
Use Case Level Pointcuts

Jonathan Sillito, Christopher Dutchyn,
Andrew David Eisenberg, and Kris De Volder

Department of Computer Science
University of British Columbia

Vancouver, BC, Canada
{sillito,cdutchyn,ade,kdvolder}@cs.ubc.ca

Abstract. Software developers create a variety of artifacts that model
the behaviour of applications at different levels of abstraction; e.g. use
cases, sequence diagrams, and source code. Aspect-oriented programming
languages, such as AspectJ, support the modularization of crosscutting
concerns at the source code level. However, crosscutting concerns also
arise in other behavioural models of software systems. We provide a new
aspect language, AspectU, which supports modularization of crosscut-
ting concerns in the use-case model. Further, we provide a prototype tool
that partially translates AspectU aspects into AspectJ aspects. To facil-
itate this translation we introduce a third aspect language, AspectSD,
which targets the sequence-diagram model. AspectU together with our
translation tool allows developers to express advice using use case level
concepts while still affecting the runtime behaviour of a system, yielding
a natural and intensional expression of some concerns.

1 Introduction

When limited to a hierarchical decomposition of a system as supported by object-
oriented languages, some concerns of interest cannot be cleanly modularized.
Instead, the implementation of the concern is scattered across multiple modules,
tangled with the primary concerns of these modules. Aspect-Oriented Software
Development (AOSD) has focused on improving the modularity of these cross-
cutting concerns. One prominent AOSD tool is AspectJ [9], a general-purpose
aspect-oriented programming language. It extends the Java1 programming lan-
guage with join points, pointcuts, and advice [11]. These additions enable aspects
to be written that gather the otherwise scattered and tangled source code into
one location.

We believe crosscutting concerns exist in other behavioural models as well,
including the use-case and sequence-diagram models. Existing aspect-oriented
programming languages operate at the level of implementation and support
pointcuts reflecting programming language constructs such as classes, methods,
fields, and objects. When limited to such constructs, it can be difficult to under-
stand the effects of the pointcuts in terms of other behavioural models.
1 Java is a trademark of Sun Microsystems, Inc.

We present a new aspect language, AspectU, for modularizing crosscutting
concerns within the use-case model. AspectU provides a join-point model based
on elements in this model: use cases, steps, and extensions. Many crosscutting
concerns that can be naturally expressed in terms of the use cases can be for-
mally expressed using AspectU. AspectU aspects capture changes to a system’s
dynamic behaviour as expressed in its use cases. These behavioural changes are
expressed as steps and extensions added to or replacing elements of the existing
behaviour.

In addition, we present an exploration of aspect modularity between mod-
els. To this end, we have implemented a tool for partially translating between
AspectU and AspectJ. In particular, the translation focuses on translating As-
pectU pointcuts. Our translation makes use of a third language, AspectSD, that
targets the sequence diagram model. AspectSD bridges AspectU and AspectJ in
the same way that sequence diagrams bridge the use-case model and the imple-
mentation. Our translation relies on a mapping between the use case model and
the sequence-diagram model, as well as correspondence between the sequence-
diagram model and the implementation. Given such a mapping, our tool trans-
lates an AspectU pointcut into an AspectSD representation, and then into As-
pectJ advice that identifies the join points in the implementation corresponding
to the specified join points in the use case. In addition to identifying join points,
the generated AspectJ advice can trigger user supplied Java code, bind objects
for that code to operate on, and control the flow of the application in a number
of ways.

Using AspectU and our translation tool together allow a developer to write
aspects using use case level pointcuts—affecting both the use-case model and
the behaviour of the running system. We claim that for many concerns such a
pointcut will be more natural and intensional than a corresponding pointcut in
AspectJ or another (source level) aspect-oriented programming language.

We present the AspectU language in detail in Section 2. Two complete As-
pectU examples are shown in Section 3. The AspectSD language is presented
in Section 4. The details of our translation between aspect languages is in Sec-
tion 5. We discuss the benefits of our approach in Section 6, and conclude with
a discussion of related work in Section 7.

2 The AspectU Language

AspectU extends the use-case model with support for modularizing crosscutting
behaviour. This support makes it possible to define additional behaviour at cer-
tain points in the model. Crosscutting in AspectU is based on a small set of
constructs based on AspectJ’s constructs: join points, which are points in the
model, pointcuts, which are a means to identify join points, and advice, which is
a means of affecting the behaviour at the join points. Taken together, these con-
structs define a join-point model that specifies how the crosscutting behaviour
relates to the underlying use-case model.

Use Case: Entity establishes session (session)

Trigger: Entity connects to server (entity connect)

Main Success Scenario:
1. entity initiates stream (entity initialize)
2. server connects to entity and initiates stream (server connect)
3. entity authenticates with server (authenticate)
4. server handles message, presence and iq stanzas (handle)
5. entity sends terminates stream (terminate)
6. server terminates stream and closes connection (close)

Extensions:
?a. Stream level error

?a1. server sends error stanza to entity (error)
?a2. server terminates stream and closes connection (close)

3a. Authentication fails
3a1. server sends failure stanza to entity (fail)
3b2. server terminates stream and closes connection (close)

Fig. 1. Use case describing the behaviour of the system when an entity (a client or
other server) establishes a session with a XMPP server.

This section contains several small examples targeting use cases (see Figures
1, 3, and 4) based on the XMPP [15] specification. This specification describes a
set of client server-messaging protocols. The use cases we present in this paper
describe parts of those protocols in terms of steps and extensions. More details
on the XMPP specification, along with more complete examples are presented
in Section 3. These use cases are simplified slightly for presentation convenience;
primarily that not all use-case extensions are shown. Also, we provide an iden-
tifying name next to each step, each use case, and some extensions.

One use case, shown in Figure 1, indicates to the steps involved when a
client or other server connects to a server. It consists of six steps: the first three
involve the entity connecting and authenticating with the server. The fourth step
handles each stanza, or communication unit, between the entity and the server.
There are several different kinds of stanzas; each is handled in a different way as
documented in separate use cases. Finally, when the entity wishes to disconnect,
the last two steps are performed. This use case also contains two extensions.
The first extension is triggered whenever there is a stream-level error anywhere
in the use case, and ensures that the server attempts to cleanly terminate the
connection. The second extension specifies that the session should be terminated
when authentication fails.

2.1 Join Points

Use cases are a behavioural model of a system, and can be thought of as some-
thing that can be executed. Elements in the model are nested: a use case is made
up of extensions and steps; an extension is made up of steps. This can be taken

session
use case:

step:
entity initialize

step:
server connect

step:
authenticate

extension:
authentication fails

step:
close

step:
fail

C

A

B

Fig. 2. A tree describing one possible execution of the session use case shown in Fig-
ure 1. The tree captures the execution corresponding to an authentication failure. The
enclosed areas labelled A, B and C refer to three subtrees rooted at the use-case
session, the extension authentication fails and the step close respectively.

further in that steps may be further elaborated as other use cases. Because of
this nesting property of the model, each execution of a use case can be thought
of as forming a tree. Execution order is represented in left-to-right, depth-first
traversal of this tree.

As an example, one possible execution of the session use case (see Figure 1)
is shown in Figure 2. In this particular execution, authentication fails and so
steps 4, 5, and 6, and extension ∗a are never executed. The system behaviour
captured by this execution of the use case is broken down as three steps followed
by one extension, which is is further broken down as two additional steps.

Join points in AspectU are elements in the execution of the use-case model.
These points can be considered as subtrees in the execution of that model. In
particular there are three types of join points: use-case, extension, and step join
points. The entire subtree labelled A in Figure 2 corresponds to a join point
of type use case; the subtree labelled B corresponds to a join point of type
extension, and the subtree labelled C corresponds to a join point of type step.

2.2 Pointcuts

An AspectU pointcut identifies a set of join points. Pointcuts can be thought of in
terms of matching certain join points (subtrees) in the execution. Three primitive
pointcuts, which can be composed to form more sophisticated pointcuts, are
defined:

1. usecase(id)—matches the join point for any use-case subtree with name
matching id,

2. extension(id)—matches the join point for any extension subtree with
name matching id, and

3. step(id)—matches the join point for any step subtree with name matching
id.

The identifiers used as arguments in the above primitive pointcuts can contain
the wild-card character *, which matches any substring. For example, step(send*)
would match the join point for any step with a name beginning with send.

Pointcuts can be combined using and (&&) and or (||) operators. The and
operator combines two pointcuts to build a new pointcut that matches any
subtree matched by one of the pointcuts and lies within a subtree matched by
the other pointcut. For example,

usecase(session) && extension(authentication fails)

identifies subtrees that are either (a) matched by the pointcut usecase(session)
and lie within a subtree matched by the pointcut extension(authentication
fails), or (b) matched by the pointcut extension(authentication fails)
and lie within a subtree matched by the pointcut usecase(session). For the
execution tree shown in Figure 2, the example pointcut identifies the subtree
labelled B, because it is matched by extension(authentication fails) and
is within a subtree matched by usecase(session) (i.e. it is withing subtree A).

The or operator combines two pointcuts to build a new one that matches
execution trees where either subordinate pointcut matches. For example,

usecase(session) || extension(authentication fails)

identifies execution trees that are in use-case session or in extension authen-
tication fails. For the execution tree shown in Figure 2, the previous pointcut
identifies the subtree labelled A as well as the subtree labelled B.

The and and or pointcut combinators allow powerful effects when used in
concert with wild cards. The pointcut

step(deliver*)

would apply to the execution subtrees corresponding to the deliver presence step
in the handle presence use case (see Figure 4), as well as the deliver message
step in the handle message use case (see Figure 3). However when this pointcut
is combined as follows

usecase(handle message) && step(deliver*)

only execution trees corresponding to the deliver message step in the handle
message use case are matched by the pointcut.

In addition to identifying join points, a pointcut can also provide access
to values in the execution context of those join points. This is done using the
bind(bind-id, entity-id) pointcut, which binds the use-case entity named
entity-id to the identifier bind-id. This pointcut allows values associated with
the matching join point to be available within the advice body. For example,

usecase(session) && bind(m,message)

provides a name, m, for the message entity within the session use case. As in this
example, bind is most often used with and and or operators. For a complete
example of this, see the privacy aspect in Figure 6, discussed in Section 3.

2.3 Advice

Advice is a mechanism used to declare that certain additional behaviour should
execute at each of the join points in a pointcut. A piece of advice has three parts:

1. a pointcut indicating where the additional behaviour should be performed;
2. an advice body describing what the additional behaviour is, expressed in

terms of steps and extensions; and,
3. a qualifier indicating how the additional behaviour combines with the be-

haviour at the join point.

AspectU supports three types of qualifiers, with meanings analogous to the
corresponding AspectJ qualifiers. Each qualifier has a binding-list associated
with it, which specifies the bound entities available in the advice body:

1. before(binding-list)—denotes advice to apply immediately before the
execution of the matched subtrees,

2. around(binding-list)—denotes advice to apply around, and possibly in-
stead of, the matched subtrees (more on this below), and

3. after(binding-list)—denotes advice to apply immediately after the exe-
cution of the matched subtrees.

A simple example of a complete piece of advice (with comments on the right
identifying the advice parts) is

after(m) : // qualifier
step(handle*) && bind(m, message) // pointcut

{ // body
steps:

- server logs delivery of message m
}

The additional behaviour given in advice can combine with the pre-existing
behaviour in three ways. First, advice can be strictly additive with respect to the
normal execution. That is it can simply add behaviour at the join points identi-
fied by the pointcut. This can be done with before or after advice to specify
additional steps to be applied at entry to or exit from a join point (subtree).

Second, advice can influence the behaviour in a way that is not strictly addi-
tive. To that end around advice has the special capability of selectively preempt-
ing the normal execution at the join point. An around advice can, alternatively,
allow the execution to continue normally by including a step named proceed.
This special step, analogous to AspectJ’s proceed(), is used only in around

Use Case: Server handles message stanza (handle message)

Trigger: Entity sends message (send)

Main Success Scenario:
1. server processes and verifies message (verify)
2. server determines recipient of message (determine recipient)
3. server delivers message to recipient (deliver message)

Extensions:
2a. Non-local recipient

2a1. route message (route)
2b. No such client

2b1. reply with ’recipient unavailable’ (error)
3a. Delivery failed (delivery failed)

3a1. reply with ’recipient unavailable’ (error)

Fig. 3. Use case describing how an XMPP server handles a message stanza: a simple
push scheme is followed.

advice. A proceed step instructs the execution to proceed into the subtrees that
the advice surrounds. An around advice lacking a proceed step replaces the
original behaviour of the use case. One example of this is shown in the stor-
age aspect (see Figure 5). That example’s around advice introduces a step that
executes in place of the execution of the delivery failed extension.

Third, advice can introduce use-case extensions. Like normal use-case exten-
sions, this specifies behaviour that is executed when a certain condition is met.
In AspectU, an added extension can end with a step named rejoin, which in-
structs the execution to return to (i.e. rejoin with) the use case at the location
the advice was started from. If no rejoin is specified, the extension is under-
stood to terminate the use case. The result is that the subtree corresponding to
the extension is the last in that particular execution of the use case. An example
of this is shown in the privacy aspect (see Figure 6). In the event that the privacy
check fails, the control will pass to the added extension. As this extension does
not rejoin, the remaining steps in the use case will be skipped.

Taken together, join points, pointcuts and advice support the expression of
crosscutting behaviour. Aspects package these constructs in a modular way. Two
complete example aspects are presented in the next section.

3 AspectU Examples

Throughout this paper we use examples based on a set of XML protocols and
technologies that enable entities (clients and servers) to exchange communica-
tion units called stanzas. Stanzas can be messages, presence, and other struc-
tured information. The Internet Engineering Task Force has formalized the core
protocols under the name Extensible Messaging and Presence Protocol (XMPP).
The official documentation is in several parts or layers. The base specification is
called XMPP Core [15].

Use Case: Server handles presence stanza. (handle presence)

Trigger: Entity sends presence (send)

Main Success Scenario:
1. server processes and verifies presence (verify)
2. server obtains entity’s subscription information (subscription)
3. server determines recipients based on subscription information (determine recipients)
4. server delivers stanza to each recipient (deliver presence)

Extensions:
1a. Presence probe

1a1. server determines target of probe (determine target)
1a2. server obtains target’s last reported presence (obtain presence)
1a3. server replies to probe with this presence (reply)

4a. Non-local recipient
4a1. route presence (route)

Fig. 4. Use case describing how an XMPP server handles presence stanza. The basic
approach is based on a subscribe and broadcast scheme.

Based on XMPP Core specifications, we have developed several use cases.
The first of these was presented in Section 2. Two more are given in Figures 3
and 4. The use case shown in Figure 3 details the steps taken to handle a mes-
sage stanza sent by a connected entity. The handle message use case comprises
three steps: verification, addressing, and delivery. If addressing indicates that a
message cannot be locally delivered, extension 2a is triggered to route the mes-
sage to a remote location. Addressing could fail because the recipient does not
exist, which is handled by extension 2b. Delivery can fail because the recipient
is not currently connected, which is handled by extension 3a.

The use case shown in Figure 4 details the steps taken to handle presence
stanzas sent by a connected entity. Presence stanzas are used for communicating
status (e.g. online, offline, or away) between entities. While handling presence
stanzas, the server follows a publish-subscribe scheme in which the information is
sent to all subscribed entities. An exception to this is a presence probe which is a
query for a particular entity’s presence. Presence probes continue to be handled
in extension 1a.

XMPP Core is intended to provide a general framework for building messag-
ing applications. One such application is instant messaging (IM) similar to AIM
or ICQ. A separate specification document, XMPP Instant Messaging (XMP-
PIM) [16], extends XMPP Core with features needed to support such instant-
messaging applications. In addition to adding more use cases the XMPPIM spec-
ification adds some concerns that crosscut the XMPP Core use cases. Two ex-
amples of such crosscutting concerns are from the storage and privacy features.
We present each these as examples of AspectU aspects in the following two sub-
sections. Expressing these concerns in AspectU, rather than directly modifying
the affected use cases, is natural—it supports a modularization consistent with
the specification.

aspect storage {

around(stanza) : usecase(handle message) &&

extension(delivery failed) && bind(stanza,message)

{

steps:

- server stores stanza for later delivery (store)

}

before(client) : usecase(session) && step(handle) &&

bind(client,entity)

{

steps:

- server delivers any stored messages to client (deliver)

}

}

Fig. 5. An AspectU aspect expressing the storage concern.

3.1 Storage Aspect

Message storage is a store-and-forward feature similar to that found in email
servers. Describing the effect of this feature in terms of the session and handle
message use cases described above is straightforward: when handling a message
for a local recipient, if they are offline (i.e. in extension 3a) then store the
message; and, when a client connects to and successfully authenticates with the
server (i.e. before the handle step) then deliver any stored messages.

This concern, written in AspectU, (see Figure 5) is similarly straightforward.
It contains two pieces of advice, one for each new behaviour: the first stores
undeliverable messages, and the other delivers deferred messages once a new
connection is established. Each of the pieces of advice contains a bind() in the
pointcut. In both cases this identifies objects that are referred to in the advice
body. The bind() in the around advice, for example, states that the stanza
referred to in the added step is the message object referred to in the use case. It
is noteworthy that this advice does not contain a proceed step.

3.2 Privacy Aspect

The aspect in Figure 6 packages the behaviour needed to implement crosscutting
associated with the privacy feature. Privacy, like the message storage concern,
is introduced in the XMPPIM specification as a concern layered on top of the
core protocol. The privacy concern deals with a client’s ability to limit com-
munication to or from other users. Supporting privacy requires the addition of
several use cases for managing privacy lists, but these are already well modu-
larized. But, it also introduces some additional required behaviour crosscutting
the handle message and handle presence use cases shown in Figures 3 and 4 re-
spectively. Rather than modify the affected use cases directly, AspectU supports
modularization of these concerns.

aspect privacy {

before (user, stanza) :

(step(deliver message) && bind(user, recipient) &&

bind(stanza, message)) ||

(step(deliver presence) && bind(user, entity) &&

bind(stanza, presence))

{

steps:

- server verifies stanza against user’s privacy settings

(check privacy)

extensions:

- name: privacy check failed

source: check privacy

steps:

- silently drop stanza (drop)

}

}

Fig. 6. An AspectU aspect expressing the privacy concern.

The privacy aspect in Figure 6 implements this additional behaviour. The
pointcut matches executions of the deliver message step from the handle message
use case and executions of the deliver presence step from the handle presence use
case. The body adds a step before each of the identified steps and also adds an
associated extension. The inserted step involves verifying that the stanza can be
sent without violating the appropriate privacy settings. The extension ensures
that if the privacy check fails then the stanza is silently dropped rather than
delivered.

The body of the privacy aspect is written in terms of a user and a stanza:
the arguments to the qualifier. There are some differences between how privacy
should be enforced in the handle message use case and in the handle presence
use case. In the handle message use case, the check verifies that the privacy
rules of the recipient allow the given message. In the handle presence use case,
the check verifies that the privacy rules of the connecting entity allow the given
presence notification to be sent. AspectU’s name binding mechanism allows the
body of the privacy aspect to be general enough to apply privacy in both of
these cases. For handling messages the bind statements in the pointcut support
this by mapping recipient to user and message to stanza. Similarly, for handling
presence, entity is mapped to user and presence is mapped to stanza.

The AspectU language is supported by a tool that takes as input use cases
(stored in a machine-readable format, based on the yaml [4] mark-up language)
and AspectU aspects and produces transformed use cases. This tranformation
process is sometimes called called weaving. Figure 7 shows the results of weaving
both the privacy and storage concerns into the message handling use case. The
steps and extensions shown in bold represent the additions made by the aspects.

Use Case: Server handles message stanza (handle message)

Trigger: Entity sends message (send)

Main Success Scenario:
1. server processes and verifies message (verify)
2. server determines recipient of message (determine recipient)
3. server verifies message against recipient’s privacy settings (check privacy)
4. server delivers message to recipient (deliver message)

Extensions:
2a. Non-local recipient

2a1. route message (route)
2b. No such client

2b1. reply with ’recipient unavailable’ (error)
3a. Privacy check failed

3a1. silently drop message (drop)
4a. Delivery failed (delivery failed)

4a1. server stores message for later delivery (store)

Fig. 7. Illustrates the effect of weaving the privacy and storage aspects into the handle
message use case. Added behaviour added by the aspects is shown in bold.

Notice that in step number 3, stanza and user have been replaced by message
and recipient.

While this can be a useful tool, ultimately the goal is not to modify the
use case but rather to keep these concerns separate. Given this separation it is
possible to pursue modularization between models, as discussed in the next two
sections.

4 The AspectSD Language

For our purposes a sequence diagram is a sequence of messages along with the
objects that send and receive them. Figure 8 contains a sample sequence diagram.
During the design of a system, sequence diagrams may be used to refine the
behaviour specified by the use cases in terms of object interactions.

Each sequence diagram corresponds to a single scenario of a use case and,
therefore, to a single execution tree. For example, the sequence diagram shown
in Figure 8 corresponds to the main success scenario of the handle message use
case. Sequence diagrams can be viewed as a further elaboration of the behaviour
captured by a use-case execution tree in terms of messages between objects.

Like use cases, we store sequence diagrams in a machine readable format
based on the yaml mark-up language. Our format for storing sequence diagrams
supports various annotations that document what sequences of messages corre-
spond to which use-case steps. Given this mapping it is possible to think about
a sequence diagram as the fringe of one execution tree. This is illustrated in
Figure 9 where, for example, the execution of the verify step is decomposed as
the execution of messages m1 . . .m4.

MessageImpl

checkDomain

getSession

setTo

setFrom

setType

route

process

writeToStream

m1

m2

m3

m4

m5

m6
m7

m8
m9

m10

m11

m12

MIDIMMessage IMRouter IMSession

Fig. 8. Sequence diagram corresponding to the main success scenario of the handle
message use case. A message identifier (MID) for each message is shown on the right
of the diagram. We use simple MID’s for presentation convenience.

This mapping provides a correspondence between use case subtrees and se-
quences of messages. Based on this correspondence, we present a join point model
for AspectSD, a language that targets the sequence-diagram model. We use As-
pectSD as a bridge between AspectU and AspectJ in the same way that, during
system design and development, sequence diagrams bridge the gap between use
cases and source code. In this section we describe the AspectSD language, the
mapping and translation between models is discussed more fully in Section 5.

The join points exposed by AspectSD are simply sequences of consecutive
messages which correspond to the subtrees that form AspectU’s join points. As
an example consider the tree in Figure 9. In that particular execution tree, the
AspectU join point for the verify use-case step, corresponds to the AspectSD
join point (i.e. the message sequence) m1 . . .m4.

AspectSD pointcuts identify join points using two primitive pointcuts. These
pointcuts can be composed using the and (&&) and or (||) operators, which oper-
ate analogously to those in AspectU. The two primitive pointcuts in AspectSD
are:

1. messages(message-list)—matches consecutive message sequences (join points)
identical to the sequence of messages in message-list, and

step:
determine recipient

use case:
handle message

m2 m3 m4m1 m10 m11 m12

step:
verify

step:
deliver message

m5 m6 m7 m8 m9

Fig. 9. An execution tree corresponding to the main success scenario of the handle
message use case shown in Figure 3. The leaves of this tree correspond to the messages
from the sequence diagram in Figure 8.

2. in-flow(message-list)—restricts the pointcut to match only immediately
after the sequence of messages in message-list (in order) has occurred. This
provides the context where the messages pointcut will match.

With these join points and pointcuts it is straightforward to map an As-
pectU pointcut to a corresponding AspectSD points. For example, with re-
spect to the particular execution illustrated in Figure 9, the AspectU point-
cut step(determine recipient) would correspond directly with the AspectSD
pointcut

in-flow(m1,m2,m3,m4) && messages(m5,m6,m7,m8,m9)

This pointcut matches the sequence of messages m5 . . .m9 when it occurs imme-
diately after the sequence m1 . . .m4. In general, AspectU pointcuts will corre-
spond to multiple subtrees in multiple possible execution trees and so, multiple
sequences of messages will correspond to a given AspectU pointcut.

In addition to identifying join points, an AspectSD pointcut can also provide
access to values in the execution context of those join points. In the case of
sequence diagram messages, values in the execution context include the sender
of the message, the receiver of the message, the return value of the message
and values passed as arguments to the message. Binding these values is done
using the bind(id, msg-id, entity-id) pointcut, which provides a binding
for the identifier id (part of the advice qualifier’s binding-list) to the entity
entity-id in message msg-id; entity-id can be any of sender, receiver,
argument n (where n is the nth argument), and return-value. For example,

bind(stanza, m2, receiver)

binds the receiver of message m2 to the name stanza.
AspectSD advice, like AspectU advice, can have one of three qualifiers:

before, around, and after. For each of these, the message sequence identifies
the advised join point. When applying after advice this will be the sequence just

seen. When applying before or around advice this will be the sequence about to
begin. This implies that the in-flow sequence in the pointcut uniquely identifies
the advised join point.

In our work we have only used AspectSD in the context of our translation
process, rather than as a language a developer may use directly. As a result
the body of a piece of AspectSD advice is of limited use. However, a developer
can include sequences of messages to AspectSD advice. The primary use of this
mechanism is to provide information for the translator described in the next
section.

5 Translation Between Models

We want to leverage AspectU in a way that allows us to affect a running sys-
tem. To this end, we have implemented an AspectU to AspectJ translator. The
inputs to the translator, all described in more detail below, are the system’s use
cases, several AspectU aspects based on those use cases, the system’s sequence
diagrams (including mapping information), and a small amount of Java code.
Given this input, the tool generates an AspectJ aspect that is able to affect
the system in a way consistent with the behavioural changes specified by the
AspectU advice.

This translation is challenging for a number of reasons. The decomposition
of the system generally will not match the decomposition of the use cases. The
messages in the sequence diagram may be implemented as method calls, returns
from methods or exceptions being thrown. Also, much of the behaviour (i.e.
many of the method calls, etc.) of the running system will not be specified in
the sequence diagrams.

The details of the translation are presented along with an example AspectU
aspect (the privacy aspect introduced in Section 3.2) and an example system.
The example system is OpenIM [1], which is a partial implementation of the
XMPP specification. The use cases were derived from the specification and the
sequence diagrams (including the annotations) were developed by investigating
the source code of the system.

The translation is a two stage process: AspectU to AspectSD and then As-
pectSD to AspectJ. The implementation of the translation tool requires explicit
traceability links between the use cases, sequence diagrams, and source code.
Our format for storing sequence diagrams allows basic message information to
be specified along with mapping information to support our translation. Basic
information includes: sender, receiver and message name. The primary pieces of
mapping information specify which use-case step or condition (i.e. a condition
triggering an extension) the message relates to. Other information can map high-
level objects mentioned in the use case to parts of messages: sender, receiver,
arguments, and return values.

Figure 8 shows the sequence diagram that corresponds to the main success
scenario of the handle message use case. The following is an example of the in-
formation that can be captured for a message in our sequence diagram format,
it corresponds to message m5 in Figure 8:

sender: MessageImpl
receiver: IMRouter
name: route
step: determine recipient
arguments: entity, message

The first three lines provide basic information about the message. The last
two lines provide mapping information; this message contributes to the deter-
mine recipient use-case step and the arguments to the message correspond to
the entity and message objects referred to in the use case. Put another way,
the object passed as the first argument to the route message, in this scenario,
corresponds to the entity discussed in the use case. While discovering and docu-
menting this information was a manual process for us, techniques described in [5,
10, 14] could be used to assist in the creation and maintenance of these explicit
links either automatically or semi-automatically. Another approach to facilitate
this mapping could involve work in the area of model-driven architectures [6].

The two stages of our translation process are described in the following sub-
sections. The description of the process is based on the privacy-concern example
introduced as an AspectU aspect in Section 3. The concern is converted from
AspectU aspect to AspectSD aspect and then to an AspectJ aspect that was
then applied to the OpenIM system. This yielded an extended and runnable
application that contains the new features.

5.1 AspectU to AspectSD

The annotations attached to messages in our sequence-diagram format provide
a mapping between use-case steps and the messages that implement those steps.
For each distinct message (usually a triple: sender, receiver, and method) in a
system’s sequence diagrams, our translation tool assigns a message identifier
(MID). For example, the messages in the sequence diagram shown in Figure 8
have been assigned the MID’s m1 . . .m12. As mentioned above, in order to map
from use cases to sequence diagrams, sequences of messages can be annotated as
participating in various use-case steps. Figure 9 shows how the messages corre-
spond to one particular use case execution tree. The following is an alternative
illustration of this scenario, which shows what use-case steps are implemented
by what sequences of messages in this scenario:

m1 m2 m3 m4︸ ︷︷ ︸
verify

m5 m6 m7 m8 m9︸ ︷︷ ︸
determine
recipient

m10 m11 m12︸ ︷︷ ︸
deliver
message

Section 4 described the correspondence between AspectU pointcuts and As-
pectSD pointcuts. Given all relevant sequence diagrams (appropriately anno-
tated) and a piece of AspectU advice, the AspectU translator computes the
effect of the added steps, added extensions, and replaced subtrees on the se-
quence diagrams. In the advice for the privacy aspect described in Section 3.2,
we added one step (we will refer to this with message id s1) and one extension
(we will refer to this by message id e1).

The translation process from AspectU to AspectSD comprises three steps.

1. Insert identifiers for steps—For each block of steps inserted by the As-
pectU advice body, the associated MID is inserted into each message sequence
that matches the appropriate sequence of use-case steps.

For example, the step added by the privacy advice is intended to go before
the deliver message step in the handle message use case. Therefore, the above
sequence would be modified as follows:

m1 m2 m3 m4︸ ︷︷ ︸
verify

m5 m6 m7 m8 m9︸ ︷︷ ︸
determine
recipient

s1 m10 m11 m12︸ ︷︷ ︸
deliver
message

2. Insert identifiers for extensions—Next, the effect of adding extensions
is computed. While adding steps expands a sequence of messages, adding an
extension splits one sequence into two sequences: one where the extension does
occur and one where it does not. Again from the privacy aspect, when the privacy
check fails the extension is triggered, this corresponds to the following message
sequence being added:

m1 m2 m3 m4︸ ︷︷ ︸
verify

m5 m6 m7 m8 m9︸ ︷︷ ︸
determine
recipient

s1 e1

In this example, the use case is terminated by the extension e1; thus, ending
the sequence. In situations where the added extension rejoins the scenario the
modified sequence would be followed by the additional messages from the original
sequence.

3. Translate bind designators —Next, the tool determines how bind des-
ignators are to be translated. For each matching bind in an AspectU advice’s
pointcut, our translation tool computes a corresponding AspectSD bind. This is
done by considering all messages that preceded the match point, starting from
the match point and working toward the start of the message sequence. In the
case of the privacy example, the messages m9 . . .m1 would be considered based
on the sequence above.

For each of these messages, the tool searches for a message with a sender,
receiver, argument or return value that matches the operand of the AspectU

advice. In the case of the first AspectU bind in the privacy aspect the recipi-
ent matches with return value of message m9 so the corresponding AspectSD
pointcut is bind(user, m9, return value). For the second AspectU bind in
the privacy aspect the stanza matches with the second argument of message m5

so the AspectSD pointcut is bind(user, m5, argument 2).
Once the modified sequences have been computed along with the associated

bindings the AspectSD pointcut can be generated. The location identified by
the pointcut for the privacy aspect (and the handle message use case) is the
deliver message step, which corresponds to the message sequence m10 m11 m12,
corresponding to the entire AspectSD pointcut:

before(user,stanza) :
in-flow(m1,m2,m3,m4,m5,m6,m7,m8,m9) &&
messages(m10,m11,m12) &&
bind(user, m9, return_value) &&
bind(stanza, m5, argument_2)

We have shown one sequence diagram being modified along with one resulting
AspectSD pointcut. In general translating a piece of AspectU advice will result in
multiple sequence diagrams being modified. One AspectSD pointcut is generated
for each of these modified points.

5.2 AspectSD to AspectJ

The translation from AspectU to AspectSD produces a description of how the
the AspectU advice impacts a system in terms of its sequence diagrams. The
goal of the second stage of the AspectU translator tool is to generate AspectJ
advice that can appropriately impact the execution of the system.

To support the privacy feature, we wrote Java code to implement various
parts of concern including code to check that a given message or presence stanza
should be accepted. The translation process automatically determines when in
the execution of the system the check should be performed along with binding
the objects needed for the check (the user and stanza objects). So that the
correct operation will be carried out at that point, we provide the translator
with some minimal information about what to call. This is done by supplying
to the translator one block of Java source for the steps in an advice body and
one for each extension added by the advice. These blocks connect the generated
AspectJ code and the Java code it is expected to trigger at the appropriate point
in the execution. In the case of the check privacy step introduced by the privacy
aspect the block simply contains a call to a static method:

{ UserPrivacy.accept(user, stanza); }

For each AspectU aspect, the output of our tool is one AspectJ aspect.
In addition to advice (explained below), the aspect contains an Event class,
an eventList field, a post method, a match method, and a get method. An
event corresponds to the sending and receiving of one sequence-diagram message.
These components of the generated aspect help manage these events.

– Event—instances of this class capture information about a particular mes-
sage event such as its name (which is the MID of the corresponding message
as a String) and name-value pairs binding objects corresponding to the
sender, receiver, arguments and return type of the message.

– eventList—a list that stores events in the order they occur2.
– void post(String messageName)—pushes a new event onto the event list.
– boolean match(String messageList)—checks the event list to see if the

messages in messageList exist in the same order at the top of the list.
– Object get(String mid, String objectName)—searches the list of events

starting from the most recent event for the first event whose name matches
mid; returns the object bound to the objectName in the matched event.

Also part of this generated aspect are three kinds of AspectJ advice: tracing
advice, triggering advice, and blocking advice, which interact with the applica-
tion at the source-code level. Each of these categories of advice are described
below along with examples from the AspectJ aspect generated when applying
the privacy AspectU aspect to the OpenIM system.

Tracing advice keeps track of messages as they occur. For each distinct mes-
sage that appears in a system’s sequence diagrams, a piece of AspectJ advice
is generated that calls the post method when this message occurs. Name-value
pairs are attached to the event to support the variable binding mechanism. The
generated tracing advice for the m1 message, part of the sequence diagram in
Figure 8, looks like this:

before(MessageImpl receiver) :
execution(* MessageImpl.process(..)) &&
target(receiver)

{
Event event = new Event("m1");
event.set("receiver", receiver);
post(event);

}

The above example shows the posting of an event that corresponds to a
method being called. Tracing advice is also generated to capture events associ-
ated with returns from methods. It is possible that a return message specified
in a sequence diagram could be associated with a specific value being returned
or with a specific exception being thrown. For example, a scenario described in
one sequence diagram may contain a return message that corresponds to an ex-
ception being thrown from a particular method, while a different scenario may
contain a return message that corresponds to a normal return from the same
method. We generate pieces of AspectJ advice to distinguish between various
types of returns so that the appropriate event is posted.

2 The event list can be viewed as unbounded, but for practical purposes, a maximum
size can be enforced.

Triggering advice triggers the actual work of the AspectU advice body. It
determines when the blocks of Java code supplied by the user get executed. The
execution of this code is conditional on whether the appropriate sequence of
messages has occurred.

In the special case where the sequence of messages correspond to nested
method calls, AspectJ’s cflow construct could be used to check the context.
However, in the more general case, AspectJ provides no direct support for this
kind of checking. As a result, our generated aspects rely on the event history
supplied by the tracing aspects and stored in the eventList. This history is
checked at runtime by calling the match method with a message pattern that
captures the expected context. Only if that method call to match returns true
is the block executed.

One piece of triggering advice will be generated for each situation in which
a user-supplied block of Java code may need to be executed. The following is
the triggering advice associated with the steps added by the AspectU privacy
aspect (i.e. the actual check that the stanza should be accepted). As shown
in Section 5.1, the check is intended to be done after the message sequence
m1 . . .m9. Before the advice is executed the match method is called to verify
that the sequence has indeed occurred. Message m9 corresponds to the return
of the getRegisteredSession method call, as shown in the sequence diagram
in Figure 8. As a result this generated piece of AspectJ advice is implemented
as after advice on that call.

In addition to the call to the match method and the user supplied block of
code, the generated advice contains a call to post to add the event associated
with this portion of the AspectU advice (identified by the message id s1), and
calls to the get method to bind the variables expected by the block.

after(IMRouterImpl receiver, IMRouterImpl sender) :
call(* IMRouterImpl.getRegisteredSession(..)) &&
this(sender) && target(receiver)

{
// check context (pattern is in reverse order)
if (match("m9,m8,m7,m6,m5,m4,m3,m2,m1")) {

Event event = new Event("s1");
post(event);

// generated bindings
Object user = get("m9","return_value");
Object stanza = get("m5","argument_2");

// user supplied source block
UserPrivacy.accept(user, stanza);

}
}

Blocking advice is the final type of generated advice. In situations where As-
pectU advice adds an extension that terminates the use case (i.e. an extension
with no rejoin) or replaces part of the behaviour (due to around advice), there
may be some remaining steps that should be skipped. One such situation is
illustrated by the AspectU privacy aspect shown in Figure 6, which adds an ex-
tension to handle a privacy-check failure. In this case, the deliver message step
should be skipped. As a result, the method calls implementing these steps should
be blocked. Preventing these calls is handled by around advice on each method
call that may need to be blocked. The around advice first checks whether or
not the extension has been executed. If it has not, then the proceed is called,
permitting the method to execute. Otherwise, the proceed is not called and the
method call is skipped.

void around() :
call(* net.java.dev.openim.IMSession.writeToStream(..))

{
if (!match("e1,s1,m9,m8,m7,m6,m5,m4,m3,m2,m1")) {

proceed();
}

}

In the OpenIM application’s privacy concern, this approach works well. How-
ever, in general there could be problems with this approach. If there is some code
unrelated to the given use case that is tangled with the code that is blocked from
executing, incorrect behaviour may result as the unrelated code will be blocked
as well. The limitations of our approach are discussed further in the next Section.

6 Discussion

We have analyzed the storage and privacy instant messaging concerns, two con-
cerns that crosscut a system’s use cases and source code. The specification for
XMPPIM describes instant messaging as a layer added on top of a general mes-
saging protocol (XMPP Core). Following this separation of concerns, we pre-
sented storage and privacy as aspects that add IM features to a system im-
plementing the core protocol. Describing the various parts of these concerns in
terms of where they affect existing use cases is relatively straightforward:

– when delivery of a message fails because the client is not connected, store
the message,

– when an entity connects to the server, before handling any message stanzas
deliver any deferred messages,

– before delivering a message stanza check the recipient’s privacy rules, and
– before forwarding a presence stanza check the sender’s privacy rules.

The AspectU pointcut and advice body for expressing these concerns is similarly
straightforward, in fact the advice reads almost like their English descriptions.
For these concerns (and many others, we believe), expressing them at a use-case

level is natural and makes the developer’s intention clear. Further, our approach
results in an aspect that captures the concern in a way that can be understood
in terms of the use-case model; and, when combined with our translator, affects
the runtime behaviour.

We believe that use cases and the types of concerns we have discussed, map
naturally to sequences of method calls in the source code. Capturing such con-
cerns in an aspect-oriented programming language like AspectJ can be difficult.
This is because AspectJ does not provide direct support for pointcuts based on
such sequences. An AspectJ implementation may require manually developing
support for bindings and tracing along the lines of what is automatically gen-
erated by our translation tool. Furthermore, explicitly describing the concern
in terms of these sequences is less intensional than expressing them in terms of
use-case steps and extensions.

AspectU advice along with translation based on a mapping between models
provides a level of indirection that provides a degree of independence from imple-
mentation details. However, this independence comes at the cost of creating and
maintaining this mapping between models. If this cost is too high, our approach
becomes impractical; hence, the full benefits depend on the extent to which this
maintenance can be automated.

In addition to the benefits we experience from using use case level pointcuts,
we have a natural mechanism for allowing high-level manipulation of the control
flow of the system in some situations. In particular, our tool can automatically
translate an AspectU extension that terminates a use case into AspectJ code that
suppresses the remainder of the use case after it is terminated by the extension.
However there are limitations with our approach in its ability to control the flow
of an application. First, as discussed above, in some cases suppressing method
calls could produce unintended side effects. Second, ideally an added extension
would be able to rejoin at an arbitrary step in the use case (possibly repeating a
previous step or skipping ahead to another). Supporting these arbitrary changes
to the flow of the application is not feasible with our approach.

A different approach, that may not suffer this limitations could involve ap-
plying aspect languages similar to AspectU in the context of a model-driven
approach [6]. Using such an approach, higher-level models are used to drive the
generation of the source model. In this context, aspect languages based on the
appropriate models could be used to influence the source code generation. This
approach might give the AspectU aspects more control of the flow of the sys-
tem, avoid the cost associated with maintaining a mapping between models, and
overcome key limitations with our current approach.

The work we have presented has been inspired by the success of aspect-
oriented languages in modularizing crosscutting concerns in source code. Our
goal has been to extend these ideas beyond the source code to include other
behavioural models; the use-case model, in particular. In addition to this, our
approach allows a developer to express advice with use case level pointcuts while
still affecting the runtime behaviour of the system modelled by the use cases.

7 Related Work

Much of the work in developing other aspect languages has been the foundation
of our work with AspectU. Hyper/J [13] supports Multi-Dimensional Separa-
tion of Concerns [18] by allowing a software engineer to define separate, but
overlapping hyperslices in a software system simultaneously. The Caesar aspect
programming language [12] offers an alternative to AspectJ as an implementation
language. It offers a higher-level module concept on top of join-point intercep-
tion, helping with the encapsulation of aspects. However, like AspectJ, neither
of these aspect languages help encapsulate higher-level concerns; they interact
with the source code only.

Work by Jacobson [8] suggests that aspect-oriented programming can provide
a link between use cases and implementation. In particular aspects could support
a decomposition of a system based on use cases, including extension use cases.
In contrast to this, our work focuses on modularizing concerns that crosscut the
structure of the use-cases model and translating those to a form that can be
applied to a system with a conventional decomposition.

Gray, et al. [7] introduce Embedded Constraint Language, a domain-specific
aspect modelling language and tool that implement constraints as aspects. Like
AspectU, their tool recognizes and weaves aspects that apply to non-code arti-
facts. While Gray’s approach targets domain specific models, ours targets use
cases.

Batory, et al. [2, 3] add a notion of aspects to product-line architectures and
domain specific languages so that features can be added or removed from a
product by a simple reconfiguring of its architecture. Their technique targets
cross-cutting concerns that can span multiple document types. Our approach
also supports aspects that cross-cut behavioural models.

Our work is also related to work in Early Aspects, which refers to the identifi-
cation and encapsulation of crosscutting concerns that occur in requirements and
architecture. One example of work in this area is Cosmos as described in [17].
Cosmos offers an alternative means to encode the mapping between require-
ments level artifacts. It is a concern-modelling schema for creating a rich set of
relationships between all types of software artifacts. However, Cosmos offers no
means of applying advice on any of the concerns that it models.

References

1. A. Agahi. OpenIM Java jabber server, September 2003.
http://openim.jabberstudio.org/.

2. D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise refinement. In
Proceedings of the 25th International Conference on Software Engineering (ICSE),
pages 187–197. IEEE Computer Society Press, 2003.

3. D. S. Batory, C. Johnson, B. MacDonald, and D. von Heeder. Achieving exten-
sibility through product-lines and domain-specific languages: a case study. ACM
Transactions on Software Engineering Methodolology (TOSEM), 11(2):191–214,
2002. http://doi.acm.org/10.1145/505145.505147.

4. O. Ben-Kiki, C. Evans, and B. Ingerson. Yaml ain’t markup language (yamlTM1.0).
http://yaml.org/spec/.

5. A. Egyed and P. Grünbacher. Automating requirements traceability — be-
yond the record and replay paradigm. In Proceedings 17th International Con-
ference Automated Software Engineering (ASE), pages 163–171, September 2002.
http://citeseer.nj.nec.com/egyed02automating.html.

6. D. Frankel. Model Driven Architecture. Wiley Publishing, Inc, 1 edition, 2003.
7. J. Gray, T. Bapty, S. Neema, and J. Tuck. Handling crosscutting constraints in

domain-specific modeling. Communications of the ACM (CACM), 44(10):87–93,
2001. http://doi.acm.org/10.1145/383845.383864.

8. I. Jacobson. Use cases and aspects – working seamlessly together. Journal of
Object Technology, 2(4):7–28, July 2003.

9. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Gris-
wold. An overview of AspectJ. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), volume 2072, pages 327–355, 2001.
http://citeseer.nj.nec.com/kiczales01overview.html.

10. K. Koskimies, T. Systä, J. Tuomi, and T. Männistö. Automated support for mod-
elling OO software. IEEE Software, 15(1):87–94, January 1998.

11. H. Masuhara and G. Kiczales. Modelling crosscutting in aspect-Oriented mecha-
nisms. In European Conference on Object-Oriented Programming (ECOOP), July
2003.

12. M. Mezini and K. Ostermann. Conquering aspects with Caesar. In Proceedings
International Conference on Aspect-Oriented Software Development (AOSD ’03),
2003. http://citeseer.nj.nec.com/mezini03conquering.html.

13. H. Ossher and P. Tarr. Hyper/J: Multi-dimensional separation of
concerns for Java. In Proceedings of the 22nd International Confer-
ence on Software Engineering (ICSE), pages 734–737. ACM Press, 2000.
http://doi.acm.org/10.1145/337180.337618.

14. Use case management with Rational Rose and Rational RequisitePro, 2000.
http://www.therationaledge.com/content/feb 03/rdn.jsp.

15. P. Saint-Andre. XMPP core, September 2003. http://www.jabber.org/ietf/draft-
ietf-xmpp-core-18.html.

16. P. Saint-Andre. XMPP instant messaging, September 2003.
http://www.potaroo.net/ietf/ids/draft-ietf-xmpp-im-18.txt.

17. S. M. Sutton, Jr. and I. Rouvellou. Modeling of software concerns in
Cosmos. In Proceedings of the 1st International Conference on Aspect-
Oriented Software Development (AOSD ’02), pages 127–133. ACM Press, 2002.
http://doi.acm.org/10.1145/508386.508402.

18. P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N degrees of separation:
Multi-dimensional separation of concerns. In Proceedings of the 21st International
Conference on Software Engineering (ICSE), pages 107–119. IEEE Computer So-
ciety Press, 1999.

