
Automatic bug triage using text categorization
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Abstract

Bug triage, deciding what to do with an incoming bug re-
port, is taking up increasing amount of developer resources
in large open-source projects. In this paper, we propose to
apply machine learning techniques to assist in bug triage
by using text categorization to predict the developer that
should work on the bug based on the bug’s description. We
demonstrate our approach on a collection of 15,859 bug
reports from a large open-source project. Our evaluation
shows that our prototype, using supervised Bayesian learn-
ing, can correctly predict 30% of the report assignments to
developers.

1 Introduction

Large software development projects require a bug track-
ing system to manage bug reports and developers who work
on fixing them. A ubiquitous example of such a system
is Bugzilla,1 an open-source system first introduced in the
development of the Mozilla web browser, but now used in
numerous other projects.

Bug tracking systems are particularly important in open-
source software development, where the team members can
be dispersed around the world. In such widely-distributed
projects, the developers and other project contributors may
rarely, if ever, see each other. Consequently, the bug track-
ing system is used not only to keep track track of problem
reports and feature requests, but also to coordinate work
among the developers.2

Most bug-tracking systems allow posting of additional
comments in bug reports. With communication channels

1http://www.mozilla.org/projects/bugzilla.
2The bug tracking system therefore serves to track more than just bugs,

and it may be more appropriate to call it “issue tracking system”. We use
the terms “bug tracking system” and “bug report” for historical reasons,
but in their wider, all-inclusive, sense.

between open source team members limited by their geo-
graphical and time separation, this feature has evolved to
fill a niche for focused, issue-specific discussion. The com-
ments on the bug report serve as forum for discussion of
implementation details or feature design alternatives. De-
velopers who can help in design deliberations because of
their expertise and insight, and stakeholders whose code
will be impacted by the proposed modifications, or who will
have to implement and integrate them, are quickly brought
into the discussion by “CC-ing” them on the bug report.3

Other members of the project with interest in the issue, of-
ten users who urgently need the feature or the bug fix, also
join in. More contentious issues—usually requests for new
features—can take months to resolve and can involve over
a hundred comments from dozens of people.

In many ways, the bug tracking system is the public face
that an open source development team presents to its user
community. Therefore, it is important that new bug reports
be dealt with as quickly as possible. Few things will turn
the users away—and kill the project’s community—faster
than the perception that the developers are not responsive
and ignore the users’ bug reports and feature requests.

However, successful large open source projects are faced
with the challenge of managing the incoming deluge of
new reports.4 Effectively deciding what to do with a new
report—bug triagein Mozilla parlance—can be a problem:
it takes time to figure out whether the report is a real bug
or a feature worth considering, to check that it is not a du-
plicate of an existing report, and to decide which developer
should work on it. Past a certain rate of new bug reports,
the time commitment for triage becomes too much of a bur-
den for an experienced developer, whose attention is more
valuable elsewhere. Projects such as Mozilla and Eclipse5

3All developers on the CC list for a given bug report are automatically
emailed notifications of changes to the report’s status and new comments.

4The Mozilla project has received an average of 168 new bug reports
per day in the week of 9 February 2004, for example.

5An extensible integrated development environment developed by IBM

1



have therefore been forced to introduce team members who
are dedicated to bug triage [2]. This solution is not ideal,
however, because it requires an additional step before the
developer can start working on a bug. It also introduces po-
tential errors, and more delays, if the triager makes a wrong
decision to which developer to assign the report.

In this paper we present our investigation of using ma-
chine learning, and in particular text categorization, to “cut
out the triageman” and automatically assign bugs to devel-
opers based on the description of the bug as entered by the
bug’s submitter. The method would require no changes to
the way bugs are currently submitted to Bugzilla, or to the
way developers handle them once the bugs are assigned.
The benefit to software development teams would be to
free up developer resources currently devoted to bug triage,
while assigning each bug report to the developer with ap-
propriate expertise to deal with the bug.

We begin this paper with a brief overview of related
work, followed by an introduction to the classification
framework used and the theory behind it. We then present
an experiment in which we applied these techniques to a
selection of bug reports from the Eclipse project and tested
their accuracy in assigning reports to developers. We con-
clude the paper with a discussion of results and possible
avenues for future work.

2 Related work

We are aware of no other work on computer-assisted bug
report triage, although there are some key insights on the
interrelationship between bug reports, source code, and the
developers that we share with the following two projects:

Fischer et al. mapped program features to the source
code where they were implemented, and then tracked the
code changes against problem reports involving those fea-
tures [4]. They then visualize the established relationships
to search for feature overlap and dependencies. Such visu-
alization of the evolution of features across time can then be
used to find locations in the code where there may be ero-
sion in the software architecture of the system, indicating
future problem spots for software maintentance.

Bowman and Holt have analyzed which developers
worked on each file in a software system to determine its
ownership architecture[1]. The ownership architecture
complements other types of architectural documentation. It
identifies experts for system components, and can be used to
infer the project’s internal organization into sub-teams. The
ownership archtecture can also show non-functional depen-
dencies: in their example device drivers for a given archi-
tecture could be easily seen, even if they otherwise shared
no code and resided in separate portions of the filesystem

as open source software, http://www.eclipse.org.

hierarchy, because they were “owned” by the same small
group of developers.

Although our purpose is different, our approach bridges
Bowman and Holt’s idea that there is a correspondence
between a system’s components and individual developers
with that of Fischer et al. on the link between bug reports
and program features. We also note that all three projects
are for support ofmanagingsoftware development, even if
they mine the source code for the relevant information.

Machine learning and data mining techniques have al-
ready been applied to source code and program fail-
ure reports, although so far only to support the code-
writing/debugging component of the software development
effort. For instance, Zimmermann et al. mined source
version histories to determine association rules which can
then be used to predict files (or smaller program elements,
such as functions and variables) that usually change to-
gether [11]. Such predictions can help prevent errors due
to incomplete changes or show program couplings that
wouldn’t be visible to methods such as program dependency
analysis.

Also, Podgurski et al. use machine learning to cluster
software failure reports to automatically determine which
ones are likely to be manifestations of the same error [9].
The failure reports in this case are automatically generated,
unlike the bug reports we deal with, and consist of stack
traces at the moment of program crashes.

3 Classification framework

We treat the problem of assigning developers to bug re-
ports as an instance of text classification, or “the problem of
assigning a text document into one or more topic categories
or classes” [6]. More specifically, it is amulti-class, single-
label classificationproblem: each developer corresponds to
a single class, and each document (that is, a bug report) is
assigned to only one class (that is, a developer working on
the project). Furthermore, it is asupervised learningprob-
lem, since we can view the correspondences of developers
with the bugs that they fixed in the past as the training data.

A variety of techniques for supervised learning have
been applied to text classification in recent years, for ex-
ample: regression models, k-nearest neighbour, Bayes be-
lief networks, decision trees, support vector machines, and
rule-learning algorithms. (See Yang [10] for an overview of
these approaches and a comparative evaluation of their per-
formance.) In this paper, we report on the use of Bayesian
learning approach for this project, because it is conceptually
elegant, is easily adapted to multi-class classification, and
performs well. The algorithm used, introduced by Kalt [5]
and further developed by Nigam et al. [8] is presented in
the following section, followed by the explanation of how
we applied it in the bug triage domain.
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3.1 Naive Bayes classifier for multinomial word-
document model

The following are the framework’s assumptions: the
data set is represented as a collection of documents,D =
{d1, . . . , d|D|}, and each document has a class labelc ∈
C = {c1, . . . , c|C|}. Documents inD are generated by a
mixture model and there is a one-to-one correspondence be-
tween mixture components and classes inC. Mixture com-
ponents, in turn, are parametrized onθ. Therefore,

P (di|θ) =
|C|∑
j=1

P (di|cj , θ)P (cj |θ) (1)

Furthermore, the documents are represented as “bags of
words”: each documentdi consists of wordswt drawn from
vocabularyV = {w1, . . . , w|V|}. Thenaive Bayesassump-
tion is that the words are independently and identically dis-
tributed (i.i.d.): the probability of each word is independent
of its context and position in the document. Thus, the doc-
uments are drawn from a multinomial distribution:

P (di|cj , θ) =
|V|∏
t=1

δNti
tj (2)

whereδtj = P (wt|cj , θ) andNti is the number of times
wordwt occurs in the documentdi. While the naive Bayes
assumption is clearly false in many real-world situations,
classifiers based on it perform surprisingly well, and it turns
out that it is not a mathematically unreasonable assumption
to make in classification tasks [3].

Using the Bayes rule, a previously unseen documentdi

can then be assigned labelcj which maximizes:

P (cj |di, θ) =
P (cj |θ)P (di|cj , θ)

P (di|θ)
(3)

∝ P (cj |θ)
|V|∏
t=1

δNti
tj (4)

The priors are estimated from the training data:

P (cj |θ) =
∑|D|

i=1 P (cj |di)
|D|

(5)

whereP (cj |di) = {0, 1} as given by the training set labels
(that is,P (cj |θ) equals the number of timescj occurred in
the test set divided by the size of the test set); and

P (wt|cj , θ) =
∑|D|

i=1 NtiP (cj |di)∑|V|
m=1

∑|D|
i=1 NtiP (cj |di)

(6)

(That is,P (wt|cj , θ) equals the number of times wordwt

occurs in classcj divided by the total number of all word

occurrences in that class.) In practice, a Laplace prior is
often used to avoid zero probabilities of words occurring
infrequently inV and was used here as well:

P (wt|cj , θ) =
1 +

∑|D|
i=1 NtiP (cj |di)

|V|+
∑|V|

m=1

∑|D|
i=1 NtiP (cj |di)

(7)

3.2 Bug triage as a Naive Bayes classifier

Our dataset D is a collection of bug reports
{d1, . . . , d|D|} entered into the bug tracking database.
When a new bug report is submitted, it is given a one-line
summary and a longer description. The bug reportdi thus
consists of a set of wordswt that appear in its summary and
description. The order of words does not matter, but we do
keep track of multiple occurrences of a word in a single
bug report,Nti.

The developers working on the project form our set of
classesC = {c1, . . . , c|C|}. Although in real world a bug
reportdi may be handled by a number of people, only one
of them,cj ultimately resolves it—implements a bug fix or
a requested feature, rejects a proposed enhancement, deter-
mines that the report is not really a bug, etc.—and therefore
we assign todi the class labelcj .

Once we have built our modelθ using the existing bug re-
ports as training data, bug triage of a new bug reportd|D|+1

simply follows from Equation 3: we assign it to the devel-
operc ∈ C for whomP (c|d|D|+1, θ) is maximized.

4 Experimental results

To test the approach, we applied it to a selection of bug
reports from the Eclipse project and tested its accuracy in
assigning reports to developers.

4.1 Data set

We selected all reports entered into Eclipse’s bug track-
ing system6 between January 1, 2002 and September 1,
2002. A total of 15,859 reports were selected. The sys-
tem records for each bug the id of the user7 who submitted
it (the submitter), a one-line summary accompanied with a
longer free-text description of the problem (which may in-
clude steps to reproduce it, or information from the error
logs, core dumps, and stack traces), and various attributes
such as its status (new, resolved, etc.), who it is assigned to,
and the list of users on the “CC” list who are automatically
notified of any changes to the report. The report can also

6Available online at https://bugs.eclipse.org
7“User” in this section denotes the user of the bug tracking system,

who may be a developer actively working on the project, and occasional
contributor, or simply a user of the software with interest in certain issues
or features

3



contain a list of free-text comments which can be made by
any user, and which include the author’s id and time of post-
ing. Finally, each report stores a timestamped history of all
the changes to its attributes, including the assigned-to.

To determine a document’s class (that is, the developer
to whom it should be assigned), a straightforward approach
would be to choose whoever was the report assigned to in
the bug tracking system. However, this obvious approach
is misleading for two reasons: first, in many cases this
assigned-to“user is actually an email alias for a whole sub-
team that deals with the module in question; second, just as
often, the developer who actually implements the fix for the
bug or requested feature—or who makes the decision to re-
move it from further consideration—is not the developer to
whom the bug was nominally assigned in the bug tracking
system.

Instead, we used our observations and experiences with
the bug tracking and development procedures in the Eclipse
project and devised the following heuristic to determine a
report’s class (developer who should handle it from the out-
set):

1. If the report wasresolvedby the assigned-to developer,
the report is labelled by his or her class regardless of
who the submitter was or what the report’sresolution
was (e.g.,fixed, duplicate, invalid, later, etc.). This is
clearly the case of a developer who was in charge of
the report and who has completed processing it.

2. If the report wasresolvedby someone other than the
assigned-to developer, but not by the person who sub-
mitted it, we label the report with the class of the de-
veloper who marked it resolved. The reasoning is that
whoever made the decision to resolve the report is the
person to whom it should have been assigned all along.

3. If the report wasresolvedasfixed, regardless of who
the resolver was, we assume that this is the developer
who implemented the fix and label the report with the
class of that developer, as this is probably the person
who had done the real work on the report. This rule
covers the frequent case where an Eclipse developer
files a report, which is then assigned to somebody else
or a sub-team alias by default, and then later imple-
ments the fix himself.

4. If the report wasresolvedas non-fixed (i.e., with reso-
lution duplicate, invalid, etc.) by the person who sub-
mitted it, and who was not also assigned to it, the re-
port is labelled with the class of the first person who
responded to the reporter. This handles the many cases
of a submitter throwing the report away after being in-
formed that it is a feature and not a bug, or after being
prompted by a developer for details of his or her setup
and discovering that the bug does not exist any more.

We choose the first responder to the report rather than
the assigned-to person for reasons outlined above.

5. If the report wasresolvedas non-fixed by the submit-
ter who was not the assigned-to developer, and nobody
responded, we assume that the report was submitted
in error—for example, not knowing the proper oper-
ation of Eclipse—and that the mistake was caught by
the submitter before anyone could react. These reports
are removed from the training set, as they cannot be
reliably labelled.

6. If the report was notresolved, we label it with the class
of the most recent assigned-to developer.

These heuristics are not perfect, and we have noticed three
or four examples where they are definitely not correct.
However, based on a non-exhaustive examination of its
results, they perform much better than always simply la-
belling a report with the class of the assigned-to developer.
The labelling heuristics are obviously tailored to the devel-
opment practices of the Eclipse project, and may need var-
ious amounts of modification before they could be applied
to a different project. Mozilla, for example, uses a strict
code review practice in which two senior developers need
to check off on a proposed implementation (usually a patch
that’s attached in the Bugzilla database), and so it is usu-
ally the reviewers who close the bug and not the developer
responsible for the implementation.

During the labelling, we threw away 189 reports as de-
scribed in step 4, for a total of 15,670 labelled documents
(reports) and 162 classes (developers). We then extracted
the summary and description of each report, tokenized all
alphabetic sequences of characters (lower-cased and disre-
garding words in the standard SMART system stoplist of 524
common words such as “the”, “a”, etc.), and used that as the
content of the document in classification. No stemming of
words was done, except where so noted in the results sec-
tion.

4.2 Methodology and measures

The data set was divided into a test set and a train set
by randomly selecting a percentage of the documents from
the data set for placing into the train set, with the remainder
going to the test set. The model was learned using the train
set, and then tested for label predictions of documents from
the test set. We used the Bow toolkit [7], and configured it
with the parameters as described above.

The classification accuracy was calculated as the per-
centage of documents for which the algorithm predicted
the correct label. The predictions of course exist for all
classes (that is, we calculate all theP (cj |di, θ), where∑

j P (cj |di, θ) = 1), but only the top prediction counts
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when determining accuracy. The results reported below are
the average over multiple runs, where each run used a new
randomly built training and test sets (three runs per data
point).

4.3 Results

In our experiments, we varied the size of the test set, the
size of the vocabulary, and the criterion used to truncate the
vocabulary. Figure 1 shows the classification accuracy as a
function of the train/test set split, when the full vocabulary
V of words found in bug reports is used.
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Figure 1. Classification accuracy without vo-
cabulary truncation.

As we can see, the algorithm corectly assigns just under
30% of the bugs, when 90% of the document corpus is used
as training and 10% as the test set. The accuracy slowly
declines to 27% as the test set’s size is increased to 50% of
the corpus.

Figure 1 also shows the results when the vocabulary was
created using stemming, which identifies most grammati-
cal variations of a word—such as “see,” “sees,” “seen,” for
example—and treats them as a single term.8 The results are
virtually unchanged, and any differences between the two
conditions are within about one standard deviation at each
data point.

Figure 2 shows the classification accuracy when the vo-
cabulary was truncated to eliminate words that do not occur
in at leastd documents, ford = {1, 2, 5, 10, 20}. The ac-
curacy is slightly lower than when the full vocabulary was
used ford = 1, and almost a third worse (just above 20%)
for d = 20. There is a slight downward trend as the size of
the test set increases, but not in all cases.

8The standard Porter stemming algorithm was used.
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Figure 2. Classification accuracy when words
occurring in fewer than d documents are re-
moved from the vocabulary.

Figure 3 also shows the classification accuracy of a trun-
cated vocabulary, but using a different truncating criterion.
In this case, we eliminated all words that occur fewer than
T times in the entire collection, forT = {5, 10, 20, 40, 80}.
Again, the classification accuracy is slightly lower forT =
5 than when the full vocabulary is used, and falls to just over
20% forT = 40 and to around 18% forT = 80. Interest-
ingly, for higher values ofT , the accuracy improves with
smaller training set, indicating some overfitting was occur-
ring otherwise.

5 Discussion and future work

Overall, the performance of the algorithm was lower than
expected, although the results are sufficiently promising to
warrant further investigation. For example, we expected
that truncating the vocabulary would have helped, by re-
ducing the danger of overfitting, but that was clearly not the
case, although smaller vocabulary speeds up the classifica-
tion.

Also, we would like to involve the developers from the
Eclipse project to evaluate the classification results based
on their own subjective experience. For example, in those
cases when a document is mis-classified, is the classifica-
tion still “reasonable”—such as to a colleague on the same
sub-team, who could handle the bug himself.

Our heuristics for deducing the developer-bug assign-
ment in the data set could be improved further. It is cur-
rently based on our own observations of the bug-handling
process, and could benefit from insight gained by directly
involving the project’s developers. Also, we build our set of
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Figure 3. Classification accuracy when words
occuring in the collection fewer than T times
are removed from the vocabulary.

possible labels automatically from user ids in the bug track-
ing system. We could limit this set only to those users that
we know are real developers on the team. This would elimi-
nate labels corresponding to people who were perhaps only
the bug submitters or interested bystanders, and who were
falsely determined to be the bug “owners” by our heuristic.

Another weakness and a potential avenue of improve-
ment is that in the process of creating the data set used in
training and testing of the classifier, we either force a bug
to a developer’s class, or throw it away. This is the conse-
quence of the naive Bayes classifier algorithm that we use,
which cannot deal with unlabelled documents in the corpus.
However, there are extensions to this algorithm that com-
bine it with Expectation Maximization (EM) methods to
achive very good results classifying a document corpus that
contained a high proportion of unlabelled documents [8].
An interesting variation would be to label the documents
with a range of probabilities, rather than just 1 or 0 we cur-
rently use, which would allow us to reflect our degree of
certainty in the classification during the learning phase.

6 Summary

In this paper, we described an application of super-
vised machine learning using a naive Bayes classifier to
automatically assign bug reports to developers. We eval-
uated our approach on bug reports from a large open-source
project, Eclipse.org, achieving 30% classification accuracy
with current prototype. We believe that the system could be
easily incorporated into current bug-handling procedures to
decrease the resources currently devoted to bug triage. New

bug reports would be automatically assigned to the devel-
oper predicted to be the most appropriate to the content.
Mispredictions could be handled in a light-weight fashion
by their assignee, “bouncing” them to a dedicated triager
for human inspection and classification. Clearly, even the
classification accuracy we can currently achieve, would sig-
nificantly lighten the load that the triagers face under the
present conditions.
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