-
notations. Browsing tools such as a package explorer, type
hierarchy view or call-graph browser are too narrowly tar-
geted on visualizing a specific type of structural information
and are therefore ill-equipped to help developers leverage the
implicit structure induced by project specific naming con-
ventions or Java annotations. As a case in point the Eclipse
environment at this time provides very limited support for
browsing and navigating code based on Java annotations

present in the code.

A second problem is that code searching tools lack expres-
siveness. Search tools have great potential in helping devel-
opers locate and work with precisely those scattered code
elements they are interested in. However Eclipse’s search
tool often lacks expressiveness to be able to express a pre-
cise enough search, even if the developer may be able to
formulate precisely what they are interested in. For ex-
ample a query like “Find all references to System.out and
System.err that occur outside of methods named print”
can not be expressed.

A third problem is difficulty to integrate information from
separate views. By providing a collection of specialized, sep-
arate tools to browse different types of information IDEs
force a developer to manually integrate information across
views. For example, Eclipse’s package browser shows code
structure in terms of Java packages. Eclipse type-hierarchy
shows code-structure in terms of inheritance relationships.
However, because these are completely separate tools, it is
hard for a developer to correlate the information from these
two views to answer a question like “Which subclasses of
this class are in another package”.

JQueryScapes addresses these issues by providing an ex-
pressive query language and a flexible browsing environment
that allows users to set-up highly customized browser con-
figurations to visualize and combine structural information
in many different ways. Not only can we produce replace-
ments for most standard Eclipse Java browser views with
little effort, we can customize these views quickly at run-
time. This allows us to quickly prototype and experiment
with integrated browsing configurations that make use of
project specific information, such as naming conventions or
Java annotations, to visualize and navigate code structure.

3. DESIGN AND IMPLEMENTATION
3.1 Idea: Queries are everywhere
JQueryScapes is built on top of JQuery. The spark of in-
sight that inspired the development of JQuery was a rather
obvious observation that a major portion of an IDEs func-
tionality consists of different GUI views displaying different
types of information about program structure.

For example, Eclipse provides a multitude of browser-style
views that display different information inside of a tree-
widget. Superficially these views (package explorer view,
type hierarchy view, outline view, etc.) differ only in the
type of information that is being displayed in them. Essen-
tially, this means we could regard these views as not much
more than convenient GUIs for displaying and navigating
the result of different types of program queries.

3.2 JQueryScapes: a generic browser envi-
ronment

JQueryScapes exploits the program query idea to develop
an “all-in-one” generic browsing environment. JQuery con-
sists of a program database and a generic GUI browser tool
for displaying and navigating query results. Users can de-
fine their own browser views simply by formulating queries.
Alternatively they can invoke queries from a predefined set

accessible through point-and-click menus. These menus and
their associated queries are also completely configurable by
the user. JQueryScapes ads to that the ability to create un-
limited JQuery views and link them together into complex,
“immersive” browsing perspectives.

A testament to the flexibility of this model is that it allows
JQueryScapes to subsume most of the functionality provided
by different Eclipse tools, such as the Java search tool, the
package explorer, the type-hierarchy view, the call hierarchy
view, the task/bookmarks/errors views etc.

JQueryScapes offers three major advantages over conven-
tional browsers and code searching tools such as those pro-
vide by Eclipse.

Expressiveness JQueryScapes is built around an expres-
sive query language which allows developers to for-
mulate queries that are more precise than the Eclipse
built-in search tool. For example, a query like “Find all
references to System.out and System.err that occur
outside of methods named print” can be formulated
in this query language.

Extensibility (see [8]) In contrast with highly-specific
tools, JQueryScapes is highly extensible and config-
urable. For example, the functionality of a package
explorer—what types of information it displays and in
what kind of hierarchical structure is shown—is hard-
coded into its implementation. Consequently it is rel-
atively hard to change or extend the package explorer
functionality in a non-trivial way.

In comparison, in JQueryScapes generic browser im-
plementation, the functionality of a basic package ex-
plorer is defined by a query expression of only three
lines of code. These three lines are specified in a
user-modifiable, dynamically loaded configuration file.
They can also be accessed through a dialog box in the
JQueryScapes GUI. Consequently, it is comparatively
easy for a developer to gain access to the underlying
query and understand and edit this browser definition.
A similar argument also applies for the definition of
new JQueryScapes browsers.

Integration (see [3]) We believe that JQueryScapes,
thanks to its generic “all-in-one” browser model, pro-
vides a superior GUI design compared to the typical
IDE. We claim that it more adequately supports a typ-
ical code exploration task. This is not as much because
of the types of views provided, or the specific informa-
tion displayed in them, because essentially all infor-
mation that is present in the JQuery database is also
available from standard Eclipse tools.

JQueryScapes superiority stems from having better in-
tegration in the following sense: rather than having
multiple separate tools, JQueryScapes generic inter-
face subsumes and seamlessly “blends” their function-
ality together into a single “integrated” tool.

The problem we see with Eclipse (and other modern
IDEs) is that by providing a collection of specific, sep-
arate tools to browse different types of information

they force a developer to switch between different tool-
views when performing realistic exploration. Switch-
ing views causes disorientation and forces the devel-
oper to manually integrate information across views.
JQueryScapes on the other hand allows a developers
to incrementally expand, refine or filter the contents
of any JQuery view with different types of informa-
tion without losing context.

4. IMPLEMENTATION AND TECHNOL-
OGY

There are two interesting points worth noting about the
JQueryScapes implementation.

A first point is that JQueryScapes is modularized as a set
of plugins. One plugin constitutes the JQueryScapes GUI.
This plugin is built on top of an abstract API provided by a
database backend plugin. The backend plugin provides an
extension point to allow users to provide their own database
backend and query language. Currently we have a default
implementation that uses TyRuBa [1] as a query language
and backend store. We have also implemented an alter-
nate backend on top of JTransformer[4] which uses Prolog
as the query language. The JTransformer provides a much
more detailed view of the source code down to the byte-code
level, but does not store information about code comments
or other Eclipse generated code markers.

Both the JTransformer and TyRuBa backends use a Prolog-
like syntax for queries. We are also working on a backend
plugin that provides PDL [5] as an alternative. PDL syn-
tax resembles AspectJ pointcut syntax and we believe it will
make queries easier to write, especially for developers famil-
iar with AOSD. For example, the query “Find all references
to System.out and System.err that occur outside of meth-
ods named print” expressed in the TyRuBa syntax is fairly
verbose:

class(?System),name(?System,System),
field(?System,?f),
(name(?f,out);name(?f,err)),
reads(?m,?f,?),NOT(name(?m,print))

In PDL this query is expressed much more concisely and
intuitively as follows:

reads(‘System.out’||‘System.err’) &&
!within(‘* print(..)’)

A second point worth noting is that JQueryScapes views
have a tight integration with each other, but also with
Eclipse JDT. By defining a standard API JQueryScapes has
the benefit that any view created which uses that API can
effectively communicate. Whether it be through linking,
drag and drop, or copy and paste methods, the views can
all communicate because they share a common platform.
We have also made the API compatible with Eclipse’s Java-
Model so that JQueryScapes GUI views work with all of
Eclipse’s current views.

5. RELATION TO OTHER INDUSTRIAL
OR RESEARCH EFFORTS

We have already discussed in detail how JQueryScapes re-
lates to mainstream Java code browsing and searching tools
such as those found in the Eclipse IDE. In this section we
discuss some other related work.

SemmleCode [7] is a code querying tool similar to
JQueryScapes. Compared to JQueryScapes, SemmleCode
has focused more on developing a user-friendly query lan-
guage and a scalable query backend. JQueryScapes on the
other hand has focused more on the flexibility and compos-
abilty of its graphical user interface components, allowing
developers to build-up highly customized browsing perspec-
tives, “JQuery scapes”, made up of multiple linked-together
query views. We believe it would be an interesting idea
to try and use SemmleCode with its .ql query language
and scalable implementation as an alternative backend for
JQueryScapes.

JQueryScapes derives from JQuery [2, 3]. JQueryScapes
offers several major new features compared to JQuery. On
the one hand we have made the JQueryScapes backend into
a separate plugin. This opens paths for others to build their
own backend, or to use our backend to other query-based
development tools. The JQuery GUI itself has also been
augmented. Most notable is that JQueryScapes supports
creation of complex multi-paned “JQuery scapes”.

6. WHAT THE AUDIENCE WILL SEE
The JQueryScapes demo will consist of two parts. The first
part will demonstrate some of JQueryScapes abilities to cre-
ate and link views together in a simple yet powerful way. We
will show how a single JQuery view can display and orga-
nize different types of information in many different ways.
We will also show how multiple JQuery views can be cre-
ated, organized and linked together to create an immersive
browsing perspective, a “JQuery scape”. An example of a
JQuery scape is shown in Figure 1. Note that all of the
views shown in this figure, except for the Java editor are in-
stances of the same general purpose JQuery viewer. What
makes the views different is wholly determined by the way
they are dynamically configured. Some of the views dis-
play global program structure and information (e.g. the view
on the left show global package structure, the view on the
bottom shows all errors in the project). Other views can
show temporary query results (e.g. one view shows all refer-
ence to System.out) while others display information about
the current editing context (e.g. the “editor selection”, “su-
pertypes+”, “incoming calls” and “outline views”). These
views are “linked” with the editor which means they are
updated automatically to display query results relative to
the current selection in the editor window. We will show
how JQuery scapes like this can be created from scratch in
minutes through the JQueryScapes GUI.

The second portion of the demo will show how we can lever-
age this flexibility to quickly tailor a browser perspective.
We will show how, simply by putting together customized
JQuery views, it is possible to quickly create a full-featured
browsing environment that supports viewing code in terms
of crosscutting feature implementations that are marked by

project specific annotations. A screen shot of this cus-
tomized perspective is shown in Figure 2. On the left there
is “Features” view. It shows the names of all features as
indicated by annotations scattered around the code. The
“Contents” view shows the scattered elements of the code
that belong with the feature selected in the “Features” view.
This information is also derived from Java annotations in the
code that mark these elements specifically. On the right we
have customized versions of an outline and outgoing calls
view which organizes elements in terms of features as well.

7. HARDWARE AND PRESENTATION RE-
QUIREMENTS

The JQueryScapes demonstration does not require any spe-
cial hardware other than a projector and a screen. The
presenter will come with a laptop prepared for the talk.

8. TYPE OF DEMONSTRATION
Forum.

9. REFERENCES
[1] K. De Volder. Type-Oriented Logic Meta Programming.

PhD thesis, Vrije Universiteit Brussel, Programming
Technology Laboratory, June 1998.

[2] A. Eisenberg and K. D. Volder. Jquery: Finding your
way through tangled code. Demonstration, 2004.

[3] D. Janzen and K. D. Volder. Navigating and querying
code without getting lost. In Aspect-Oriented Software
Engineering, pages 178–187. ACM, 2003.

[4] G. Kniesel, J. Hannemann, and T. Rho. A comparison
of logic-based infrastructures for concern detection and
extraction. In LATE ’07: Proceedings of the 3rd
workshop on Linking aspect technology and evolution,
page 6, New York, NY, USA, 2007. ACM.

[5] C. Morgan, K. D. Volder, and E. Wohlstadter. A static
aspect language for checking design rules. In AOSD
’07: Proceedings of the 6th international conference on
Aspect-oriented software development, pages 63–72,
New York, NY, USA, 2007. ACM.

[6] Eclipse website. http://www.eclipse.org/, 2001.

[7] Semmlecode website. http://semmle.com/, 2007.

[8] K. D. Volder. Jquery: A generic code browser with a
declarative configuration language. In P. V. Hentenryck,
editor, PADL, volume 3819 of Lecture Notes in
Computer Science, pages 88–102. Springer, 2006.

Figure 1: One of many possible JQuery perspectives.

Figure 2: A customized perspective for browsing scattered features.

