
Navigating and Querying Code Without Getting Lost

Doug Janzen and Kris De Volder
Department of Computer Science

University of British Columbia
2366 Main Mall

Vancouver BC Canada V6T 1Z4

dsjanzen,kdvolder@cs.ubc.ca

ABSTRACT
A development task related to a crosscutting concern is chal-
lenging because a developer can easily get lost when explor-
ing scattered elements of code and the complex tangle of re-
lationships between them. In this paper we present a source
browsing tool that improves the developer’s ability to work
with crosscutting concerns by providing better support for
exploring code. Our tool helps the developer to remain ori-
ented while exploring and navigating across a code base.
The cognitive burden placed on a developer is reduced by
avoiding disorienting view switches and by providing an ex-
plicit representation of the exploration process in terms of
exploration paths.

1. INTRODUCTION
Consider the scenario of a software developer wanting to

reuse part of a particular application’s code base because
it contains functionality she needs in another application
she is developing. The developer will need to track down
the potentially scattered pieces of code that constitute the
desired functionality and refactor the code to bring them to-
gether into one or more modules. This can be a challenging
task because not only are the parts of the code she is trying
to identify scattered across several modules, they are also
tangled up with each other and with the rest of the code
through many different types of relationships.

In a good development environment developers may have
at their disposal a wide variety of exploration, visualization
and navigation tools that may assist them in this task. Es-
tablished integrated development environments today may
provide tools such as a package browser, a class hierarchy
browser, a call graph browser (e.g. [3]) and a variety of dif-
ferent search engines. Research prototypes may go even fur-
ther and provide powerful specialized query languages (e.g.
[4, 17, 6, 7]) and sophisticated visualization tools (e.g. [12,
11, 16]).

In this paper we focus on how to combine the advantages
of hierarchical code browsers and query tools, in terms of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSDBoston, USA
Copyright 2003 ACM X-XXXXX-XXX-X/XX/XXXX ... $5.00.

how they help developers with exploration, by providing an
effective means to navigate the source code.

A hierarchical browser is a tool that supports navigation
based on particular kinds of relationships. For example, a
class hierarchy browser allows navigation along inheritance
relationships whereas a call-graph browser allows navigation
along static calling dependencies. The typical browser’s in-
terface is a tree view with collapsible and expandable nodes.
When expanded, subnodes reveal other elements that are
connected to it through some specific relationship. The ad-
vantage of hierarchical browsers is that they provide an ex-
plicit map of the navigation paths. Also, the history of the
user’s exploration is captured in the collection of nodes that
were expanded.

Unfortunately, these browsers are specialized and limit ex-
ploration to particular types of relationships. Consequently,
when developers want to navigate the code across different
kinds of relationships they are forced to switch between dif-
ferent browsers. Switching between tools is disorienting by
itself, and also has the disadvantage that there no longer is
an unbroken representation of the exploration path. Instead,
the path is divided into fragments spread across multiple dis-
connected views. As a result developers lose track of their
current position with respect to the exploration task.

Compared to typical browsers, tools based on query lan-
guages and program databases (e.g. [4, 17, 6, 7]) provide
more flexibility in terms of the relationships that can be ex-
plored with them. Developers can construct queries using
complex combinations of relationships. Queries allow the ex-
traction of useful information and can also be used for the
purpose of constructing source code navigation views. For
example, the results of a query can be turned into a naviga-
tional aid by visually representing it as a hyper-linked struc-
ture, with links to the corresponding places in the code that
match the query. In general, it is not possible to formulate
a single query that finds everything the user is interested
in pertaining to a task. Consequently, exploration using
a query tool usually follows a pattern of writing a query,
browsing the results, writing another query, analyzing more
results, and so on. A drawback of this approach is—once
more—that the exploration path connecting the queries gets
lost along the way.

This paper presents JQuery, a prototype code browsing
tool. JQuery is a browser tool implemented on top of an
expressive logic query language. The main contribution of
this paper is that it shows a way to design and implement
a source code browser which combines the advantages of
a hierarchical browser with the flexibility of a query tool.

Specifically, our design succeeds in combining the following
advantages into a single tool:

• Like any hierarchical browser, our tool provides an ex-
plicit representation of the exploration paths followed
by the developer.

• Like a query tool, it supports directed searches for spe-
cific subsets of elements of a code base according to
some criteria specified by a query.

• Like a query tool, it supports exploration in terms of
a broad range of queries about relationships between
code base elements.

Compared to other browsers and query based tools, we
claim that our design results in a tool that reduces the cog-
nitive burden associated with exploration in the following
ways:

1. It provides an explicit, unbroken, representation of the
exploration paths. This helps a developer to retain a
sense of orientation within the context of an explo-
ration task.

2. The flexibility of the tool to explore a broad range of
different relationships and queries within a single inte-
grated view greatly reduces the need to switch between
tools and views. Therefore the disorientation caused
by switching views is avoided.

JQuery extends an earlier prototype, QJBrowser, which
was discussed in a previous paper [14]. QJBrowser con-
structs a navigation tree from a single logic query and a list
of query variables. We have shown how this method provides
enough flexibility to define many different kinds of useful hi-
erarchical browsers. A view can be based on a user-specified
query, performing a directed search. Alternatively it can be
based on a predefined query, resulting in a generic type of
navigation tree. For example, it is possible to provide pre-
defined queries that yield views similar to a typical package
browser, a class hierarchy browser or a view organizing code
units based on specific Javadoc tags attached to them (e.g.
a browser based on Author tags).

The novelty in JQuery is that the initial tree only serves
as a starting point for the exploration process. To support
continued exploration, a JQuery tree can be incrementally
refined by the developer. At each node in the tree the devel-
oper may wish to explore further and may choose to extend
the current view with a new subtree. The subtree shows the
results of a selected query that finds code units connected
to the selected unit through some relationship of interest. It
is this feature of JQuery that provides the additional flex-
ibility required to avoid switching views and scattering an
exploration path across multiple disconnected views.

2. ILLUSTRATING EXAMPLE
In this section we present a motivating example that illus-

trates how JQuery would be used for a typical exploration
task. Our example is a fictional scenario in which a devel-
oper is exploring the JHotDraw [1] code base. Like most
drawing applications, JHotDraw lets users draw a variety of
figures: rectangles, circles, lines, etc. Suppose the developer

wants to add a feature that operates on figures and there-
fore, she would like to find out how figures are implemented
and to find an example of a class that manipulates figures.

Figure 1 shows a screenshot of JQuery at the end of the
exploration task. We now explain step by step how the
developer reached this situation.

To start using JQuery a developer can type a query or
choose a specific browser to find starting points for her
exploration task. In this example the developer has cho-
sen to start with a generic package browser which groups
Java classes and interfaces according to the packages in
which they are declared. She navigates down into the
CH.ifa.draw.figures package and there she discovers a
number of classes with names that correspond to differ-
ent types of figures. Assuming there is a common base
type for figures she decides to examine the supertypes of
ElbowHandle. In JQuery, the browser’s view can be ex-
tended to reveal relationships not yet shown. Right-clicking
on a node brings up a contextual menu of node-specific re-
lationships. Our developer right-clicks on ElbowHandle and
selects “supertypes”.

Often, a developer will be interested in seeing (and per-
haps editing) the source code associated with a node in the
tree. In JQuery, double clicking on a node brings the corre-
sponding source code into view in the editor pane. Our de-
veloper uses this functionality to inspect the source code of
the supertypes of ElbowHandle and concludes that they do
not appear to be what she is looking for. She then retraces
her steps and tries listing the supertypes of EllipseFigure
instead. Among these she finds an interface called Figure

which is what she was looking for.
Having found the Figure interface, the developer wants

to know what operations can be performed on Figures, so
she expands the view with the list of methods it defines.
Finally, to find examples of classes that use Figures she
decides to list all the places in the code that make calls to
addFigureChangeListener().

This simple scenario illustrates how an exploration task
may involve following several different types of relationships
back and forth between elements of a code base. In this ex-
ample, the developer navigated along relationships induced
by declaration nesting, subtyping and method calls. This ex-
ample illustrates how the developer was able to complete the
task without the disorientation of switching between tools or
views. The JQuery view also reduces the cognitive burden
placed on the developer by helping her to remain oriented
by showing how previously explored elements relate to the
current element.

3. THE JQUERY TOOL
In the preceding section an example illustrated a typical

usage scenario. In the following subsections we provide some
additional details about the functionality and usage of the
tool.

3.1 Getting Started
The starting point for exploration is a browser whose view

is defined by a query and a list of variables. The JQuery user
interface allows a developer to either type this query directly
or select a predefined one.

The query determines what elements to display in the
browser and the list of variables determines how to organize
them in a tree. This method of defining hierarchical views

Figure 1: Exploring Figures Implementation in JHotDraw.

was introduced in the QJBrowser prototype and its utility
was discussed in detail in a previous paper [14]. This method
allows for the definition of many different kinds of useful
general-purpose browsers. It can also be used for performing
directed searches that produce views with a small number
of elements of particular interest.

For a user unfamiliar with the query language or unwilling
to make the effort to compose a complex query, a few pre-
defined generic browsers are provided as presaved queries.
These can be selected by simply clicking on one of the tabs
at the top of the JQuery view.

3.2 The Query Language
JQuery is built on top of TyRuBa [9, 8], an expressive

logic programming language. TyRuBa is similar to Pro-
log [10]. The expressive power of the logic programming
language provides the flexibility to express complex queries
and to use rules to define higher-level relationships. We as-
sume basic familiarity with Prolog and do not explain the
details of the TyRuBa syntax here. JQuery’s query language
is basically TyRuBa augmented with a library of predefined
predicates that allow querying for code units and the various
relationships between them.

Table 1 lists a sample of the predefined predicates in the
query language. There are several predicates that go beyond
the basic elements and relationships that exist in a Java
program. The method(?M, tag, ?Tag, ?Value) predicate
retrieves the value of Javadoc tags attached to method dec-
larations. The error() predicates provide access to the lo-
cation and severity of compilation errors. To find dependen-
cies at the class level there is the refType(?Ref, ?Caller,

?Callee) predicate that finds references to all fields and
methods contained in a particular type.

The predicates in the query language follow the conven-
tion that predicate names correspond to the type of an ob-
ject and the parameters correspond to, respectively, an ob-
ject reference, an attribute name or relationship name, and
a value. For example the following query finds all classes ?C
who’s name property is HelloWorld.

class(?C, name, HelloWorld)

Note that TyRuBa has non-standard lexical conventions
for the denotation of variables and constants. In TyRuBa,
symbols starting with a “?” are variables. This is convenient
because Java identifiers denoting class, field and method
names can be used as constants.

The following example shows a more complex query.
When used with the variable list ?P, ?C, ?I, ?CM this
query produces a browser that groups all the methods in
a class by the interface to which they belong.

package(?P, class, ?C),

class(?C, super+, ?I),

interface(?I, method, ?IM),

method(?IM, signature, ?IS),

method(?IM, name, ?IN),

class(?C, method, ?CM),

method(?CM, signature, ?CS),

method(?CM, name, ?CN),

equal(?IS, ?CS),

equal(?IN, ?CN).

JQuery is implemented as an Eclipse [13] plug-in and
its query language is integrated with the Eclipse develop-

Predicate Description

package(?P) True if ?P is a package.
package(?P, name, ?N) True if package ?P has name

?N.
package(?P, type, ?T) True if package ?P contains

type ?T.
type(?T) True if ?T is a type.
type(?T, name, ?N) True if type ?T has name ?N.
type(?T, field, ?F) True if type ?T contains field

?F.
type(?T, method, ?M) True if type ?T contains

method ?M.
type(?T1, type, ?T2) True if type ?T1 contains in-

ner type ?T2.
type(?T, modifiers, ?M) True if type ?T has modifiers

?M, where ?M is a list.
type(?T1, super, ?T2) True if type ?T1 has super

type ?T2.
type(?T, tag, ?Tag, ?Value) True if type ?T has a Javadoc

tag ?Tag with value ?Value
class(?C1, extends, ?C2) True if ?C1 extends class ?C2.
class(?C, implements, ?I) True if class ?C implements

interface ?I.
class(?C, creator, ?M) True if an instance of class ?C

is created in method ?M.
method(?M, returnType, ?RT) True if method ?M has return

type ?RT.
method(?M, paramType, ?PT) True if method ?M has a pa-

rameter of type ?PT.
method(?M, exception, ?ET) True if method ?M throws an

exception of type ?ET.
method(?M, tag, ?Tag, ?Value) True if method ?M has a

Javadoc tag ?Tag with value
?Value

refMethod(?Ref, ?Caller, ?Callee) True if ?Ref is a refer-
ence from method ?Caller to
method ?Callee.

error(?E, message, ?M) True if error ?E is described
by message ?M.

error(?E, severity, ?S) True if error ?E has severity
?S.

Table 1: Some predefined predicates in the query
language.

ment environment in such a way that all objects displayed
in a JQuery tree view are automatically “hyperlinked” to
the code. When a node is double-clicked the corresponding
source code is brought into view in the Eclipse source code
editor pane. Specifically, in the above example, the variable
?CM would become bound to an object that represents a hy-
perlink to the actual line of code where the corresponding
method is declared.

3.3 Contextual Menu Structure
The contextual menu associated with a particular node

is specific to that node and contains a list of all the ways
in which the tree can be extended at that node. The struc-
ture of the menus and the corresponding queries can be fully
configured by an expert user. JQuery comes with a default
configuration file that provides access to a number of use-
ful relations between code units. The default configuration
is summarized in Table 2. In the implementation section
(Section 5) we will discuss how the menu structure can be
configured by an expert user.

Node Type Relationships

Packages Classes
Interfaces
All Types

Classes Methods
Fields
Subtypes
Supertypes
Imports
Constructors
Creators
References Methods
References Types
Calls to this type

Methods References Methods
References Types
References Fields
Calls to this method
Signature

References Caller
Callee
Caller’s callers
Callee’s callees

Table 2: A sample of the ways in which nodes in the
tree can be extended.

4. CASE STUDY
In order to assess JQuery’s usefulness we conducted a sim-

ple case study using JQuery to perform a realistic develop-
ment task.

4.1 The Task
The task we chose was to extract the user interface code

from a chess program called Jin [2] and put it into our own
application as the front end for a simple AI module. Jin
is a client for the Internet Chess Club (ICC), a server that
allows people to play chess against each other through the
Internet. Jin contains no AI code, but contains a lot of extra
code that handles features of the ICC, such as chatting with
other users and searching for players on the Internet.

Although most of the code we were interested in was con-
tained in a single package — a fact we only discovered during

the experiment — there were numerous dependencies on the
rest of the code. There was no clearly defined interface for
using the code in the context of another application.

The Jin code base was small enough to make a good first
study, yet large enough that the task would be difficult to
complete without the aid of a tool. Jin has 151 classes con-
taining 1207 methods for a total of 24,482 commented lines
of code.

We recorded how we actually used the tool by taking
screen shots of the browser and taking note of the queries
we used as the task progressed.

4.2 Summary of Task Progress
Our initial approach was to use JQuery to separate the

code into two parts: the part we wanted to keep and the
part we wanted to throw away. We started by searching
for pieces of code that could be immediately put into either
of those two categories. These early searches involved two
main techniques. First we explored using standard types of
browsers as a starting point. For example by browsing a
packages view we were able to identify several packages that
had to do with handling communication with the Chess Club
server. Second, we used more directed queries to search for
particular elements of the code. For example we searched
for methods that took parameters of type Image. Since the
rest of the application made little use of graphics we were
able to hone in on the part that had to do with drawing the
board.

After finding some pieces of code that we knew could be
deleted or kept, we tagged these pieces of code using a cus-
tom Javadoc tag. By using JQuery to find elements with
specific tags, we were able to bring those pieces of code to-
gether into a single convenient view. We used this view to
explore the relationship of the tagged pieces of code with
the rest of the code. Our intent was to continually expand
the amount of code that was tagged until we had tagged
everything.

However we soon found that while some pieces of code
were easy to classify others were not. Some pieces of code
had dependencies on both the parts we wanted to delete and
the parts we wanted to keep. At this point we abandoned
our method of tagging code and started making some mod-
ifications. We started using JQuery to help us understand
pieces of code that we weren’t sure what to do with and to
help resolve errors after making changes. Our use of JQuery
now involved searching for very specific code elements, such
as a single class or method, and then extending the view
using combinations of call graph, class membership and in-
heritance relationships.

After making a series of relatively small modifications we
were able to plug the Jin code into our own application by
writing a class that implemented both our own UI interface
and a single Jin interface. The final use of JQuery was
to help with cleaning up the Jin code to remove as much
unnecessary code as possible. In the end we were able to
eliminate 65% of the Jin code.

4.3 Case-study Examples
Before moving on to drawing some more some general

conclusions from the study, we start by presenting some
concrete examples that illustrate some of the advantages
of using JQuery. The examples in this section are actual
situations we encountered while we were performing the

case-study task. The screenshots shown in this section were
adapted from the collection of screenshots taken as a means
of recording our progress in the case-study task.

4.3.1 Example 1
The first example is one of our earliest searches, the cor-

responding screenshot is shown in Figure 2. At the start of
this search, we knew nothing about the code and we wanted
to find out how the GUI was constructed. Figure 2 is an
example of using a directed query to find a specific start-
ing point in the code from which to explore. In this case
the query found all the main methods. We were initially
interested in finding out where all the windows and menus
were created so we started exploring the call graph. We
soon found a class called JinFrame, listed all its methods
and started looking at the code. Exploring in and around
the JinFrame class gave us some understanding of how the
visual elements of the application fit together.

Figure 2:

To accomplish the same thing using standard tools we
would have had to use a search or query tool, a call graph
browser and a class browser. Switching between the three
different tools introduces additional overhead and is disori-
enting. For example, to explore the call graph from the main
method, we would have had to open a call graph browser and
then navigate to the main method before we could find out
what methods were called by main. To find out what meth-
ods JinFrame has we would then have had to open a class
browser and navigate to JinFrame.

With JQuery we could concentrate on moving through the
code without the distraction and disorientation of having to
open new windows and explicitly initialize each view with
the context of our previous view.

4.3.2 Example 2
While using the Jin application we noticed that there was

very little use of graphics outside the board window. This
observation led us to query for methods that took Image
objects as a parameter. Figure 3 is a screenshot that was
taken part way through our exploration of the results of this
query.

This example shows one way in which the tree-view of
a search can be useful. Each query result represents the

Figure 3:

starting point for exploring the code. JQuery allowed us to
explore each result in as much depth as we wanted without
losing track of which results we had explored and which
ones we hadn’t. To do this using other tools we would have
had to keep the original results open in one window, while
exploring individual results in other windows. JQuery kept
track of the initial search results and all our exploration of
them in a single view.

4.3.3 Example 3
In our next example, we wanted to focus more specifically

on the code to be extracted. We had already identified the
BoardManager class as containing most of the functionality
we were interested in. We needed to find out how to properly
use this class.

Figure 4 shows how we discovered the key to controlling
the Jin chess board. The BoardManager communicates with
the JinConnection interface using an event system. To re-
spond to user moves and display computer moves we needed
to create a class that implemented JinConnection.

What is interesting about this example is that the
relationship between the BoardManager class and the
JinConnection interface was explicitly captured by JQuery
during the exploration process. While looking at the source
code for JinConnection we could see that the reason we were
interested in it was that one of the classes that implemented
it generates a GameStartEvent for the BoardManager.

Maintaining this context throughout the exploration pro-
cess was important because it relieved us of the need to
remember how the piece of source code we were looking at
fit into the larger exploration task. We did not have to
worry about getting sidetracked because we could always
refer back to the JQuery window to reorient ourselves.

4.4 Case-study Conclusions

Figure 4:

This study is of a preliminary nature and its main goal was
to get a quick assessment of whether or not the ideas behind
the JQuery prototype are sound. Overall, the preliminary
results were positive and indicate that the ideas behind the
tool’s design are indeed sound.

The task we chose was relatively complex and involved a
series of many small subtasks. As such we did not expect to
be able to complete the entire task without ever switching
views. We expected that JQuery would allow us to perform
an exploration subtask mostly without switching views. In
general, this expectation was confirmed. For example, one
technique we used was to delete a section of code as soon
as we were sure we did not want to retain it for our own
application. Then we would analyze the resulting compila-
tion errors and try to resolve them. Resolving the errors
generally involved two choices: either to add code to satisfy
the dependency or to delete the code containing the error.
In order to make this decision we typically started a JQuery
view to explore and understand the code surrounding the
error. We were typically able to complete this exploration
subtask without switching views.

The typical usage pattern was that we started by writ-
ing a fairly simple query and then explored deeper by in-
crementally extending the view and inspecting source code.
Although the query language is very expressive and can sup-
port complex queries, our experience indicates that typically
writing “the” query that finds directly what we are looking
for is either impossible or impractical. In our experience
this was because we usually did not know exactly what we
were looking for until we found it. Even if we did have a
more precise idea of what we were looking for, expressing an
accurate, often complex query to find it is usually too hard
to be practical. Consequently, it was more cost effective to
start from a fairly simple query and repeatedly extend our
view until the target was found. Example 1 shows a typical
scenario in this respect.

Usually the exploration process involved switching back
and forth between reading source code and extending the
view. It is thus essential that JQuery provided an easy way
to access the source code from the tree view.

Summarizing, we found JQuery was useful in the comple-
tion of our task and supported us in the following ways:

• By repeatedly expanding a view, we could construct
chains of steps across a heterogeneous set of relation-
ship types.

• We could easily get access to the source code from the
tree view.

• We could visually retrace our steps in the tree. This
made it easier to understand our current position in
relationship to previously visited elements.

• Occasionally we wanted to backtrack and start explor-
ing in another direction. The tree-view naturally sup-
ported that.

While our overall experience with the tool was positive,
there were some issues that were perceived as clearly ham-
pering the tool’s effectiveness.

The most important problem is the simple graphical rep-
resentation of the exploration paths. When the tree is ex-
panded many levels deep, it tends to become too wide and
too cluttered to fit in the JQuery pane. To get an overview
it is necessary to scroll the view horizontally as well as ver-
tically. This is cumbersome and makes it harder to under-
stand the connection between elements separated by many
levels in the tree. Note that, while this strongly suggests
that our method of visualizing the exploration history can
be improved, the connection between elements at great dis-
tance from each other in the tree would be orders of mag-
nitude harder to reconstruct in a typical IDE where there
would be no representation of the exploration paths at all.

A less severe problem—of a more technical nature—
concerns integration of the tool with the rest of Eclipse.
The tool would benefit from a tighter integration with the
editor. For example, it would be useful to be able to follow
hyperlinks in the editor and have these navigation steps be
automatically reflected in the JQuery view. Currently only
navigation steps taken from within the JQuery view itself
are recorded in the tree. Consequently we had to accept
the minor nuisance of having to force ourselves to make all
navigation steps via the JQuery tree in order to avoid losing
navigation history.

While the ability to perform directed searches with the
query language was useful (e.g. see the example in Sec-
tion 4.3.1, the logic query language was hard to use for
complex queries. This is true even for developers reason-
ably familiar with the query language. We noticed that in
practice we tended to formulate only fairly simple queries.
Subsequent incremental view expansion led to the actual
targets of a search. This suggests that it may be a good
idea to restrict direct usage of the query language to ex-
pert users configuring the tool. For the average end user it
would probably be more effective to provide a less power-
ful but more intuitive GUI to perform simple searches. The
layout and functionality of the search dialog could be made
configurable in a way similar to the contextual menus. This
would be a natural step in the evolution of the tool. The
role of the query language used to be much more prominent

in the earlier prototypes but has gradually slipped more and
more into the role of a powerful configuration language.

5. IMPLEMENTATION OF JQUERY
JQuery is implemented in Java as a plug-in to the Eclipse

Platform [13], an open source IDE. Facts in the JQuery
database are generated dynamically by making calls to the
underlying Eclipse API. This has the advantage that queries
can be run on code immediately after changing it. There is
no need to perform an intermediate step of generating a
database from source code as Eclipse performs this step au-
tomatically. Furthermore, Eclipse comes with an excellent
incremental compiler that is very tolerant of errors. Con-
trary to many other systems based on querying of static
analysis information, running queries against a code base
which contains compilation errors does not pose a problem
in JQuery.

5.1 Customizing JQuery
The JQuery tool was designed to support as much flexibil-

ity as possible in the different types of relationships between
code units that can be explored with it. Making JQuery flex-
ible in this respect seemed especially important because it
is precisely the rigidity of conventional browsers that forces
a user to switch between browsers. To avoid this problem,
JQuery has been made configurable so that it is easy to ex-
tend the relationships supported by the tool. An expert de-
veloper can add additional queries to the contextual menus
that support the incremental expansion of a view at any
given node.

This is how the configuration mechanism works: when a
developer right clicks on a node, the tool launches a query to
determine what relationships apply to that node and what
menu items should be shown in the menu. Thus, the struc-
ture of the menu can be configured by providing a config-
uration file containing logic rules that match these queries.
To be able to extend the menu structure, a user needs to
be familiar with 1) the logic query/programming language
embedded in JQuery, and 2) how to structure the logic rules
that define the menu items. The query language was already
described in Section 3.2. We briefly describe the procedure
for adding a menu item below.

5.1.1 Adding a Relation-Query Menu Item
All nodes in a JQuery tree view are generated from the

results returned by queries to the underlying query en-
gine. The JQuery menus can be customized by constructing
queries and adding them to the database in the form of spe-
cial rules.

When a user selects a node the JQuery tool determines the
structure of the context menu by running a query menuItem

to determine what menu items are associated with that
node. Thus, adding an item to the context menu can be
accomplished by adding an appropriate menuItem rule to a
configuration file. The menuItem rule has three parameters:
the selected node, the label to be displayed in the menu,
and the name of the rule that implements the corresponding
query. Typically, the body of the rule checks the selected
node to see if the corresponding query is applicable to it.
The second and third parameter of a matching rule are used
to create a menu item for the contextual menu.

For example, let’s say we want to add a menu item that
lists all the listeners of an event generating class. The

menuItem rule only applies when the selected node is a class
that has some kind of addListener() method.

menuItem(?O, "Listeners" , menuFindListeners) :-
class(?O, method, ?M),

// Finds all the methods ?M of class ?O.
// Fails if ?O is not a class.

method(?M, name, ?N),
// Finds the name ?N of method ?M

match(?N, /add.*Listener/).
// Matches the name ?N to a regular expression

Here, the second parameter, Listeners, is the label that
will appear in the context menu and the third parameter,
menuFindListeners, is the name of a rule that we must still
write. It will perform the query whose results will appear
below the selected node.

The next step is to implement the menuFindListeners

rule. This rule must have two parameters: one that gets
bound to the selected node, and one that is a list containing
the results of the query. This list represents a single path in
the resulting subtree. The actual subtree is constructed by
merging all the paths that are returned by the query. The
use of a list here provides JQuery with a fixed interface —
a two parameter predicate — while still allowing queries to
return paths of arbitrary length. This facilitates the con-
struction of subtrees of arbitrary depth and structure.

menuFindListeners(?O, [?C]) :-
class(?O, method, ?M),

// Finds all the methods ?M of class ?O.
// Fails if ?O is not a class.

method(?M, name, ?N),
// Finds the name ?N of method ?M.

match(?N, /add.*Listener/),
// Matches the name ?N to a regular expression.

refMethod(?Ref, ?Caller, ?M),
// Finds all the methods that call ?M.

class(?C, method, ?Caller).
// Finds the classes to which those methods belong.

This rule is similar to the menuItem rule, but adds some
extra terms to find references to the addListener() methods
of the selected class.

The configuration mechanism described above is impor-
tant because it would be impossible to anticipate all possible
relationships that a developer might be interested in. Cus-
tomized menu items can make use of highly specific coding
conventions and design patterns, enabling developers to ex-
plore their code using more high-level relationships induced
by them.

As can be seen from our example, the configuration mech-
anism is relatively complex and we do not expect end-users
to configure the tool. However, if sufficiently motivated, ex-
pert users could provide libraries of rules that encapsulate
various coding conventions and design-pattern-specific rela-
tionships and views. For example, if a tool like JQuery were
to become widely available, it would be conceivable that
library vendors would provide a set of library-specific rules.

6. RELATED WORK
JQuery does not directly support working with crosscut-

ting concerns, but rather supports navigation and explo-
ration of code in a general way. We believe this kind of
support is useful in general, but is particularly useful in the
context of crosscutting concerns, because crosscutting con-
cern imply a need to explore a complex and tangled web of

relationships between scattered elements of a code base. In
the remainder of this section we discuss how JQuery relates
to other tools for supporting exploration of code, regardless
of whether or not they claim explicit support for working
with crosscutting concerns.

JQuery derives much of its flexibility and functionality
from the expressive power of the underlying query engine.
The idea of using structural queries — in a logic language
or another sufficiently powerful query language — as a ba-
sis for constructing software development tools is not new.
Some examples of other systems based on structural source
code querying are SOUL [17], ASTLog [7], GraphLog [6]
and Coven [5]. SOUL is a logic query language integrated
with the Smalltalk development environment. ASTLog is
a logic query language for querying C++ abstract syntax
trees. GraphLog is a logic based graphical query language
in which both queries and query results are represented as
Graphs. Coven is a software configuration management tool,
equipped with an SQL-like query language for the retrieval
of software units. In all these tools, software queries can be
used by developers in the process of exploring code. How-
ever, these tools do not typically provide explicit support
for exploration in terms of chains of related queries. A no-
table exception is the Ciao [4] system which we will discuss
separately.

There are numerous tools (e.g. Rigi [12], SHriMP [16],
Ciao [4], SVT [11] and GraphLog [6]) that provide different
ways to visualize the structure of a software system. Some
of these tools were already mentioned as query-based tools
and we don’t discuss them again. Rigi [12] is a reverse engi-
neering tool that starts by generating complex graph views
from the original source code. It then provides tools to it-
eratively refine these views into higher level representations
of the subsystems. SVT [11] is a configurable software visu-
alization framework that relies on Prolog as a configuration
language.

All of these tools help in understanding and exploring
software systems, but generally they tend to focus on the
visualization of the structure of the software. To this end
they may provide very sophisticated graphical views and
user interfaces. In comparison, the hierarchical views pro-
vided by JQuery are relatively primitive. However JQuery
is different from most software visualization tools in its em-
phasis on providing a representation of the structure of an
exploration process rather than the software. For example,
consider the SHriMP tool. It also strives to help a devel-
oper to remain oriented. SHriMP offers different ways to
organize and navigate source code and can create sophisti-
cated graphical views of the system. However, these views
are static and do not capture the history of an exploration
process. SHriMP helps a developer remain oriented by pro-
viding context information in terms of one’s location within
the graph, but not in terms of the path taken to navigate to
that location. Thus, it is possible to see where you are but
not how or why you got there.

The Ciao [4] system is interesting because it provides some
kind of representation of the exploration history in the form
of a “navigation graph”. Each node in the navigation graph
corresponds to a query that generates a specific view on the
system. The edges of the navigation graph represent historic
dependencies between query views. However, the nodes in
the navigation graph only show the type of query that was
run and the corresponding graph is shown in a separate win-

dow. To reconstruct the structural relationships that con-
nect different queries on a path, one must compare their
corresponding views.

The FEAT tool [15] supports working with crosscutting
concerns by letting developers incrementally build-up an ex-
plicit representation of a concern. A crosscutting concern in
FEAT is represented by a set of scattered code-units iden-
tified by a developer as being part of the implementation
of that concern. FEAT allows developers to browse the el-
ements of a given concern, and to incrementally add addi-
tional units of code to the concern. To facilitate this process
of building up a concern representation FEAT offers queries
to find code units that have incoming or outgoing structural
dependencies on elements already in the concern. JQuery
and FEAT are largely complementary. JQuery focuses on
supporting exploration of code by representing the history
of the exploration process, whereas FEAT focuses on repre-
senting crosscutting concerns in code. There is some overlap
in the functionality of both tools. FEAT provides some sup-
port for the exploration process needed to build-up a concern
representation, but it does not present the user with an ex-
plicit representation of the exploration paths. JQuery on the
other hand does not provide explicit support for capturing
the representation of a concern. Developers may use cus-
tom Javadoc tags as an ad-hoc representation of FEAT-like
concerns.

7. FUTURE WORK
More sophisticated visual representations for the explo-

ration history are a possible avenue of further exploration.
For example using “fish-eye” views of a graph-based rather
than tree-based representation might improve the effective-
ness of the tool even further.

8. CONCLUSION
In this paper we presented the JQuery prototype. JQuery

intends to enhance a developer’s ability to perform tasks
involving crosscutting concerns by providing better support
for carrying out exploration tasks involving a complex web
of relationships between scattered elements of a code base.

JQuery’s design goal is to combine the advantages of query
based tools and hierarchical browser tools. Specifically, from
query tools we want to retain the ability to perform directed
searches, and the flexibility to explore code in terms of many
different kinds of relationships. The hierarchical browser in-
terface on the other hand provides an explicit representation
of the exploration history in terms of exploration paths and
queries performed.

Using the JQuery tool a developer can start an explo-
ration process with a query. The result of the query is used
to define an initial browser view that serves as a starting
point for an exploration process. The developer may navi-
gate the tree and extend it at will by requesting additional
queries to be added as subtrees of specific nodes of interest.
In so doing, the shape of the tree provides an explicit repre-
sentation of the history of the exploration process in terms
exploration paths and queries performed.

We claim that our design reduces the cognitive burden
associated with an exploration process, by helping a devel-
oper to remain oriented. Our tool reduces the need to switch
between different tools and views. This avoids the disorien-
tation caused by switching views and keeps an unbroken

representation of the whole exploration path within a single
view.

A case study was performed to test the soundness of our
design. Overall, the study confirms that JQuery’s design is
sound. We found that we could complete many subtasks
involving chains of exploration steps and some backtracking
without switching views. The representation of the explo-
ration history was found to be helpful in keeping one’s orien-
tation while performing an exploration task. The visual rep-
resentation of the exploration tree was an unsophisticated,
standard tree-navigation GUI component. This simplistic
visual representation of the exploration process could prob-
ably be improved because we observed that it becomes more
and more unwieldy as it grows in size.

Acknowledgments
This work was supported in part by Object Technology In-
ternational, NSERC and the University of British Columbia.
We thank Jonathan Sillito, Gregor Kiczales, Chris Dutchyn,
Hidehiko Masuhara and Gail Murphy for their valuable
comments, insights and stimulating discussions which have
greatly contributed to this paper.

9. REFERENCES
[1] JHotDraw. http://www.jhotdraw.org/, 2002.

[2] The Jin Chess Server.
http://www.hightemplar.com/jin/, 2002.

[3] The Source NavigatorTM IDE.
http://sources.redhat.com/sourcenav/, 2002.

[4] Yih-Farn R. Chen, Glenn S. Fowler, Eleftherios
Koutsofios, and Ryan S. Wallach. Ciao: A graphical
navigator for software and document repositories. In
Proc. Int. Conf. Software Maintenance, ICSM, pages
66–75. IEEE Computer Society, 1995.

[5] Mark C. Chu-Carroll and Sara Sprenkle. Coven:
brewing better collaboration through software
configuration management. In Proceedings of the
eighth international symposium on Foundations of
software engineering for twenty-first century
applications. ACM, 2000.

[6] M. Consens, A. Mendelzon, and A. Ryman.
Visualizing and Querying Software Structures. In
Proceedings of the 14th International Conference on
Software Engineering, pages 138–156, May 1992.

[7] R.F. Crew. Astlog: A language for examining abstract
syntax trees. In Proceedings of the USENIX
Conference on Domain-Specific Languages, Santa
Barbara, California, October 1997.

[8] Kris De Volder. Tyruba website.
http://tyruba.sourceforge.net.

[9] Kris De Volder. Type-Oriented Logic Meta
Programming. PhD thesis, Vrije Universiteit Brussel,
Programming Technology Laboratory, June 1998.

[10] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog:
The Standard. Springer-Verlag, New York, 1996.

[11] Calum A. McK. Grant. Software Visualization In
Prolog. PhD thesis, Queens College, Cambridge,
December 1999.

[12] H. Muller, K. Wong, and S. Tilley. Understanding
software systems using reverse engineering technology.
In The 62nd Congress of L’Association Canadienne

Francaise pour l’Avancement des Sciences Proceedings
(ACFAS), 1994.

[13] Eclipse website. http://www.eclipse.org/, 2001.

[14] Rajeswari Rajagopolan and Kris De Volder.
Qjbrowser: A query-based approach to explore
crosscutting concerns. Submitted to ICSE 2002.

[15] Martin P. Robillard and Gail C. Murphy. Concern
Graphs: Finding and describing concerns using
structural program dependencies. In Proc. of
International Conference on Software Engineering,
2002.

[16] M.-A. D. Storey, C. Best, and J. Michaud. Shrimp
views: An interactive and customizable environment
for software exploration. In Proc. of International
Workshop on Program Comprehension (IWPC ’2001),
2001.

[17] Roel Wuyts. Declarative reasoning about the structure
of object-oriented systems. In Proceeding of TOOLS
USA ’98 Conference, pages 112–124. IEEE Computer
Society Press, 1998.

