
Coping with an Open Bug Repository

John Anvik, Lyndon Hiew and Gail C. Murphy
Department of Computer Science

University of British Columbia

{janvik, lyndonh, murphy}@cs.ubc.ca

ABSTRACT
Most open source software development projects include an
open bug repository—one to which users of the software
can gain full access—that is used to report and track prob-
lems with, and potential enhancements to, the software sys-
tem. There are several potential advantages to the use of
an open bug repository: more problems with the system
might be identified because of the relative ease of reporting
bugs, more problems might be fixed because more develop-
ers might engage in problem solving, and developers and
users can engage in focused conversations about the bugs,
allowing users input into the direction of the system. How-
ever, there are also some potential disadvantages such as the
possibility that developers must process irrelevant bugs that
reduce their productivity. Despite the rise in use of open bug
repositories, there is little data about what is stored inside
these repositories and how they are used. In this paper, we
provide an initial characterization of two open bug repos-
itories from the Eclipse and Firefox projects, describe the
duplicate bug and bug triage problems that arise with these
open bug repositories, and discuss how we are applying ma-
chine learning technology to help automate these processes.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

General Terms
Management

Keywords
Bugzilla, duplicate detection, triage, machine learning

1. INTRODUCTION

“Given enough eyeballs, all bugs are shallow.” I
dub this: “Linus’ Law”. – Eric Raymond [7]

© ACM, (2006). This is the author’s version of the work. It
is posted here by permission of ACM for your personal use. Not
for redistribution. The definitive version was published in Proceed-
ings of the 2005 OOPSLA Workshop on Eclipse technology eXchange
http://doi.acm.org/10.1145/1117696.1117704
eTx Workshop at OOPSLA’06,October 16–17, 2005, San Diego, CA, USA.
Copyright 2005 ACM 1-59593-085-X/05/0005 ...$5.00.

Proponents of open source software development believe
that allowing the users of the software to easily report, and
sometimes help fix, bugs improves the quality of the software
produced [6, 7]. To enable these contributions by users, most
open source projects provide an open bug repository (e.g.,
Bugzilla1). These repositories typically provide a means of
categorizing, describing and tracking both problems with,
and potential enhancements to, the software system. They
provide a means for the developers and users to engage in
focused, archived conversations about the system.

Although open source software developers interact with
the bug repository often, there is little data available char-
acterizing their interactions (Section 2). In this paper, we
present data to fill this gap, providing a characterization
of the data in and the use of parts of the bug reposito-
ries for two open source projects (Section 4): Eclipse (V3.0)
and Firefox (V1.0). This data confirms two problems that
arise with open bug repositories that open source develop-
ers have communicated to us previously (Section 5): the
difficulty of detecting which bug reports are duplicates of
those already in the repository (the duplicate bug problem),
and the difficulty of assigning new bug reports to the ap-
propriate developer (the bug triage problem [8]). Currently,
the approaches taken to these problems are human-oriented;
humans must read the bugs and decide upon whether they
are duplicates, and to whom they should be assigned. We
believe these processes can, at least in part, be automated
by using the historical information about the bug processes
stored in the bug repository. We have been investigating
the use of machine learning technology to this purpose and
report on some of our initial results (Section 6).

The data and ideas presented in this paper provide a basis
for considering the kind of support that should be integrated
into a development environment to support better bug re-
porting and tracking.

2. RELATED WORK
Information stored in a bug repository has been used by

a number of researchers to investigate questions about the
processes used in open source development. Mockus, Field-
ing and Herbsleb use bug information to gauge the various
roles people played in the Apache and Mozilla open source
projects [6]. Crowston and Howison use bug repository in-
formation to analyze the social structure of a number of
open source projects [3]. Other projects have used informa-
tion in the bug repository to help automate bug assignment

1www.bugzilla.org as verified 12/08/05

[1][2][4]. In comparison, this paper focuses solely on charac-
terizing what information is in a bug repository and how it
is used.

Sandusky and colleagues also focus solely on the informa-
tion in the bug repository. The goal of their analysis was
to identify bug report networks, which are groupings of bug
reports due to duplication, dependency or reference relation-
ships described in the bug reports as a means of improving
how problems are managed [10]. We too are addressing the
management of bugs but we are using different analyses and
techniques.

3. ANATOMY OF A BUG REPORT
Both of the projects we consider in this paper use Bugzilla

as their open bug repository. A bug report in Bugzilla has
several parts: pre-defined fields, free-form text, attachments,
and dependencies.

The pre-defined fields provide a variety of categorical data
about the bug report. Some values, such as the report iden-
tification number and reporter, are fixed when the report is
created. Other values, such as the product, component, op-
erating system, version, priority, and severity, are selected
by the reporter when the report is filed, but may also be
changed over the lifetime of the report. Other fields rou-
tinely change over time, such as the person to whom the
report is assigned, the current status of the report, and if
resolved, its resolution state. There is also a list of the
emails of people who have asked to be kept up to date on
the activity of the bug.

A Bugzilla bug report has three free-form parts: a one-
line summary of the bug, a full description of the bug, and
additional comments. The one-line summary becomes the
title of the report. The full description contains an elabo-
rated description of the effects of the bug and the necessary
information for a developer to reproduce the bug. The addi-
tional comments contain any comments made by the public
and developers such as a discussion of possible fixes, or when
another bug report is marked as a duplicate of this report.

Reporters and developers may provide attachments to re-
ports. Attachments provide additional information about
the bug, such as a screenshot of the erroneous behaviour.

Bugzilla also tracks two other pieces of information. First,
it tracks which bugs block the resolution of other bugs. Sec-
ond, it tracks activity performed on each bug, forming a log
that provides a history of how the report has changed over
time, such as when the report has been reassigned, or when
its priority has been changed.

4. HOW ARE BUG REPORTS USED?
To investigate how open bug repositories are used, we an-

alyzed the use of the repositories for the Eclipse (V3.0) and
Firefox (V1.0) projects. These versions were chosen as they
represent relatively mature offerings of each of these sys-
tems.

The Eclipse dataset totaled 18,165 reports created in the
time period of October 2001 to August 2005. The Fire-
fox dataset contained 2,013 reports created from May 2003
to August 2005. Table 1 shows the dataset broken down
by the year in which the reports were created. For both
projects there are a few bugs that were carried over to the
project from previous releases. As Eclipse V3.0 was released
in June 2004, with its first milestone in June 2003, the bulk

Table 1: Bug Reports by Year
2001 2002 2003 2004 2005

Eclipse 2 13 3,912 13,130 1,108
Firefox - - 7 1,194 812

of the reports were created in this time frame. For Firefox,
V1.0 was released at the beginning of November 2004, and
likewise the bulk of reports are from that time period.

4.1 What Kind of Reports Are Stored?
To determine the kinds of bug reports in the repositories,

we categorized the reports by their status.
When a bug report is submitted its status is set to either

NEW or UNCONFIRMED, depending on the conventions
of the project. Once a developer has been either assigned to
or accepted responsibility for the report, the status is set to
ASSIGNED.

When a bug report is closed its status is set to RESOLVED.
It may further be marked as being verified by a quality as-
surance group (VERIFIED) or closed for good (CLOSED).
A report can be resolved in a number of ways and Bugzilla
bug reports indicate this with a resolution status. If the
resolution resulted in a change to the code base, the bug is
resolved as FIXED. When a developer determines that the
report is a duplicate of an existing report then it is marked
as DUPLICATE. If the developer was unable to reproduce
the bug it is indicated by setting the resolution status to
WORKSFORME. If the report describes a problem that will
not be fixed, is not an actual bug, or is tracked in another
repository, the report is marked as WONTFIX, INVALID,
or MOVED respectively. A formerly resolved report may
be reopened at a later date, and will have its status set to
REOPENED to indicate this.2

Figure 1 shows the proportion of bug reports with each
status type for the two projects. The reports with a status
of UNCONFIRMED, NEW, ASSIGNED, or REOPENED
have been collected under the heading of OPEN. Interest-
ingly, the proportion of OPEN and FIXED bugs, bugs that
could lead to actual changes to the system, for Eclipse is
only 58% and for Firefox is 44%. Figure 1 also shows that
the bug repository is used to track a number other items.

4.2 Who is Reporting and at What Rate?
To understand how many reports must be processed by

developers, we considered how many new reports are filed
daily.

Table 2 shows how often new reports were submitted in
the three months prior-to and after the release of the two
projects,3 and how often new reports have been submitted
since the release of each project. As one would expect, the
average number of bugs submitted daily increased around
the release of a project.

Submitting reports to an open bug repository requires the
reporter to establish an account. Consequently, it requires
some motivation on the part of the reporter in order to re-

2The complete bug report life-cycle supported by Bugzilla
is found at http://www.bugzilla.org/docs/tip/html/
lifecycle.html (as verfied 29/09/05)
3Eclipse 3.0 was released June 25, 2004 and Firefox 1.0 was
released November 9, 2004

FIXED
40%

DUPLICATE
20%

INVALID
6%

WORKSFORME
8%

WONTFIX
5%

LATER/REMIND
3%

OPEN
18%

(a) Types of bugs for Eclipse.

FIXED
11%

DUPLICATE
30%

INVALID
11%

WORKSFORME
13%

WONTFIX
2%

LATER/REMIND
0%

OPEN
33%

(b) Types of bugs for Firefox.

Figure 1: Proportion of bug types for Eclipse and Firefox.

Table 2: Number of Bugs Submitted Daily.
Around Release After Release
Eclipse Firefox Eclipse Firefox

Min 1 1 1 1
Average 48 8 13 5

Max 192 37 124 37

Table 3: Top five domains of bug report reporters.
Eclipse Firefox

Suffix % Suffix %

ca.ibm.com 33 gmail.com 16
us.ibm.com 11 yahoo.com 9
ch.ibm.com 8 hotmail.com 5
yahoo.com 2 mozilla.org 3
gmail.com 2 iwaruna.com 2
Unique: 3268 Unique: 1500

port bugs. For Bugzilla, the account name is the email ad-
dress of the account holder.

To understand who is submitting reports, we analyzed the
email addresses of the reporters. Table 3 shows the top five
domains from which bug reports were filed. Although we
did not determine how many of the addresses refer to the
same person, such cases are not likely to have a significant
effect given the number of unique addresses.

4.3 How Quickly Are Reports Resolved?
Figure 2 shows how quickly bugs get resolved for each

of the projects. The figure show a couple of interesting
points about each project. First, for Firefox, a great num-
ber of DUPLICATE/WORKSFORME reports are identi-
fied in less than a day. Second, for Eclipse, roughly the
same number of reports are resolved as FIXED or DUPLI-
CATE/WORKSFORME during the first day.

4.4 Who Resolves Reports?
Determining the developer who resolved a report is non-

trivial. One would think that the ‘assigned-to’ field men-
tioned in Section 4 would provide the information; however
we have found that this is rarely the case. For example,
the value of the assigned field may not refer to a specific
developer. For both the Eclipse and Firefox repositories,
reports are first assigned to a default email address before
they are assigned to an actual developer. For trivial fixes the
assigned-to field is unlikely to be changed. Alternatively, a
project may have a process whereby once the developer has
fixed the bug, they assign it to a quality assurance person
to verify the fix.

To determine the developer who resolved a report, we ex-
amined the bug activity log and determined who resolved the
report through the use of heuristics. Examples of heuristics
that we used are:

1. If a report is resolved as FIXED, it was fixed by who-
ever submitted the last patch that was approved. (Fire-
fox)

2. If a report is resolved as FIXED, it was fixed by who-
ever marked the report as resolved. (Eclipse)

3. If a report is resolved as a DUPLICATE, it was re-
solved by whoever resolved the report of which this is
a duplicate of. (Eclipse and Firefox)

4. If a report is resolved as WORKSFORME, it was marked
as such by the person doing the bug assignment, so it
is unclear who the developer would have been. The
the report is labeled as unclassifiable. (Firefox)

Similar to the analysis we performed for who submits bugs
(Section 4.2), we determine the top five domains of develop-
ers who resolved bugs. Table 4 shows these five domains. As
one would expect, the IBM and Eclipse domains are the top
domains of developers resolving bugs for the Eclipse project.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

Less than a day 1 week 1 month 3 months 6 months More than 6 months

P
ro

po
rt

io
n

of
 R

es
ol

ve
d

B
ug

s

FIXED DUPLICATE / WORKSFORME INVALID / WONTFIX

(a) The age of resolved bugs for Eclipse.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

Less than a day 1 week 1 month 3 months 6 months More than 6 months

P
ro

po
rt

io
n

of
 R

es
ol

ve
d

B
ug

s

FIXED DUPLICATE / WORKSFORME INVALID / WONTFIX

(b) The age of resolved bugs for Firefox.

Figure 2: Age of resolved bugs for Eclipse and Firefox.

Table 4: Top five domains of bug report fixers
Eclipse Firefox

Suffix % Suffix %

ca.ibm.com 69 gmail.com 6
us.ibm.com 7 mozilla.org 2
ch.ibm.com 6 web.de 2
eclipse.org 5 pobox.com 2
magma.ca 4 steelgryphon.com 2
Unique: 234 Unique: 192

Notice how the top three domains for the Eclipse project are
the same as those for reporters. In contrast, the domains for
reporters and resolvers for Firefox are more varied.

5. CHALLENGES RAISED BY AN OPEN
BUG REPOSITORY

The data from Section 4 illustrates a number of challenges
faced by developers of projects having a bug repository that
is accessible to the public. This data elucidates two chal-
lenges.

1. Many reports are added daily to bug repositories. As
shown in Tables ?? and ??, Firefox receives an average
of 8 bugs a day around release time and peaks with 37
in a day. The Eclipse project receives a large number of
reports, averaging 48 bugs each day with a maximum
of 192, around the time of a release.

2. In many cases, the time and effort used examining a
report is wasted. If we consider the reports in Figure 1
that are labeled OPEN or FIXED to make a contri-
bution to the overall quality of the product, then for
Eclipse 39% of the reports do not contribute to im-
proving the product. For Firefox, 56% of the reports
do not help the project. If one further imagines that
it takes a developer an average of two minutes to read
a bug report, then nearly 200 person-hours were spent
on the Eclipse project handling unproductive reports.

One way to reduce the time and effort spent on process-
ing reports is to focus the developers’ time on beneficial
reports. As demonstrated by Figure 1, most reports that
are submitted are either a duplicate of an existing report
(DUPLICATE), do not describe an actual bug (INVALID),
cannot be reproduced (WORKSFORME), or describes some
behaviour that the developers have decided not to change
(WONTFIX). Of these four categories, duplicates account
for the largest percentage in both the Eclipse and Firefox
projects. To identify a duplicate, the bug assigner must
possess a good knowledge of past bugs, or search through
past reports, to determine if a previous report exists. The
need for duplicate detection was expressed by a Mozilla de-
veloper commenting that, “It’s essential that duplicates be
marked without developers having to look at them, there
are just so many.”4

Each submitted report requires someone to examine and
determine if it details a problem that needs further investiga-
tion. Bug triage is the task of processing a bug report, which
includes deciding who should be assigned the responsibility
of investigating it further, and perhaps fixing it. In com-
munication with a Mozilla triager, he said that “Everyday,
almost 300 bugs appear that need triaging. This is far too
much for only the Mozilla programmers to handle.”5 The
Eclipse project previously has a single person doing triage,
but due to the increasing amount of time that it took, the
component teams were assigned the responsibility.6 In ad-
dition, the task of assigning a bug to a developer becomes
more burdensome, considering that in Table 4, a triager has
many possibilities with 234 developers fixing Eclipse bugs
and 192 developers fixing Firefox bugs (Table 4).

6. IMPROVING BUG MANAGEMENT
An avenue for addressing these challenges is to explore

automatic techniques for performing triage and duplicate
recognition. Coping with these challenges is similar to deal-

4Personal communication, March 1, 2005
5Personal communication, March 5, 2005
6Personal communication, Feb 23, 2005

ing with email. For instance, email is often categorized ac-
cording to whether or not it is spam, who it is from, and
the ongoing project to which it relates. For bug reposito-
ries, developers would like to be able to filter out the pro-
ductive reports from those that are not helpful. Cubranic
and Murphy performed initial investigations into the use of
a machine learning approach to aid bug management [4].
We are continuing this investigation and are finding that
machine learning can provide significant assistance in per-
forming triage and duplicate detection.

Human bug triagers use a lot of contextual knowledge to
decide to whom a new report is to be assigned. As was pre-
viously shown, the human bug triager must, particularly on
some days, deal with a large number of reports. By looking
at the history of who resolved previous reports, one can use
machine-learning techniques to automatically predict who
should be assigned a new report. We have found that by
training a Support Vector Machine [5] classifier with eight
months of data from the Eclipse project, the person who
actually resolved a report can be correctly suggested 57% of
the time.

Our approach to duplicate detection uses a statistical model
built from the knowledge of past reports using machine-
learning techniques. Since bugs are continually added to
the repository, an incremental approach is employed to up-
date the statistical model after seeing each new bug. This
allows the model to detect duplicates of new bug reports and
adapt to the changing composition of bugs in the repository.
By using cosine similarity [9], the model classifies new bug
reports as either being unique or duplicate. If a bug is clas-
sified as a duplicate, the three most similar existing bugs
are retrieved. Using the bugs in Firefox 1.0, unique bugs
are correctly identified 90% of the time and duplicate bugs
are correctly identified 28% of the time, within the top three
suggestions.

Automated bug triage and duplicate detection can be in-
corporated into the development environment to assist in
bug management. These techniques can be implemented on
the client side in an IDE or in the bug repository access tool
(often web-based) itself. When a reporter creates a new bug
report, automated duplicate detection can suggest similar
existing bugs, which the reporter can then use to determine
if their bug has been already reported. For each bug that
has passed duplicate detection, automatic triage can suggest
possible assignees to a triager, to assist in the assignment of
bugs.

7. SUMMARY
Open bug repositories pose some new challenges for soft-

ware development teams. We have analyzed data from the
Eclipse and Firefox repositories to demonstrate two chal-
lenges: developers must deal with large numbers of reports,
and many of these reports are not productive reports, rather
the reports end up being marked as WORKSFORME, IN-
VALID or DUPLICATE. To aid developers in better man-
aging an open bug repository we have been investigating the
use of machine learning approaches to automatically suggest
when a new bug may be a duplicate of reports already in
the repository, and to automatically suggest to whom a bug
should be assigned.

8. ACKNOWLEDGMENTS

This research was funded in part by an IBM Eclipse In-
novation Grant.

9. REFERENCES
[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix

this bug? Unpublished. Available from the authors.

[2] G. Canfora and L. Cerulo. How software repositories
can help in resolving a new change request. In
Workshop on Empirical Studies in Reverse
Engineering, September 2005.

[3] K. Crowston and J. Howison. The social structure of
free and open source software development. First
Monday, 10, 2005.

[4] D. Cubranic and G. C. Murphy. Automatic bug triage
using text classification. In Proc. of Software
Engineering and Knowledge Engineering, pages 92–97,
2004.

[5] S. R. Gunn. Support Vector Machines for
classification and regression. Technical report,
University of Southampton, Faculty of Engineering,
Science and Mathematics; School of Electronics and
Computer Science, May 1998.

[6] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of open source software development:
Apache and mozilla. ACM Trans. Softw. Eng.
Methodol., 11(3):309–346, 2002.

[7] E. S. Raymond. The cathedral and the bazaar. First
Monday, 3(3), 1998.

[8] C. Reis, R. Pontin, and M. Fortes. An overview of the
software engineering process and tools in the mozilla
project. In Proc. of Open Source Soft. Dev. Workshop,
Newcastle upon Tyne, pages 155–175, 2002.

[9] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, 1983.

[10] R. Sandusky, L. Gasser, and G. Ripoche. Bug report
networks: Varieties, strategies, and impacts in a f/oss
development community. Proc. of 1st Int’l Workshop
on Mining Software Repositories, pages 80–84, 2004.

