
Debugging with Control-flow Breakpoints

Rick Chern and Kris De Volder
Department of Computer Science

University of British Columbia
2366 Main Mall

Vancouver BC Canada V6T 1Z4

rchern,kdvolder@cs.ubc.ca

Abstract
Modern source-level debuggers support dynamic break-
points that are guarded by conditions based on program
state. Such breakpoints address situations where a static
breakpoint is not sufficiently precise to characterise a point
of interest in program execution. However, we believe that
current IDE support for dynamic breakpoints are cumber-
some to use. Firstly, guard conditions formulated in (non-
aspect-oriented) source-languages cannot directly express
control-flow conditions, forcing developers to seek alterna-
tive formulations. Secondly, guard-conditions can be com-
plex expressions and manually typing them is cumbersome.

We present the Control-flow Breakpoint Debugger
(CBD). CBD uses a dynamic pointcut language to charac-
terise control-flow breakpoints—dynamic breakpoints which
are conditional on the control-flow through which they were
reached. CBD provides a “point-and-click” GUI to specify
and incrementally refine control-flow breakpoints, thereby
avoiding the burden of manually editing the potentially com-
plex expressions that define them.

We performed 20 case studies debugging and fixing doc-
umented bugs in 3 existing applications. Our results show
that dynamic breakpoints in general are useful in practice,
and that CBD ’s GUI allows specifying them adequately in
the majority of cases.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids

General Terms
Experimentation, Languages

Keywords
Pointcut language, Debugger interface, Case studies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD 07,March 12-16, 2007, Vancouver, Canada
Copyright 2007 ACM 1-59593-615-7/07/03 ...$5.00.

public class ActionSaveProject {
public void actionPerformed(ActionEvent e) {

...
ProjectBrowser.getInstance().trySaveAs(...); // line B
...

}
}

public class ActionSaveProjectAs {
public void actionPerformed(ActionEvent e) {

...
ProjectBrowser.getInstance().trySaveAs(...);
...

}
}

public class ProjectBrowser {
public void trySaveAs(...) {

...
// line A
...

}
}

Figure 1: Motivating example.

1. Introduction
Modern IDEs offer sophisticated source-level debugger

GUIs as part of their arsenal of tools. In this paper we
are concerned with their mechanism for setting breakpoints.
We distinguish two kinds of breakpoints, static breakpoints
and dynamic breakpoints. A static breakpoint corresponds
one-to-one with a specific line of code. A dynamic break-
point on the other hand depends on an additional runtime
condition.

The typical source-level debugger provides a straightfor-
ward point-and-click UI to create a static breakpoint. Static
breakpoints are however not always sufficiently precise be-
cause they may be reachable from execution contexts the
developer is not interested in. We believe that such situa-
tions occur reasonably often in practice and that state-of-
the-practice debuggers do not provide adequate support for
them.

1.1 Motivating Example
We illustrate the problem with a motivating example.

The example was simplified for presentation purposes but
is based on a real debugging scenario lifted from case 19 of
our case studies.

In this session the developer was fixing a bug in

96

the ArgoUML GUI. A skeleton of some relevant code
is shown in Figure 1. At some point in the ses-
sion the developer wanted to put a breakpoint at line
A. As the developer was trying to reproduce the bug,
this line was reached from two different calling con-
texts. One was in response to handling the selection of
“Save As...” from the “File” menu in the GUI, through
the ActionSaveProjectAs.actionPerformed() method.
The second one was in response to handling the
selection of “Save” from the “File” menu through
ActionSaveProject.actionPerformed(). Deliberately
triggering the bug required selecting both “Save As...” and
“Save” in sequence, but the execution of line A was only
of interest when in response to the selection of “Save”. In
trying to fix the bug the developer repeatedly made some
changes and performed the GUI actions that triggered the
bug.

We will assume the standard Eclipse JDT debugger[11] is
used in the rest of this discussion, but other modern IDEs
provide similar functionality. Using the standard Eclipse
JDT debugger, there are several options to try to obtain
the desired breaks in execution.

The first option is to simply set a static breakpoint at line
A. This option is unsatisfactory because program execution
suspends every single time line A is executed, and one in two
executions is from an uninteresting dynamic calling context.

A second option is to set static breakpoints at the inter-
esting call site (line B) instead of at line A. Unfortunately,
the ability to precisely mark the point of interest is then
lost. This is problematic if this point is located in a large
and complicated method body.

A third option is to use two static breakpoints in conjunc-
tion. For example, the line A breakpoint could be temporar-
ily deactivated. Then a breakpoint could be set at line B.
Upon reaching the line B breakpoint the programmer could
then reactivate the breakpoint at line A. This workaround
is used frequently by one of the authors and provided the
initial inspiration for the work in this paper. It is unsatis-
factory because repeatedly activating and deactivating the
breakpoint is cumbersome and forces the programmer to sus-
pend the program at line B even though he is not directly
interested in it.

A fourth option is to attach a dynamic guard expression
to the breakpoint at line A. The JDT debugger allows a pro-
grammer to attach an arbitrary Java expression as a guard
to a breakpoint. In this case the following expression could
be used:

EventQueue.getCurrentEvent().toString().endsWith(
"text=Save Project]")

Since the guard condition must be expressed in Java and
must be based on program state as captured by program
variables, the desired control-flow condition cannot be di-
rectly expressed. Instead, the above expression relies on par-
ticular objects that happen to exist and happen to contain
recognisable patterns in their debugging strings. In general,
finding an appropriate expression is not obvious because dif-
ferent control-flow histories do not necessarily imply that the
corresponding program states are easily distinguished. In
the worst case, auxiliary code may need to be added to the
program for the sole purpose of recording program history
and expressing a breakpoint condition.

Options one, two, and three in this motivating exam-

ple illustrate how static breakpoints can be insufficient in
some debugging scenarios. The fourth option illustrates that
state-of-the-practice debugging tools do not adequately sup-
port dynamic breakpoints. Specifically, it exemplifies how
dynamic conditions based on control-flow instead of program
state cannot be directly expressed with modern debuggers,
and that manually formulating guard conditions can be dif-
ficult.

1.2 Approach
We now outline our approach to tackling the problem de-

scribed above. To facilitate convenient discussion, from here
on we will use the term “control-flow breakpoints” to refer
to dynamic breakpoints that are characterised in terms of
control-flow history (i.e. how the breakpoint was reached)
rather than in terms of the state of program variables.

A central hypothesis of our work is that for practical de-
bugging scenarios control-flow breakpoints are often more
adequate in cases where guards based on variable state are
unnatural. This hypothesis is at odds with state-of-the-
practice debugging tools which implicitly force guards to
be formulated only in terms of variable state.

A second belief inspiring our approach is that—even
when offered a more appropriate mechanism that supports
control-flow conditions—it is cumbersome for developers to
manually enter potentially complex expressions.

To address both of these concerns, we propose a debugger
that provides a “point-and-click” GUI to define control-flow
breakpoints. This debugger GUI allows the user to spec-
ify control-flow breakpoints and incrementally refine them
based on information from either the current debugging con-
text or from recorded history. We call this debugger the
Control-flow Breakpoint Debugger (CBD).

Supporting the debugger GUI is a dynamic pointcut lan-
guage inspired by AspectJ [4] and related work on trace-
based pointcuts (see Section 4). Our pointcut language
characterises breakpoints as joinpoints (points in the exe-
cution of the program) where the program should suspend.
It allows for selecting joinpoints based on temporal rela-
tions such as cflow (familiar from AspectJ), before, and
after. We call our pointcut language Break Pointcut Lan-
guage (BPL).

It should be stressed that although BPL is a central con-
cept in our design, pointcut expressions serve mainly as a
convenient internal representation of breakpoints. As such,
the CBD GUI completely avoids the need for developers to
manually enter pointcut expressions, and in fact our proto-
type does not even have a parser for BPL expressions.

1.3 Evaluation
To evaluate the practical expressiveness of control-flow

breakpoints and CBD ’s graphical user interface, we per-
formed 20 case studies debugging and fixing documented
bugs in 3 existing Java applications. The results confirm
our three main claims:

1. Situations in which the additional precision of some
kind of dynamic breakpoint condition could be useful
occur in practice.

2. Control-flow breakpoints are adequate in the majority
of these situations.

3. The purely “point-and-click” GUI of CBD supports

97

specifying control-flow breakpoints for a majority of
practical debugging scenarios.

Our first claim establishes our hypothesis that there are
situations in which dynamic breakpoint support is at least
potentially useful. Having established that, we secondly
claim that control-flow breakpoints are expressive enough
to characterise the desired dynamic conditions in most of
such situations. We believe that these two claims are novel
because although numerous proposals of mechanisms to sup-
port dynamic breakpoints exist [8, 10], to the best of our
knowledge no empirical data about the potential usefulness
of such mechanisms in realistic debugging scenarios have
been presented in the literature.

While the CBD GUI only supports specification of a sub-
set of the full range of control-flow breakpoints, our third
claim asserts that the CBD GUI is expressive enough to
support creation of the majority of control-flow breakpoints
required in our second claim.

1.4 Outline
The remainder of this paper is organised as follows. Sec-

tion 2 describes Control-flow Breakpoint Debugger, Sec-
tion 3 describes the process for evaluating CBD and the
evaluation results, Section 4 provides an overview of previ-
ous related work, and Section 5 concludes this paper. Pos-
sible future work is outlined in Section 6.

2. The Control-flow Breakpoint Debugger
This section describes the Control-flow Breakpoint De-

bugger. CBD is implemented as a modification to the stan-
dard Eclipse JDT debugger and can be downloaded from
http://www.cs.ubc.ca/labs/spl/projects/cbd.html.

We start with a simple use case, revisiting the motivat-
ing example. This illustrates how CBD addresses the issues
described in Section 1 and also allows us to outline the gen-
eral ideas behind CBD ’s design. The remaining subsections
provide a more detailed explanation of CBD ’s features and
the underlying pointcut language which plays a central role
in its design and implementation.

2.1 Motivating Example Revisited
Reconsider the situation described in Section 1.1 and the

example Java code shown in Figure 1. Recall that line A
is reached multiple times during the debugging session in
uninteresting contexts. We will now see how a developer
might use CBD in this situation.

The programmer begins by setting a breakpoint at line A.
Initially this breakpoint is purely static and behaves identi-
cally to a line breakpoint in a standard debugger.

CBD represents breakpoints by means of pointcut expres-
sions in Break Pointcut Language, a pointcut language that
is loosely based on AspectJ but modified for the specific pur-
pose of representing breakpoints. For example, the static
line A breakpoint corresponds to the pointcut expression:

line_execution(lA)

where lA is a line signature, i.e. a string (containing a file
and line number) uniquely identifying line A. After placing
the line A breakpoint, the programmer reproduces the bug
multiple times to examine program state during execution,
occasionally making changes to the code in an attempt to
fix the bug. When line A is reached for the first time in the

Figure 2: Selecting the first item on the stack for
control-flow exclusion.

control-flow of ActionSaveProjectAs.actionPerformed()

she realises that this dynamic context is uninteresting and
would like to avoid it in the future. In terms of the break-
point’s pointcut, this can be accomplished by conjoining an
additional condition to it.

The CBD GUI avoids manual entry of this condition by
providing several menu options. Each option corresponds to
a specific condition that is to be conjoined with the break-
point. CBD derives the options either from the current ex-
ecution context, or from (information recorded from) an ex-
ecution context under which the breakpoint was previously
triggered. Both of these two categories of options are in-
tended to support a use case similar to the one from our
example, where the programmer notices that a particular
breakpoint is triggered in a dynamic context she is not in-
terested in and wants to avoid this context in the future. A
condition cc that is true in the current uninteresting context
can be used to avoid similar contexts in the future by con-
joining the breakpoint pointcut with a negated version of cc

like so:

p′ ::= p && !cc

Alternatively a condition cr recorded in a previous acti-
vation can be used to restrict to contexts that are similar to
it like so:

p′ ::= p && cr

Thus the current uninteresting context can be eliminated
from future executions if it is dissimilar (some property cr

does not hold) from a previously reached interesting context.
Two separate sets of menus labelled “Don’t Suspend . . . ”

and “Only Suspend . . . ” respectively correspond to restrict-
ing the pointcut negatively (based on the current activation)
or positively (based on a previous activation). Several kinds
of dynamic conditions are supported as different submenus,
but the cflow condition was predominantly used in our ac-
tual case studies.

Returning to our example, to exclude
the current activation in the context of
ActionSaveProjectAs.actionPerformed() the devel-
oper chooses the “Don’t Suspend in Control-Flow of
Method” menu item. This pops up a submenu displaying
the method signatures on the current call stack, as shown
in Figure 2. She chooses the topmost item. This results
in CBD redefining the line A breakpoint to the following
pointcut:

line_execution(lA) && !cflow(method_execution(m))

where m is a method signature corresponding to
ActionSaveProjectAs.actionPerformed(). This achieves
the desired effect of avoiding future executions of this break-
point in uninteresting contexts. Note that a similar ef-
fect could be achieved also by restricting the pointcut to

98

the control-flow of ActionSaveProject.actionPerformed()
based on a previous activation.

2.2 The CBD Pointcut Language
A central element of CBD ’s design and implementation

is Break Pointcut Language. An overview of BPL is shown
in Table 1. BPL expressions are convenient breakpoint rep-
resentations that support both static and dynamic control-
flow breakpoints. BPL is loosely inspired by AspectJ and
resembles AspectJ’s pointcut language in terms of its syntax
and semantics.

Like AspectJ pointcuts, BPL expressions are composed
out of atomic pointcuts which are combined through differ-
ent pointcut combinators. These combinators include &&,
||, !, and cflow. These “standard” combinators have the
same meaning as they have in AspectJ.

The set of atomic pointcuts from which BPL expres-
sions are composed differ slightly from those found in As-
pectJ, as the language is intended to support a debug-
ger UI rather than an aspect-oriented programming lan-
guage. BPL provides only four atomic pointcut types.
The method_execution pointcut corresponds to AspectJ’s
execution pointcut and identifies a point in execution where
a method-body is executed. However, contrary to As-
pectJ it does not support wild-card patterns in the method
signature1. BPL’s line_execution, method_entry, and
method_exit pointcuts have no counterparts in AspectJ.
The line_execution pointcut serves the purpose of iden-
tifying the execution of a specific line of source code and is
needed to support a typical debugger UI which allows setting
breakpoints on specific lines of code. The method_entry and
method_exit pointcuts are needed to support the setting of
method entry and method exit breakpoints respectively in
a typical debugger UI.

Besides the “standard” combinators, BPL has two addi-
tional pointcut combinators. The before and after point-
cuts are similar to cflow in that they express a temporal
relationship between the matched joinpoint and joinpoints
matched by its pointcut parameter. The after combina-
tor was added because we believed it could replace ad-hoc
approaches which manually activate a breakpoint after an-
other breakpoint has been reached, as was discussed in the
motivating example. A before combinator was added for
logical completeness.

Like AspectJ, BPL has a clear separation between static
and dynamic pointcut expressions. This separation provides
a natural mapping from a pointcut expression to combina-
tion of a static breakpoint and a dynamic condition in a
debugger UI. Dynamic breakpoints in the debugger UI are
represented using BPL pointcut expressions of the following
forms:

line_execution(l) && p

method_entry(m) && p

method_exit(m) && p

where line_execution(l), method_entry(m), and
method_exit(m) are static pointcuts that correspond

1Wild-card features were deemed to be unnecessary to sup-
port the CBD GUI. This does not mean that breakpoints
specified in terms of wild-cards could not be potentially use-
ful in some scenarios.

Figure 3: CBD menu structure.

respectively to the lines and methods in a typical debugger
UI where breakpoints are created. The pointcut p is a resid-
ual dynamic pointcut which corresponds to the dynamic
condition attached to a breakpoint in the debugger UI.

2.3 The CBD User Interface
The Control-flow Breakpoint Debugger’s graphical user

interface is an extension of the Eclipse JDT debugger UI,
which already provides a convenient interface for creating
static breakpoints (i.e. breakpoints that correspond directly
to BPL’s atomic pointcut expressions). CBD provides ad-
ditional functionality to attach dynamic control-flow con-
ditions to such breakpoints. This functionality is invoked
through a context menu for a breakpoint marker as shown
in Figure 3. The menu is labelled “Refine Breakpoint Con-
dition” and contains three subsections.

Recall from Section 2.1 that CBD allows breakpoints to
be refined based on control-flow information from either the
current execution context (p′ := p && !cc) or a previously
recorded execution context (p′ := p && cr). The “Don’t Sus-
pend . . . ” section is based on the current context and con-
tains choices which allow the programmer to exclude join-
points that have similar control-flow properties from being
matched in the future. The “Only Suspend . . . ” section on
the other hand is based on a recorded context and contains
choices which allow restricting to joinpoints that have sim-
ilar control-flow properties. In the current implementation
only one context is recorded for each breakpoint: the first
context in which the breakpoint is triggered. Both menu
sections have very similar structure and perform very sim-
ilar functionalities. The only real difference between them
is that they are based on a different example context (cur-
rent or recorded) and use the derived conditions either in a
negated or non-negated form.

In each section, the first three menus follow the struc-
ture of BPL and provide three different options which cor-
respond to the three temporal relationships—cflow, before,
and after—supported by it. These options can be used by
a developer who has a fairly precise idea of what kind of
condition to use. The fourth and final item is intended to
provide a more open list of suggestions which are deemed
to be most likely to be useful, based on some simple heuris-
tics. We now discuss each menu item in each menu section
in more detail.

99

Syntax Matched Joinpoints

Atomic Pointcuts
line_execution(l) All executions of the source-code line specified by l
method_execution(m) All executions of the method body specified by the signature m
method_entry(m) All entries to the method specified by the signature m
method_exit(m) All exits from the method specified by the signature m
Temporal Combinators
cflow(p) All points in execution within the control-flow of the points matching the pointcut p
after(p) All points in execution after and including the first point matching the pointcut p
before(p) All points in execution before the first point matching the pointcut p
Logical Combinators
!p All points in execution except points matching the pointcut p
p1 && p2 Points in execution matching both of the pointcuts p1 and p2

p1 || p2 Points in execution matching either of the pointcuts p1 and p2

Table 1: Summary of Break Pointcut Language

2.3.1 The “Don’t Suspend . . . ” Menu Section
The “Don’t Suspend in Control-Flow of Method” sub-

menu displays the current call stack. When a method sig-
nature m is selected from this menu, the pointcut is modified
as follows:

p′ := p && !cflow(method_execution(m))

This will avoid suspending in any future context where this
particular method is on the control stack.

The “Don’t Suspend Before Reaching Line” submenu con-
tains as options lines that already have breakpoints on them
but that have not yet been reached in execution. When a
line l is selected from the menu, the pointcut is modified as
follows:

p′ := p && !before(line_execution(l))

This will avoid suspending at the current breakpoint until
after the selected line is reached.

The “Don’t Suspend After Reaching Line” submenu
shows break lines that have breakpoints which have already
been reached in execution. When a line l is selected the
breakpoint pointcut is modified as follows:

p′ := p && !after(line_execution(l))

This will avoid suspending at the current breakpoint until
the program is restarted, and will no longer suspend after l
is reached.

The “Don’t Suspend if: Suggest” menu item provides a
single suggestion (see Figure 4). This suggestion is based
on our experience that the cflow condition is the most fre-
quently used condition in practice. It picks the most recent
method on the stack that is in the current context but not in
the recorded context (or simply the next most recent method
on the stack if the breakpoint was not triggered before and
hence has no recorded context). The current suggestion
heuristics are provisional and will likely be replaced with
more sophisticated algorithms in the future (see Section 6).

2.3.2 The “Only Suspend . . . ” Menu Section
The structure and functionality of this menu section is

similar to the “Don’t Suspend . . . ” menu. The difference is
that the condition is applied to the selected breakpoint with-
out negation and the suggested conditions are not extracted
from the current context, but from a recorded context (re-
call that in the current implementation this is the context

Figure 4: The “Don’t Suspend if: Suggest” dialog.

in which the breakpoint is first triggered). The only menu
which merits separate discussion here is the “Only Suspend
if: Suggest” menu item which utilises slightly more complex
heuristics than its counterpart in the “Don’t suspend if. . . ”
menu.

There are three suggested pointcuts for restricting context
of a breakpoint to the recorded context. The suggestions are
based on two sources of information.

The first source of information is the breakpoint most re-
cently reached prior to the recorded context. This break-
point (which we will call br) is used to suggest two point-
cuts. One pointcut is a copy of the control-flow condition
of br (alternatively, if no control-flow condition is attached
to br, then a suggested pointcut based on the most recent
method on the stack when br was first reached is used).
The other suggestion conjoins the first pointcut with one
that only matches joinpoints after the line corresponding
to br. The rationale behind these two suggestions is based
on our belief that a breakpoint first reached after another
breakpoint is often only of interest in the same context as
the latter.

The second source of information is the call stack of the
recorded context. This information is used to compose the
third suggested pointcut. This pointcut matches the control-
flow of the most recent method on the stack when the break-
point was first reached. The rationale behind this suggestion
is our experience that characterisation of control-flow con-
text in terms of the call stack is most useful.

As with the “Don’t Suspend if: Suggest” function, the
current suggestion heuristics for “Only Suspend if: Suggest”
are provisional and will likely be replaced with more sophis-
ticated algorithms in the future.

2.4 Implementation
The Control-flow Breakpoint Debugger is implemented as

100

a modification to the Eclipse JDT Debugger. Additional
packages and classes were added to implement both the CBD
GUI and its supporting pointcut language, while changes to
existing classes were kept to a minimum. Approximately
1400 source lines of code were added to implement the
control-flow breakpoints, BPL, and suggestion logic. The
additional dialog and context menu functionality required
approximately 1600 source lines of code.

Any performance hits due to the addition of CBD classes
are mostly associated with evaluating residual expressions
when control-flow breakpoints are reached. In the current
implementation, this evaluation time is—in the worst case—
linearly proportional to the current call-stack depth. During
our case studies, we could not observe any appreciable de-
crease in performance using CBD .

3. Evaluation and Case Studies
To evaluate the practical expressiveness of control-flow

breakpoints and the adequacy of CBD ’s graphical user in-
terface, we performed a total of 20 case studies using the
Control-flow Breakpoint Debugger, with one of the authors
as the subject. Each of the case studies corresponds to a
documented bug in an existing Java application.

3.1 Experimental Setup
The bugs were chosen from the bug databases of three ex-

isting Java applications—four from Battleship Wars [5], an
online-gaming web application built upon the Spring Ap-
plication Framework [18]; eight from version 5.3 of JHot-
Draw [15], a GUI-based drawing application; and eight from
version 0.21.1 of ArgoUML [3], a GUI-based UML modelling
application. The author participating as the subject in the
case studies was familiar with the source code of Battleship
Wars, but not familiar with the source code of JHotDraw or
ArgoUML prior to performing the case studies. The three
applications were selected based on their source code and
design clarity, as well as the availability of bug databases
containing suitable bugs.

Each bug was chosen by the authors of CBD for use in the
case studies based on the clarity of the associated bug report
(including preciseness of the bug description and expected
correct behaviour), and the perceived ease with which the
bug could be resolved—in particular, no architectural or ma-
jor design changes should have been required to resolve the
bug. The state of the bug (e.g. open or closed) was not
taken into account during bug selection, but any solutions
for resolved bugs were not viewed or included in the case
studies. In addition, the bugs were not intentionally chosen
to support any desired experiment results—in fact, we found
it difficult to determine beforehand which bug reports would
produce debugging sessions exploiting the unique features of
CBD .

For each bug, the author participating as the subject at-
tempted to fix the bug using Control-flow Breakpoint De-
bugger as the primary aid. To obtain data for later anal-
ysis, the on-screen actions of each debugging session were
recorded using a screen recording utility. Additionally, on-
screen notes were added in real-time by the author during
the debugging session to annotate the captured video.

3.2 Results
Table 2 provides an overview of the results obtained from

the 20 case studies performed. The “Bug#” column lists the

bug numbers in the respective bug databases of the three
applications. Under the “Dynamic Breakpoints Useful” col-
umn, a “Yes” indicates that dynamic breakpoints were used
in the case study, a “Potentially” indicates that dynamic
breakpoints were desired but not actually used in the case
study, while a “No” indicates that no use for dynamic break-
points could be found in the case study. Under the “CBs
Adequate” column, a “Yes indicates that control-flow break-
points were adequate for use as the desired dynamic break-
points, a “No” indicates that some type of dynamic break-
point other than a control-flow breakpoint was desired, while
a “N/A” corresponds to a “No” in the “Dynamic Break-
points Useful” column. Under the “CBD GUI Adequate”
column, a “Yes” indicates that the programmer was able to
create all desired control-flow breakpoints through the CBD
GUI, a “No” indicates that the programmer was not able to
create a desired control-flow breakpoint through the CBD
GUI, while a “N/A” indicates that the programmer did not
desire to create any dynamic breakpoints.

Our case study results support all of our 3 main claims
stated in Section 1.2:

1. Dynamic breakpoints were found to be useful (in 6
cases) or potentially useful (in 3 cases) out of the 20
case studies performed. This supports our claim that
situations in which the additional precision of some
kind of dynamic breakpoint condition could be useful
occur in practice.

2. Control-flow breakpoints were adequate in 6 out of the
9 cases in which dynamic breakpoints were found to be
useful or potentially useful. This supports our claim
that control-flow breakpoints are adequate in the ma-
jority of practical debugging tasks where the precision
of dynamic breakpoints is desired.

3. The CBD GUI was exclusively used to specify the
desired control-flow breakpoints in all of the 6 cases
in which control-flow breakpoints were useful. This
supports our claim that CBD ’s “point-and-click” GUI
supports specifying control-flow breakpoints for a ma-
jority of practical debugging scenarios.

3.2.1 Additional Observations
We now proceed to present some other interesting obser-

vations about the way CBD was used in our case studies.
The different types of control-flow breakpoints were used

with different frequency in our case studies. In each of the
6 cases in which control-flow breakpoints were found to be
useful, the following pointcut was conjoined with the break-
point’s guard condition:

!cflow(method_execution(...)))

The programmer specified and incrementally refined the
context for breakpoints according to the following general
pattern:

1. Create a static breakpoint at a desired location in the
source code.

2. Run target program using the debugger.

3. Upon reaching the breakpoint in an undesired context,
exclude the current context based on control-flow using
the menu functions.

101

Case# Dynamic
Breakpoints
Useful

CBs Ade-
quate

CBD GUI
Adequate

Bug# Comments

JHotDraw
1 No N/A N/A 584777 Default static breakpoints were sufficient
2 No N/A N/A 551103 Debugger use was limited
3 No N/A N/A 584776 Default static breakpoints were sufficient
4 Yes Yes Yes 639124 Exclusion based on current call stack was used
5 Potentially No N/A 639124 Desired dynamic condition based on variable values
6 Yes Yes Yes 639124 Exclusion based on current call stack and restriction

based on recorded context were used
7 No N/A N/A 584772 Default static breakpoints were sufficient
8 No N/A N/A 514393 Debugger use was limited
Battleship Wars
9 Yes Yes Yes 1 Exclusion based on current call stack was used
10 No N/A N/A 2 Debugger use was limited
11 No N/A N/A 3 Default static breakpoints were sufficient
12 No N/A N/A 5 Debugger use was limited
ArgoUML
13 No N/A N/A 3921 Default static breakpoints were sufficient
14 Yes Yes Yes 3922 Exclusion based on current call stack was used
15 No N/A N/A 3930 Debugger use was limited
16 No N/A N/A 3970 Default static breakpoints were sufficient
17 Potentially No N/A 4097 Desired dynamic condition based on variable values
18 Yes Yes Yes 4145 Exclusion based on current call stack was used
19 Yes Yes Yes 4155 Exclusion based on current call stack was used
20 Potentially No N/A 4324 Desired dynamic condition based on variable values

Table 2: Overview of case study results.

4. Repeat previous step if necessary.

Refinement of breakpoint context was usually based on
exclusion of undesired context when the undesired context
was encountered, and characterisation of control-flow based
on call stack methods was most often used. The “Only Sus-
pend if: Suggest” menu function was used once in case 6.

For the 3 cases in which dynamic breakpoints were found
to be potentially useful, the lack of actual use during the
debugging sessions was due to the difficulty associated with
manually expressing the desired dynamic conditions. In
some cases, composing the required expressions would re-
quire an understanding of the source code beyond what the
developer had at the time. In other cases, the required ex-
pressions would be complex to the point that it was easier
to simply skip over the breakpoints when reached under un-
desired contexts. For example, a guard condition expressing
one of the desired dynamic conditions for case 20 would be

ProjectManager.getManager().
getCurrentProject().getURL() != null

&&
ProjectManager.getManager().

getCurrentProject().getURL().
getFile().length() > 0

Dynamic breakpoints—while frequently used—were not
found to be useful in all of our case studies. There were two
main reasons for this:

• Limited use of the debugger. In many cases, fixing
the bug associated with the case study did not require
extensive use of breakpoints (and the debugger in gen-
eral). In some of the cases, code inspection was largely

sufficient for discovering and fixing problematic code,
while in other cases, the nature of the bug prevented
effective use of the debugger—in particular, the bug
associated with case 8 could not be reproduced if win-
dow focus of the program was lost during execution
(the bug was a display refresh problem).

• The default static breakpoints were sufficient. In many
cases, static breakpoints corresponded to the desired
execution breaks for the execution paths exercised dur-
ing the debugging session. Thus, no additional guard
conditions were necessary for such breakpoints.

3.3 Anecdotes
To convey a sense of how CBD was used in some cases

and failed to be useful in other cases we now present a few
selected anecdotes from the case-studies. We selected the
anecdotes to be a representative sampling of the different
situations we encountered during the case-studies.

The motivating example presented in Section 2.1 is repre-
sentative of the cases where control-flow breakpoint exclu-
sion based on call stack methods was used in the debugging
session. This was the most common scenario observed in
the case studies (6 cases).

We now present two additional anecdotes from our case
studies to represent the remaining interesting types of cases.

3.3.1 Anecdote of Case 6
This anecdote is derived from case 6 and demonstrates

use of the “Only Suspend if: Suggest” menu function. This
was the only case study in which CBD features other than
exclusion based on call stack methods was used.

102

public class TextTool {
public void endEdit() {

...
drawing().orphan(...); // line A
...

}
public void mouseDown(MouseEvent e, int x, int y) {

...
endEdit();
...

}
}

public class UndoActivity {
public void undo() {

...
drawing().orphan(...);
...

}
}

public class Drawing {
public Figure orphan(Figure f) {

...
// line B
...

}
}

Figure 5: Relevant code from case study 6.

For this anecdote, refer to the relevant JHotDraw code
shown in Figure 5. We begin at the point where the pro-
grammer already used the CBD GUI to define a break-
point at line A. This breakpoint did not have any dy-
namic conditions attached (i.e. it corresponded to an atomic
line_execution pointcut).

In the debugging session, the programmer was in-
terested in examining program state at line B in the
same contexts in which line A was reached. How-
ever, line B is reached in both the control-flow of
TextTool.endEdit() (corresponding to clicking away from a
text box) and UndoActivity.undo() (corresponding to se-
lecting the “Undo” command) while reproducing the bug.
The execution within the context of UndoActivity.undo()

was thus undesirable.
As described in Section 2, the programmer could exclude

the undesirable context upon reaching it by either restrict-
ing the breakpoint based on a desirable condition from a
previous execution context, or by excluding an undesirable
condition from the current execution context. In this case,
the programmer decided to perform the former by selecting
the “Only Suspend if: Suggest” menu function. This caused
a dialog box to be displayed with various options as shown in
Figure 6. The programmer selected the first option, which
resulted in the redefinition of the pointcut representing the
line B breakpoint to:

line_execution(lB)
&& after(line_execution(lA)
&& cflow(method_execution(m)

where lB and lA are the line signatures of line B and
line A respectively, and m is the method signature of
TextTool.mouseDown(). The selected suggestion was based
on the control-flow context of line A, as it was the most
recent breakpoint reached before the breakpoint at line B

public class TextTool {
public void mouseDown(MouseEvent e, int x, int y) {

...
// line A
...

}
}

Figure 7: Relevant code from case study 5.

(see Section 2.3 for a description of the suggestion heuris-
tics). Future executions of line B in the undesirable context
were then avoided for the remainder of the debugging ses-
sion.

3.3.2 Anecdote of Case 5
This anecdote is derived from case 5 and is representative

of cases where dynamic breakpoints were found to be poten-
tially useful but not actually used. This anecdote conveys a
sense of why the CBD features could not be used.

In case 5, bug reproduction required creating text boxes
and clicking on the canvas multiple times in the JHotDraw
GUI. Both creating text boxes and clicking on the canvas
caused the execution of line A shown in Figure 7, but the
programmer was only interested in line A when clicking on
the canvas. Thus program suspension at line A in the con-
text of creating text boxes was undesirable.

The programmer began by creating a breakpoint at line
A. This breakpoint initially behaved as a static breakpoint
and thus caused undesirable program suspension when text
boxes were created. The CBD GUI could not be used to
exclude the breakpoint from the undesirable context in this
scenario for the following reasons:

• Exclusion or restriction of context based on call stack
methods would not work as the call stack when creat-
ing text boxes and clicking on the canvas are identical.

• Exclusion or restriction of context based on lines of
code reached before or after line A would not work as
no other breakpoints were created.

However, program state did differ between the desirable
and undesirable execution contexts. Therefore, a dynamic
condition to restrict the breakpoint to the desirable context
could be expressed using Java as the following:

(drawing().findFigureInside(x,y) instanceof TextFigure)
|| (getTypingTarget() != null)

This expression was derived by examining the conditional
if(...) statements around line A and by examining pro-
gram state in the two execution contexts. The programmer
did not have the level of source code understanding required
to derive this expression prior to fixing the bug, and thus
was unable to attach this expression as a guard condition
for the breakpoint at line A. Instead, he decided to simply
skip over the breakpoint when reached in the undesirable
context. Therefore, dynamic breakpoints were potentially
useful in case 5 but were unable to be utilised during the
debugging session.

The above problems encountered by the programmer in
this anecdote can be generalised to the other cases in which
dynamic breakpoints were potentially useful but not used.
In all such cases, the CBD GUI could not be used to exclude

103

Figure 6: The “Only Suspend if: Suggest” dialog used in case 6.

the breakpoint from the undesired context for the same two
reasons given in this anecdote. Also, dynamic guard condi-
tions could be used to exclude the undesired context in all
such cases, but were not used for reasons similar to those
given in this anecdote.

3.4 Limitations of the Evaluation
The bugs for all 20 case studies were selected by the au-

thors of CBD , and all 20 case studies were performed using
one of the authors as the subject. This introduces some po-
tential bias into our results. In particular, the experiments
provide insufficient grounds to draw conclusions about the
usability of CBD for the average developer. Nevertheless,
we believe that our experiments are sufficient to support our
three main claims. We explain why:

The bug selection process–while not entirely random—did
not explicitly take into account the capabilities of CBD . As
we mentioned earlier, we found that it was impossible to
guess which bugs would exploit the capabilities of control-
flow breakpoints or dynamic breakpoints in general. There-
fore, we believe our bug-selection process is not biased with
respect to selecting debugging tasks leading to situations
where CBD ’s features are more likely to be useful. Thus
our results are not biased towards validating our first claim.

Our results also support the second and third claims. Note
that these claims are about expressiveness as opposed to us-
ability. In other words they are claims about whether or not
it is possible to express the desired breakpoints using BPL
and CBD ’s UI respectively, not about whether the particu-
lar UI design makes this easy or intuitive for a non-author of
the tool. We acknowledge that the latter will require further
research.

4. Related Work
CBD has as a general goal the improvement of debugging

efficiency. There are many other complementary approaches
toward this goal (e.g. work on program visualisation [14]).
However, most of this work is not directly related to CBD . In
this section we discuss work directly related to Control-flow
Breakpoint Debugger, and compare approaches to common
problems explored by the related work.

The related work can be grouped into four general
categories—dynamic breakpoint specification, trace-based
aspects, aspect-oriented debugging, and automated debug-
ging.

4.1 Dynamic Breakpoint Specification
The Control-flow Breakpoint Debugger provides a method

for specifying dynamic breakpoints in program execution
based on program execution flow. Work by Bruegge and Hi-
bbard [8] in generalised path expression debuggers, as well
as work by Ducassé [10] in trace queries present debugging
tools which are based on pointcut languages2 that are more
expressive than ours (both languages can be used to spec-
ify breakpoints equivalent in functionality to control-flow
breakpoints).

Bruegge and Hibbard extend basic path expressions, first
used as a synchronisation mechanism for concurrent pro-
cesses, to path rules used in a debugger. A path rule consists
of an event recognition part (a generalised path expression)
and an action part (a path action). The action part is taken
whenever the event recognition part matches the program
execution. Path rules are therefore a more powerful gener-
alisation of traditional line breakpoints that can allow for
more precise specification of both points in the program ex-
ecution, and the action to be taken at the specified points.

Ducassé describes a model of program execution consist-
ing of a sequence of events. A trace is then a particular
sequence of such events, and trace queries can be written to
match specific traces. These trace queries can then be used
to precisely specify breakpoints in program execution.

Unlike CBD , these tools focus on pointcut language ex-
pressiveness and do not provide a GUI for specifying break-
point conditions (thus requiring manual entry of expres-
sions). In addition, the expressiveness of control-flow point-
cuts was found to be largely sufficient for the particular de-
bugging scenarios selected for our case studies, suggesting
that further studies may be required to determine the prac-
tical utility of more expressive pointcuts for debugging.

4.2 Trace-Based Aspects
Our work is also related to work on expressive pointcut

languages [20, 9, 6, 2]. This work investigates pointcut
languages that offer increased expressiveness for dynamic
pointcuts beyond AspectJ’s cflow. Our before and after

pointcuts are simple versions of these types of pointcuts.
The focus of the above mentioned work is on the appli-

cation of trace-based pointcuts to general purpose aspect-
oriented programming. Our work however specifically fo-
cusses on debugging. Our empirical results indicate that
more experimentation may be warranted to determine the
practical value of expressiveness beyond the simple cflow

pointcut for the narrower purpose of specifying dynamic
breakpoints.

2The languages are not referred to as pointcut languages
since the terminology was not yet coined.

104

4.3 Aspect-Oriented Debugging
Usui and Chiba recognise that code written for debug-

ging (such as logging code or trace messages) often involves
crosscutting concerns, and that debugging code is best en-
capsulated in aspects [19]. Bugdel is an aspect-oriented de-
bugging system designed to work with the AspectJ aspect-
oriented language. Like Control-flow Breakpoint Debugger,
it is implemented as a plugin for the Eclipse integrated de-
velopment environment and provides a graphical user inter-
face designed to avoid manual entry of pointcut expressions.
Since both systems are designed for debugging, they both al-
low lines of code to be selected as joinpoints and both allow
advice to suspend program execution.

However, Bugdel and Control-flow Breakpoint Debugger
are complementary. Bugdel’s main focus is in supporting
the addition, modification, and removal of debugging code.
As such, it gives the programmer flexibility in specifying
advice bodies (e.g. the programmer can enter printing code
to trace values), and even allows advice bodies to access
local variables, private fields, and private methods around
joinpoints. On the other hand, Bugdel is intentionally more
limited in pointcut expressiveness than CBD , and does not
support dynamic pointcuts.

4.4 Automated Debugging
Agrawal, Demillo, and Spafford [1], describe debugging as

an iterative process that consists of:

1. Finding statements that had an effect on incorrect out-
put;

2. Selecting one of the statements and setting a break-
point at the statement;

3. Re-executing program to reconstruct program state at
that point.

One of the goals of the Control-Flow Breakpoint Debugger
is to make this process faster and easier by providing an easy
and intuitive method for specifying a more precise point in
execution to execute up to (reducing time and effort spent
manually skipping over undesired breaks in execution dur-
ing Step 3). There are various other approaches that also
aim to streamline this debugging process. Many debuggers
such as [1], [17], and [13] automate Step 1 (in some cases,
they can even find statements that can potentially lead to
incorrect output). Backtracking and reverse program execu-
tion are debugging techniques that supplant Step 3 (and in
some cases Step 2 as well) with steps that are intended to be
faster (e.g. [1], [12], [7], and [16]). All approaches mentioned
above address the same problem of streamlining the itera-
tive debugging process, but do so by focusing on different
steps of the process. CBD uniquely focuses on streamlining
Step 3 without replacing or eliminating it. We believe that
our approach is easier to implement in an existing infras-
tructure and easier to adopt by developers, because it is a
straightforward extension of the way current tools are built
and how the user works with them.

5. Conclusion
In this paper, we presented Control-flow Breakpoint De-

bugger and made the following three claims:

1. Situations in which the additional precision of some
kind of dynamic breakpoint condition could be useful
occur in practice.

2. Control-flow breakpoints are adequate in the majority
of these situations.

3. The purely “point-and-click” GUI of CBD supports
specifying control-flow breakpoints for a majority of
practical debugging scenarios.

We described how our approach to designing Control-flow
Breakpoint Debugger involves two parts—one part consist-
ing of BPL, a pointcut language for specifying control-flow
breakpoints, and the other part consisting of a graphical user
interface intended to allow for specification of control-flow
breakpoints without manual entry of pointcut expressions.

Finally, we conducted 20 case studies using an implemen-
tation of Control-flow Breakpoint Debugger, and obtained
empirical results supporting all three claims.

6. Future Work
Possible future work may involve investigation into the

usability of CBD , including formal user studies. Such inves-
tigation would examine aspects of the CBD GUI not covered
in this paper. Specific areas to be investigated could include
ease-of-use of the user interface for developers other than
the authors, techniques for conveying pointcut information
through the GUI without exposing BPL expressions to the
user, and how different GUI designs affect the usefulness of
different control-flow conditions.

Future work may also involve investigation into more ad-
vanced heuristics for suggesting pointcuts to the user. A
possible research direction in this area is the incorporation
of additional information into the suggestion heuristics and
the use of machine learning algorithms. For example, in-
formation from execution history as well as history of user-
interactions with the UI could be used as input to machine
learning algorithms to help suggest likely pointcut expres-
sions.

7. References
[1] Hiralal Agrawal, Richard A. DeMillo, and Eugene H.

Spafford. Debugging with dynamic slicing and
backtracking. Software - Practice and Experience,
23(6):589–616, 1993.

[2] C. Allan, P. Augustinov, A. Christensen, L. Hendren,
S. Kuzins, O. Lhotak, O. de Moor, D. Sereni,
G. Sittampalam, and J. Tibble. Adding trace
matching with free variables to aspectj, 2005.

[3] ArgoUML web page. http://argouml.tigris.org.

[4] AspectJ web page. http://www.aspectj.org.

[5] Battleship Wars web page.
http://members.shaw.ca/util1/.

[6] Christoph Bockisch, Mira Mezini, and Klaus
Ostermann. Quantifying over dynamic properties of
program execution. In Robert E. Filman, Michael
Haupt, and Robert Hirschfeld, editors, Dynamic
Aspects Workshop, pages 71–75, March 2005.

[7] Bob Boothe. Efficient algorithms for bidirectional
debugging. In Proceedings of the ACM SIGPLAN ’00
Conference on Programming Language Design and

105

Implementation, pages 299–310, Vancouver, British
Columbia, June 18–21, 2000.

[8] B. Bruegge and P. Hibbard. Generalized path
expressions: A high level debugging mechanism. In
M. S. Johnson, editor, Proceedings of the ACM
Sigsoft/Sigplan Software Engineering Symposium on
High-Level Debugging, pages 34–44, Pacific Grove,
CA, August 1983. Association for Computing
Machinery, Association for Computing Machinery.

[9] Rémi Douence, Pascal Fradet, and Mario Südholt.
Trace-based aspects. In Robert E. Filman, Tzilla
Elrad, Siobhán Clarke, and Mehmet Akşit, editors,
Aspect-Oriented Software Development, pages
201–217. Addison-Wesley, Boston, 2005.

[10] Mireille Ducassé. Coca: An automated debugger for
C. In Proceedings of the 1999 International Conference
on Software Engineering (ICSE’99), pages 504–515,
New York, May 1999. Association for Computing
Machinery.

[11] Eclipse web page. http://www.eclipse.org.

[12] Stuart I. Feldman and Channing B. Brown. Igor: A
system for program debugging via reversible
execution. In Workshop on Parallel and Distributed
Debugging, pages 112–123, 1988.

[13] Simon Goldsmith, Robert O’Callahan, and Alex
Aiken. Relational queries over program traces. ACM
SIGPLAN Notices, 40(10):385–402, October 2005.

[14] Sadahiro Isoda, Takao Shimomura, and Yuji Ono.
VIPS: A visual debugger. IEEE Software, 4(3):8–19,
1987.

[15] JHotDraw web page. http://www.jhotdraw.org.

[16] Bill Lewis. Debugging backwards in time. In
Proceedings of the Fifth International Workshop on
Automated Debugging (AADEBUG 2003), October
2003.

[17] Michael Martin, Benjamin Livshits, and Monica S.
Lam. Finding application errors and security flaws
using pql: a program query language.

[18] Spring Application Framework web page.
http://www.springframework.org.

[19] Yoshiyuki Usui and Shigeru Chiba. Bugdel: An
aspect-oriented debugging system. Proceedings of 12th
Asia-Pacific Software Engineering Conference
(APSEC 2005), 0:790–795, 2005.

[20] Robert J. Walker and Kevin Viggers. Communication
history patterns: Direct implementation of protocol
specifications. Technical Report 2004-736-01,
University of Calgary, February 2004.

106

