
Learning from Project History:
A Case Study for Software Development

Davor Čubranić1 Gail C. Murphy1 Janice Singer2 Kellogg S. Booth1

1Department of Computer Science
University of British Columbia

201-2366 Main Mall, Vancouver BC
Canada V6T 1Z4

{cubranic, murphy, ksbooth}@cs.ubc.ca

2Institute for Information Technology
National Research Centre Canada
M-50 Montreal Road, Ottawa ON

Canada K1A 0R6

janice.singer@nrc.ca

ABSTRACT
The lack of lightweight communication channels and other tech-
nical and sociological difficulties make it hard for new members
of a non-collocated software development team to learn effectively
from their more experienced colleagues while they are coming up-
to-speed on a project. To address this situation, we have developed
a tool, named Hipikat, that provides developers with efficient and
effective access to the group memory for a software development
project that is implicitly formed by all of the artifacts produced dur-
ing the development. This project memory is built automatically
with little or no change to existing work practices. We report an
exploratory case study evaluating whether software developers who
are new to a project can benefit from the artifacts that Hipikat rec-
ommends from the project memory. To assess the appropriateness
of the recommendations, we investigated when and how developers
queried the project memory, how they evaluated the recommended
artifacts, and the process by which they utilized the artifacts. We
found that newcomers did use the recommendations and their fi-
nal solutions exploited the recommended artifacts, although most
of the Hipikat queries came in the early stages of a change task.
We describe the case study, present qualitative observations, and
suggest implications of using project memory as a learning aid for
project newcomers.

Categories and Subject Descriptors
H.5.3 [Information interfaces and presentation]: Group and Or-
ganization Interfaces — Computer-supported cooperative work,
Evaluation/methodology; K.6.3 [Management of computing and
information systems]: Software Management—Software develop-
ment, Software maintenance; D.2.6 [Software Engineering]: Pro-
gramming Environments; D.2.9 [Software Engineering]: Man-
agement—Programming teams, Productivity; H.3.3 [Information
storage and retrieval]: Information search and retrieval

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSCW’04, November 6–10, 2004, Chicago, Illinois, USA.
Copyright 2004 ACM 1-58113-810-5/04/0011 ...$5.00.

General Terms
Experimentation, Human Factors, Documentation

Keywords
Software development teams, project memory, software artifacts,
recommender system, user studies

1. INTRODUCTION
New members of teams in a variety of fields must come up-to-

speed on a large amount of information before becoming produc-
tive. Often, this knowledge is gained through mentoring: an ex-
perienced colleague works closely with the newcomers, looking
over their shoulders, giving guidance, and imparting the oral tra-
dition of the team and the project as the newcomers work on their
first assigned tasks [4]. Software engineering is one such field. A
software developer new to a software project usually begins with
small, relatively self-contained change tasks. Working on the tasks
and interacting with a mentor and other colleagues, the developer
learns not only the structure of the software, but also coding stan-
dards, common programming patterns, tools, and work practices in
general [12].

Most of the time, the new team member works independently,
turning to the mentor for help when stuck. These interactions are
typically informal and lightweight, such as a quick question asked
over the cubicle divider or at the water cooler. Often, the advice
obtained is a pointer to an example (a section of code, for instance)
showing how to deal with a particular problem. Studying from ex-
amples and abstracting them for application in a new context is a
common way of learning in programming that has been observed
extensively in both new [9] and experienced [6] programmers.

Mentoring is more difficult in virtual teams, where members
of the team are not collocated, because workers are less likely to
help their non-collocated colleagues [5]. For example, open-source
projects typically accept source code contributions from anyone
on the Internet. With such a low barrier to participation, the ratio
of newcomers to experienced team members is usually very high,
making it even more difficult for newcomers to obtain useful ad-
vice.

Fortunately, the situation is not hopeless. A lot of information
that a newcomer needs is available in the archives of the project’s
mailing lists, the source code versioning system, and the system
used to record and track work on problem reports and newly re-
quested features. We believe that the collection of artifacts across
these repositories implicitly forms a project memory for a software
development.

However, this information is not easily accessible because of its
sheer volume, the lack of tools to search the information effectively,
and the difficulty of making connections between logically related
items in disparate repositories. We have built a tool called Hipikat1

that provides developers efficient and effective access to this mem-
ory [2]. Hipikat is intended to assist newcomers by recommend-
ing items from the project memory—source code, problem reports,
newsgroup articles, etc.—that are relevant to his or her current task,
in effect making it easier for them to “learn from the past” even
when a mentor is not available. This project memory is built auto-
matically and with little or no change to the existing work practices.
We believe that this low barrier to adoption is crucial for Hipikat to
be accepted in the real world, since it has been repeatedly found
that CSCW systems that require significant changes to work prac-
tice or that require users to constantly externalize and map their
knowledge are doomed to failure [3].

This paper describes our exploratory investigation of three ques-
tions regarding the group memory built by Hipikat. We wanted to
know whether and how software developers new to a project can
“learn from the past” using the information captured by Hipikat.
Specifically, our focus is on the following three issues:

1. Can newcomer software developers use information from the
group memory about past modifications completed on the
project to help them in a current modification task? We would
like to see if Hipikat can serve in the role of an experienced
colleague who “remembers” the project’s history and pro-
vides relevant examples to help the newcomer get started or
to fill in background information.

2. When will newcomer developers who are working on a mod-
ification task query Hipikat? We are interested in the kinds
of questions they ask and the answers they expect.

3. How will newcomers evaluate Hipikat’s recommendations
and how will they utilize the recommendations in their tasks?
We are interested in whether the way Hipikat’s recommenda-
tions are presented is adequate and whether there are ways in
which this could be improved to better support developers in
their change tasks.

We begin with an overview of related work. We then briefly de-
scribe our approach to the Hipikat tool, after which we present an
exploratory study into the questions we outlined above. We con-
clude with a discussion of the study and future research directions

2. RELATED WORK
A group memory for software development teams was proposed

by Terveen et al. [13] Their system, Design Assistant, guided the
developer through a sequence of design decisions and produced a
recommendation on code structure and usage of APIs. However,
unlike Hipikat, Design Assistant relied on human experts for build-
ing and maintaining the group memory. It also required changes
to the development process to be effective, something we expressly
wanted to avoid.

Berlin et al. [1] presented a system that built a group memory
from messages that had been sent to an electronic mailing list.
These messages were categorized automatically, using pre-configu-
red keyword patterns, or explicitly by users. Hipikat similarly mon-
itors activity in online public forums to collect developer commu-
nication into a group memory, but goes beyond Berlin et al.’s ap-
proach by correlating information from multiple sources (e.g., the
1Hipikat means “eyes wide open” in the West African language
Wolof.

discussion about a bug and the code implementing the solution).
Berlin et al. used a taxonomy of categories to organize the collec-
tion; Hipikat recommends relevant items on case-by-case basis.

Initial steps towards integrating information sources with little
extra overhead required from users were made by Lougher and
Rodden [7], whose system allowed maintenance engineers to make
annotations on the code. The annotations supported asynchronous
communication about the maintenance changes, while at the same
time capturing the discussions and decisions that were made and
associating them with the source code. The drawback of this ap-
proach is that it requires the developer to look at the exact spot in
the source code to see the annotation, which may not be useful for
a relative newcomer trying to grasp tens of thousands of lines of
source in a multi-megabyte artifact corpus.

In this regard, Hipikat is more similar to the Remembrance Agent
[10], which mines such information sources as user’s email folders
and text notes to present documents relevant to the one currently
being edited. Similarly, Expertise Recommender [8], uses the au-
thor information recorded in a program’s change history to gener-
ate recommendations of people who might have some expertise on
a given problem. However, both of these systems work more like
recommenders/search engines within a single collection, whereas
Hipikat helps integrate multiple information sources. As an exam-
ple of the usefulness of integrating information, we have found that
problem reports stored in the issue tracking database often con-
tain more information than is recorded as part of a check-in for
the associated source code that fixes the problem. Automatically
correlating this information can provide the developer more useful
information within a single search.

Rosson and Carroll have studied how software developers can
learn from examples when they attempt to reuse code with which
they are not familiar [11]. They found that programmers spent less
time analyzing the classes they were reusing than how those classes
were used in the provided examples. That is, the programmers fo-
cused on the reuse of uses, and tended to simply copy the example
code with as little modification to it as was necessary to get it work-
ing in the new context.

Based on their observations, Rosson and Carroll built a tool to
support that kind of reuse, the Reuse View Matcher (RVM). One
drawback is that RVM’s library of examples has to be created by
hand, something that would require significant effort in a larger
system. Furthermore, the library was organized as one example per
class. This approach may not be scalable to showing examples of
how to reuse combinations of classes, because the number of ex-
amples could in that case grow exponentially. Hipikat, on the other
hand, does not require any additional work to create the library of
examples: previous tasks that are selected as “examples” are al-
ready present in the group memory as a collection of file revisions
that were checked into the source control system (e.g., CVS 2) and
as the associated problem reports that they fix.

3. HIPIKAT
Our approach has two parts. First, we form a project memory

from the artifacts and communications created during a software
development project’s history. Second, we recommend to the de-
veloper artifacts selected from this memory that may be relevant to
the task being performed.

3.1 Forming the group memory
There are four types of artifacts represented in a project’s group

memory: change tasks (i.e., problem reports and feature request de-

2www.cvshome.org

scriptions recorded in an issue tracking system such as Bugzilla3),
source file versions (e.g., checked into a source repository such as
CVS), messages posted on developer forums (e.g., newsgroups and
mailing lists), and other project documents (e.g., design documents
posted on the project’s web site). Figure 1 shows the schema of
these artifacts in the group memory together with the relationships
we establish between them. The figure also shows a fifth entity,
person, which represents the author of an artifact.

File
version

Change
task

Message

Document

posts

about

writes

works on
implements

documents

writes

reply to similar to

similar to

check−in package

Person

Figure 1: Artifacts represented in the Hipikat project memory
and links between them.

Relationships (links) between the artifacts are established either
from existing information about artifacts that is available from the
project management tools or are inferred by Hipikat. For example,
the creator of a file version checked into the repository is always
known from the configuration management tool, as is the author of
a newsgroup posting. Hipikat infers links by combining informa-
tion contained within the project artifacts and the meta-information
about the artifacts from different information sources. For instance,
some links between feature requests and file revisions can be in-
ferred when there is a project convention to include in the check-
in comment associated with a revision a reference to the issue-
tracking system entry that describes the feature request. Other links
between entries in the issue-tracking system and file versions can be
inferred based on meta-information, such as when particular project
artifacts were created or modified; for example, it is likely that the
author of a bug fix has checked in a source code revision close to
the time that the problem report was closed in the issue-tracking
system. The details of our algorithms for link inference and artifact
relevance, as well as other implementation issues, were described
in an earlier paper [2].

3.2 Making recommendations
In the second component of our approach, selecting and present-

ing recommendations to a developer, the relationship links are used
to select relevant artifacts in response to a query. As described be-
low in Section 3.3, those queries are initiated by the user selecting
an artifact in the integrated development environment (IDE) and
choosing the “Query Hipikat” option from a menu. The artifact
that is the “subject” of the query is, in this way, implicit from the
context where the query was made. The server receives the artifact
ID as part of the query, finds the artifact in the group memory, and
follows the links to other artifacts to create the recommendation
lists.

For example, once a developer using Hipikat has started working
on a feature modification task, the developer may be interested in
3www.mozilla.org/projects/bugzilla

other tasks that have been completed previously within the same
subsystem, or tasks that have a similar description. These artifacts
will be selected for recommendation by following similar-to
links (see Figure 1) and returned to the user to inspect.

Once the developer has identified a change task that appears to
be similar, querying on it will lead to source revisions that imple-
mented the task of interest (via the implements link). These
revisions could help a developer identify code that may have to be
modified or understood for the task at hand. The completed similar
tasks may also have related discussions about which design options
were examined, and which decisions were made that might impact
the task at hand. Hipikat is able to take advantage of the structure
of the group memory—the different artifact types and relationships
between them—when it is making recommendations. This is not
possible if the developer is using a general search engine, such as
Google, to search for documents in the same set of project archives.

3.3 Implementation
Figure 2 shows a screenshot of Hipikat running as a plugin within

the Eclipse development environment.4 Interaction with Hipikat is
kept as simple and unobtrusive as possible: a user makes a query
by selecting an artifact and choosing “query Hipikat” from the con-
text menu. The selection can be made from most views in the IDE,
such as a list of files in the workspace, a Java editor, or a bug report
viewer (Figure 2a). Additionally, the user can make a search by
typing search terms into a dialog.

A query is sent to the server along with the context (artifact) in
which it was made, and returned results are displayed in a Hipikat
view (Figure 2b). The recommendations are grouped by artifact
type and by selection criteria. Each recommendation includes a
brief summary of the criterion that was used for its selection and
a relative confidence level for how well it matches the query. The
confidence level can be numeric, such as for text similarity, or de-
scriptive, such as “high – bug ID in checkin log” for a revision
implementing a fix for a reported bug. Any recommendation can
be opened for viewing, either within Eclipse or through an external
viewer (e.g., a Web browser), depending on the artifact type.

A user can reorganize a presented list of recommendations, delete
unwanted recommendations, or mark some of them as particularly
relevant to the query, which moves them to the top of the list. (We
plan to use this information in the future to add collaborative filter-
ing capabilities.) Any recommendation can be used as the starting
point for another Hipikat query, making it possible to easily tra-
verse the links in the group memory.

4. HIPIKAT STUDY
In this section we describe our exploratory investigation of the

three questions we posed regarding the group memory built by
Hipikat: (1) whether newcomers can use information from the group
memory about past modifications completed on the project to help
them in current modification tasks; (2) when and from which ar-
tifacts newcomer developers working on a software change task
query Hipikat; and (3) how these developers evaluate Hipikat’s rec-
ommendations and how they then proceed in their tasks.

An important factor influencing the design of our study was the
need to have realistic participants working on realistic tasks. Firstly,
we were interested in studying newcomers, not novices: our par-
ticipants needed to have adequate programming experience in the
programming language of the system under study, but they had
to have no knowledge of the development the system. We also
required participants to have had experience developing large or

4www.eclipse.org

Figure 2: A screenshot of Hipikat being used within Eclipse IDE during the change task case study. Zoomed-in rectangles show a
change task, problem report 116 (a), and list of related artifacts (b)

medium-sized software systems, and to be familiar with issues in-
volved in working on such systems, as well as tools commonly
used to manage projects of such size (e.g., configuration manage-
ment or issue tracking systems). This made the pool of potential
participants much smaller, as we could not use easily recruitable
computer science undergraduates with only a basic knowledge of
a programming language and insufficient experience working on
large software projects.

Secondly, we wanted to study our participants as they worked
on tasks that were complex enough to challenge them and require
serious effort to understand the problem and come up with a solu-
tion. Specifically, we looked for tasks that would require a cou-
ple of hours to solve; otherwise there would not be much need
for advanced software engineering tools, such as Hipikat. We also
wanted tasks that were appropriate as an assignment for a project
newcomer in a real project. In practical terms, this meant that we
considered mostly requests for new features, in particular those that
had a visual or UI component to them because it made it easier for
the participants to understand the task and test their solutions. Fi-
nally, the tasks had to allow for exploration and variation in the
learning and problem-solving process of individual participants,
but at the same time we wanted to be able to compare the solutions
with each other and evaluate them for “correctness” and quality.

Given the questions asked in this research and the complexity of
the tasks analyzed, we realized that a case study was the appropri-
ate methodology for this stage of the research, using multiple cases
to try to capture individual working styles. Because we wanted to
look in detail at how developers accessed Hipikat and used its rec-

ommendations while working on modifications to a new software
system, we ruled out a controlled experiment. Instead, we chose a
largely qualitative analysis that would allow us to look for patterns
across our cases and handle large individual differences among the
participants in their programming and exploration styles.

Because we wanted to be able to compare the solutions with each
other, all participants worked on the same set of tasks. We also
wanted to compare the newcomers’ end product with that of ex-
perienced developers who worked on the project, so we recruited
several members from a development team and asked them to work
on the same tasks and serve as our baseline for comparison. This
design allowed us to study Hipikat under conditions similar to those
faced by newcomers to many large open-source systems, to test the
system on real tasks, and to compare the results of the newcomers
with experienced team members.

4.1 Design
We chose as our target system Eclipse, an open-source software

project initiated and actively supported by IBM. Eclipse is an ex-
tensible integrated development environment that is written in Java
and contains around a million lines of code. As is common for
an open-source project, the development of Eclipse is conducted in
a very transparent manner, with the full history of changes to the
code, developer discussions, and problem reports publicly avail-
able. We selected as change tasks to study two previously com-
pleted enhancement requests drawn from the Eclipse issue track-
ing database. By choosing enhancements to an earlier version of
Eclipse, we were able to devise a set of correctness criteria based

on the solutions adopted by the Eclipse team. We could then check
the participants’ solutions against the correctness criteria, as de-
scribed in Section 4.4. We created a copy of the Eclipse project
artifacts as they existed at the time when the enhancement requests
were made, and formed an instance of the Hipikat group memory
on this copy.

The Eclipse team uses the Eclipse IDE itself for all development,
so that was the natural choice of the development environment for
the study (that is, all participants used the Eclipse IDE to make
changes to its source code). All the information sources used by
the project—the web-based documentation, issue-tracking system,
source code repository, newsgroups, and mailing lists, as well as
standard search engines used by the Eclipse project—were avail-
able to each participant, with the same applications to access them
that they would normally use (e.g., Internet Explorer for the web
pages). Additionally, the newcomers had access to Hipikat, which
is itself written as an Eclipse IDE plugin, and thus seamlessly inte-
grated into the development environment.

Each participant worked on two change tasks, which we describe
below in more detail. One task was easier than the other. The order
in which the participants worked on the tasks was randomized to
control for learning effects.

Easy task. This modification request 5 described a need, when
hovering over a breakpoint in an editor for Java source code,6 to
display the breakpoint’s properties, such as the associated line num-
ber, in a pop-up window. The request asked for a few basic proper-
ties, such as the breakpoint’s line number. A subsequent comment
in the request’s discussion suggested also displaying whether the
breakpoint stops the execution of the entire VM or just the current
thread. The participants were told the latter was an optional prop-
erty that they could implement if they so choose. (See Figure 3 for
a screenshot illustrating the implemented popup in use.)

Figure 3: Breakpoint hover as implemented in Eclipse 2.1.

Difficult task. The second modification request 7 involved the
interaction of a developer with the UI during versioning opera-
tions on a group of files. A file can be in one of the three states:
new, versioned, or ignored. The request explained that operations
in the versioning context menu were incorrectly greyed-out (made
unavailable for selection) when a mix of versioned and new files
was selected. A related problem noted in the request was that com-
mitting a new file to the repository requires two steps: marking it
as a versioned file and then committing. The request asked for a
more intelligent handling of this case, similar to the way it is done
through the “synchronization view”, where new files can be auto-
matically versioned when they are committed.

5Request 6660 in the Eclipse problem report database
6A breakpoint is a debugging facility that suspends the execution of
the program at a certain location in the code, enabling the developer
to investigate the program’s internal state.
7Request 20982 in the Eclipse problem report database

Characterization of the two tasks. The categories “easy”
and “hard” are relative. Even the easy task was not trivial. The ob-
vious way to go about solving it—looking for the mouse hover han-
dler and working backwards—would lead the developer through
some rather complicated code, having to understand multiple sub-
systems of Eclipse without really making progress on the task itself.
A significant difference between the two tasks was how much help
the Hipikat recommendations provided towards the task: Hipikat
provided at least one recommendation that makes it substantially
easier to solve the “easy” task.

Scope of change: The two tasks differed not only in the amount
of code needed to implement a solution, but also in the extent to
which the solution needed to interact with the rest of the system.

Easy: The scope of change to the system’s source code was fairly
isolated; it was located in only a couple of files and interacted
with only a single other entity in the system outside those
files.

Hard: Here too only a few files needed to be changed, but the code
in those files interacts with a number of different subsystems:
file management, versioning, and user interface.

Relevant Hipikat recommendations: Participants relied on how
high a recommendation was ranked in the query response. For each
task, we ensured that at least one of the recommendations provided
by Hipikat in response to a query on the starting point—the task’s
problem report—was relevant. Determining that a recommendation
was relevant depended upon how “obviously” similar its descrip-
tion (summary for a problem report or a CVS checkin comment)
was to the current task, and how easy it was to evaluate the code
in file revisions related to a suggested problem report for potential
usefulness.

Easy: The top recommendation returned by Hipikat for the easy
task was a previous enhancement request that was similar in
description. The implementation code linked to this request
was fairly straightforward to understand and coincided almost
exactly with the code that had to be changed for this task.

Hard: Hipikat recommendations had to be examined in more de-
tail to accomplish the hard task. The most useful recom-
mendation (corresponding to the change that implemented the
committing of new files in the “synchronization view”) was
not at the very top of the list as in the easy task, so participants
had to look at a number of recommendations before deciding
which to investigate in detail to help them in the hard task.
Evaluating the various recommendations was more involved
than in the easy task, because they were linked to implemen-
tation code that was more complex and spanned multiple files.

Learning from recommendations: Applying knowledge learned
from the relevant Hipikat recommendation to solving the actual
task depended on how difficult it was to understand the recom-
mended code and how the code interacted with the rest of the sys-
tem. Also important was how close the location of the recom-
mended code was to that of the task’s solution and how hard it
would be to “transplant” the code to the new location.

Easy: The recommended code was easy to understand. Once the
desired text for the hover message was put into a particular
container object (the “marker”), the container handled the dis-
play of the pop-up window, relieving the developer of all GUI
considerations. Just as importantly, the recommended code
was in the same file as the task’s solution and used many of
the same data structures.

Hard: The related change reported by Hipikat was in a slightly dif-
ferent subsystem (the “synchronize view”). Although it could
be used as a general approach for most of the solution, only
small sections of the code could be reused directly because
the data structures on which it operated were different.

4.2 Participants
Twelve paid volunteers participated in the study. Eight were new

to developing Eclipse, although some had used it as their Java de-
velopment environment for 1 to 12 months and so had experience as
users. All of the newcomer participants expressed their experience
in Java programming as at least “comfortable,” and had experience
working on large projects, including software management prac-
tices such as source code versioning and issue-tracking. Seven of
the eight were graduate students and one was in the final term of
his undergraduate degree.

The four expert participants were all cooperative work students
in at least their second term at the IBM lab that is the leading con-
tributor to the Eclipse project. Consequently, all of them had at
least eight months of experience developing and extending Eclipse,
although their expertise was in different parts of the system than
the selected enhancement requests touched. Therefore, the experts
were familiar with the system’s architecture and the accepted ways
of doing things, but they still had to engage in information gather-
ing to understand unfamiliar code.

4.3 Procedures
Because of the time required of each participant, the study was

divided into two sessions, training and programming, that took
place within three days, depending on the participant’s schedule.

Training session. Each of the eight newcomers underwent four
hours of hands-on Eclipse training. The participants individually
worked through three online tutorials that included frequent hands-
on exercises applying the covered material. The participants worked
on their own, but one of the authors was present in the room to an-
swer any questions.

The first training session covered the use of Eclipse to write Java
programs in general. The tutorial took an hour and was based on
the material in the User’s Guide that is part of Eclipse’s online help.
Although four of the eight participants had previous experience us-
ing Eclipse (to work on their class assignments, for example), we
required that all go through the tutorial to ensure the same basic
knowledge of the environment’s capabilities for writing, running,
and debugging Java programs.

The next two hours covered programming and extending Eclipse
itself. This material was based on the online Programmer’s Guide
that comes with the Eclipse distribution. It is reasonable to assume
that “real-world” Eclipse newcomers would have gone through these
online guides, because the guides were the only introduction to
Eclipse available until third-party books were published in the Sum-
mer of 2003.

The last hour of the instruction covered Hipikat, from its design
and features to a walk-through of a sample session using Hipikat to
work on an Eclipse problem report. This part ended with an open-
ended exercise where the participants were asked to complete a bug
fix using Hipikat to give them some experience using the tool in a
less structured format.

The four experts did not go through any training because they all
had significant experience with Eclipse and did not have Hipikat
available during the programming session.

Programming session. The programming session was divided
into two parts, one for each change task. Each part started off by
assigning one of the change tasks to the participant, who would
then read and understand the request. Once the requested feature
was understood, the participant would start working on the change
plan. The participants were free to use any available Eclipse tools
to understand the code and to plan their change, but we requested
that they complete the plan and describe it to the experimenter be-
fore proceeding with implementing the change. The format of the
plan was left to each participant, and the level of required detail
left flexible, perhaps only including the broad outline of the ap-
proach and the files that will need to change. The use of Hipikat
was explicitly encouraged in the instructions to the newcomers. If a
participant did not come up with a plan by the end of the first hour,
we conducted a progress interview to see what the participant had
been working on.8

Once the change plan was completed, we conducted a semi-
structured interview in which we asked both about the details of the
plan and the process used to come up with it, including tools used
and information accessed. Following the plan interview, the par-
ticipant went on to implement the change, at the end of which we
conducted another semi-structured interview where the participant
showed us the details and described the process of implementation.
During this interview we asked critical incident-type open-ended
questions about the most difficult part of solving the task and how
the participant went about solving it. We also asked the partici-
pants about available tools and information that were useful or not
useful, as well as those that would have been useful had they been
available. The maximum time to plan and implement the change
was fixed at two and a half hours.

We used screen capture software (Camtasia by TechSmith) to
record the participants’ actions while working on the change plan
and its implementation. We also instrumented Hipikat to record
the queries into a file, although this information could have been
obtained from the screen recordings.

4.4 Analysis
All recordings we made were first transcribed: interview tapes

to text and screen recordings to maps of each participant’s explo-
ration. The maps were made by marking when each artifact (bug
report, source file, revision, web page) was viewed for the first time
and the way in which it was reached. When two artifacts were log-
ically related as part of the same “exploration path” (for example,
seeing the use of an identifier in one file, and jumping to its def-
inition in another file), we connected them with a directed edge,
forming a directed tree of such paths (see Figure 4 for an example).

We collected all code modifications that the participants made
while they worked on each task. These were checked for correct-
ness against a set of criteria that we had identified.9 These criteria
are sufficiently abstract to cover the required functionality of added
features, but still allow variation within the actual implementations.
We also included special cases that are not always covered explic-
itly in the feature request description, but would result in bugs un-
der certain circumstances. Lastly, we required that the added code
be readable and maintainable, as well as that it follow the Eclipse
team’s coding practices.

8Participants who got stuck during the planning stage were given
a small hint if they were entirely off the solution’s track. This is
comparable to a brief advice they may have got on an Eclipse news-
group, for example.
9The correctness criteria used in the study can be found on-
line at www.cs.ubc.ca/labs/spl/project/hipikat/
eclipse-study/correctness-criteria.html

Figure 4: A portion of a newcomer’s exploration map.

We manually evaluated participants’ solutions based on the cri-
teria. When a criterion was missing from the solution, we checked
for it in a participant’s written change plan, and in the comments
the participant made during the change plan interview. We were in-
terested in the change plans in addition to the solutions because we
wanted to account for all the information participants discovered,
even if the solution was partly incomplete because of our arbitrary
time limit for work on the task.

4.5 Results
In this section we present the results of our analysis. We first

focus on the participants’ performance in each of the two tasks. We
describe the patterns in their solutions and compare the newcomers
with the experts. Next, we look at their process: how the newcom-
ers accessed Hipikat, and how they evaluated and used Hipikat’s
recommendations in their work.

We present our analysis of performance for the easy task first,
but note that the order in which the tasks were done did not seem
to make any difference in the performance across participants.

Easy task solutions. All of the participants implemented the
basic requirements of this task: displaying a pop-up window with
the breakpoint properties on mouse hover. The experts solved the
task much faster, while most newcomers took all of or close to
the full time available. However the whole picture is more com-
plex. All but one of the newcomers found the right files for the
change quickly (using Hipikat’s recommendation), but then took
much longer than the experts to understand the intricacies of the
code.

Although all solutions presented the pop-up with breakpoint prop-
erties as requested, many participants did not handle the special
cases properly (i.e., updating the hover when the breakpoint’s prop-
erties were changed), which introduced bugs into their solution.
Surprisingly, this was even more the case among the experts, where
only one of the four participants (25%) correctly updated the infor-
mation in the pop-up after the breakpoint’s properties were changed
by the user. Of the newcomers, three participants (38%) handled
this correctly, and two more (for a total of 63%) handled it cor-
rectly within the scope of basic range of properties that they chose
to implement (that is, the line number, condition, and hit count).

The faulty solutions focused on a particular class, JavaLineBreak-
point, and missed consideration of that class’s superclass JavaBreak-
point, which was responsible for updating some of the breakpoint
properties. The faulty solutions thus missed some method inher-
itance interactions, so that the hover text was not updated when
properties were changed through the JavaBreakpoint superclass.
An examination of the plans created by the expert participants who

failed to handle these updates shows that all of them talked exclu-
sively about the concrete subclass. In a way this is not surprising
because that is where the bulk of the change was located, and it was
probably so deceptively simple that they did not investigate all of
its implications.

The relatively high correctness of the newcomers’ solutions can-
not be explained entirely by the longer amount of time that they
took to finish the task. They were not taking much longer to come
up with their change plans, yet even there both classes were reg-
ularly mentioned. We believe that the newcomers did so well be-
cause both classes were included in the Hipikat recommendation
from which they were starting, and so they were used to thinking
about the two classes as a single unit, which was reflected in their
plans and implementations. This is a good example of a valuable
bit of information that was never explicitly written down anywhere
in the project artifacts, and yet was implicit in the links between
the artifacts and became obvious to the newcomers during their ex-
ploration of the memory. Without viewing Hipikat’s suggestion, it
was not at all obvious that both classes would need to be updated.
Indeed, half of the expert participants overlooked it, causing bugs
in their solutions.

Another example showing that the newcomers can learn good
practices implicitly recorded in past solutions was the way they re-
alized that they should “externalize” all text messages in their code
so that the application can easily be internationalized by chang-
ing a few properties files that came with it, rather than the source
code. This approach was not something that was explicitly covered
in the tutorials, but became obvious in Hipikat’s recommendation,
which showed that whenever some changes involved adding text
messages, those messages were being externalized in the proper-
ties file. Three of the eight newcomers externalized their strings,
and two more noted the practice and said that they would probably
do the same in their code before releasing it as a finished product.

Difficult task solutions. The participants were less successful
with solving this task, and the newcomer group did worse than the
expert group on the correctness criteria. Three of the four experts
(75%) solved the basic requirements of the task: detecting new un-
committed files, displaying the message dialog to the user, mark-
ing them as versioned when directed by the user, and proceeding
to commit to the repository. The unsuccessful expert was com-
pletely on the wrong track with her planned solution and did not
implement any of these steps. In the newcomer group, three of the
eight participants (38%) managed to implement all of the basic re-
quirements. Two more newcomers were able to detect the new files
and to display the required message dialog to the user, but then did
not implement marking those files as versioned. Of the last three
newcomers, one participant’s solution was almost correct but for a

runtime error, one still had syntax errors in the code when the time
ran out, and the last one did not get beyond correctly identifying
the methods where his solution should go. In that respect, all of
the newcomers got farther than the unsuccessful expert, since even
their incomplete solutions were on the right track.

The participants had more difficulty with the special cases in this
task. For example, none of their solutions looked within directories
that were being committed to check whether they contained any
new files. The newcomers should arguably have been aware of
this special case. Detecting these files during the commit operation
was discussed and accepted as desired in an earlier problem report
when the corresponding feature was being added in the “Synchro-
nize view”. This problem report was recommended to them by
Hipikat—ranked highly in the recommendation list for its similar-
ity to the assigned task—and they even used it as the basis of their
solutions. However, it was easy to overlook this point, buried as it
was in the middle of a lengthy discussion within the problem report.

Furthermore, because the code in Hipikat’s recommendation was
in a different subsystem, in which it was assumed that the con-
tents of the directories were already available, the newcomers over-
looked that this was something they would have to do themselves
if they were to reuse it in their subsystem. This raises an interest-
ing question of the kind of expectations that the newcomers had for
Hipikat’s suggestions, something which we consider in more detail
later in our discussion (Section 5).

The expert participants did not look at problem reports other than
the one describing the assigned study task, and so they never saw
the above-mentioned discussion. Still, they used Eclipse daily in
their work, so it was a little surprising that they forgot about the be-
haviour in the “Synchronize view” (particularly because that view
was specifically mentioned in the assigned task description) and did
not parallel its functionality in their solutions.

Instead, during interviews some experts said that they did not
consider the directory special case at all; those who did consider
it ended up concluding that the commit operation should not work
that way. This conclusion diverges from the project consensus on
the behaviour of the commit operation. If the requested feature had
really been implemented this way in Eclipse, users of the system
would have probably been confused with inconsistent outcomes of
the commit operation depending on the point in the user interface
at which it was invoked.

Accessing Hipikat. We used the exploration maps to try to find
patterns in how and when Hipikat was queried and which recom-
mended artifacts were accessed. Not surprisingly, Hipikat was ac-
cessed less during the easy task than during the hard task. An av-
erage of 3.4 and 6.1 queries were made, respectively.10 In each
case, one of the queries—usually the very first one, except as noted
below—was on the problem report that describes the assigned task,
so in the easy task in particular it did not take very long for the
participants to find the information that they wanted from Hipikat.

Further to that point, almost all queries were made within the first
hour, especially when a participant was successful in formulating a
solution plan. Once a participant knew the file(s) to be changed and
had determined a general plan of how to do implement the change,
he or she did not make any more Hipikat queries. That is, Hipikat
was apparently used as a tool to help get an initial understanding of
the assigned task.

10These two figures refer to unique queries made in each task. Oc-
casionally, participants queried on the same artifact more than once
during the course of a task. Because those repeat queries were used
as an alternate query “history” mechanism, we did not count them
when calculating the averages.

This is particularly obvious in the easy task, where four of the
eight newcomers needed only two queries. Their first query, on the
problem report assigned in the task, led to a very similar problem
report which was at the top of Hipikat’s recommendations and was
marked fixed. Querying on that report led to the file revisions im-
plementing its features, which pointed out the classes involved in
the change and highlighted the code that was added. At that point,
the participants would switch to viewing the source code of these
classes and to using other Eclipse tools to understand how that code
interacts with other parts of the system. Other participants who
successfully solved the easy task also found that same top recom-
mendation and eventually used it in their solutions. However, they
made one or more other queries, probably to get a better feel for the
code before plunging in to understand it more fully.

The participants queried Hipikat predominantly in the two-step
sequence just described: find an interesting-looking problem re-
port, then check to see if it has any associated file revisions that
look like they could be relevant to the task, either as an example
of the API usage or as a potential source of code to reuse. (This is
not surprising because it was the main interaction technique shown
to participants in their Hipikat tutorial.) Artifacts other than prob-
lem reports and file revisions were hardly ever considered, except
in two situations. At the very beginning of the task, participants
looked for explanations of some of the terms in the task description
(e.g., “hover”, “suspend VM”), not only in problem reports but also
in the suggested web pages (that is, in online design documents and
reference manuals). Second, when participants felt that the recom-
mended problem reports were not giving sufficient information (or
were suggesting file revisions containing code that was either ir-
relevant to the task or too hard to understand), they tried looking
at recommended news articles for possible clues. This was only a
temporary change of tactic, because the newsgroups in the Eclipse
project are not used to discuss development issues. Therefore, news
articles were not helpful in the assigned tasks, so participants who
looked at them soon returned to their initial search strategy.

Evaluating and using recommendations. Based on the
query and access patterns described above, it appears that the par-
ticipants’ exploration was focused on solving the assigned task,
rather than gaining deeper understanding of the code. Furthermore,
their exploration appears to be defined by a sequence of sub-goals.
The following quote from one newcomer on the easy task illustrates
this goal-driven behaviour:

So, my first goal is to find out how the hover behaviour
is implemented. . . . the second thing was to find out
where the line number, where I can get the line number
at that stage, so I can add it in. (S2)

The most important thing was to find code relevant to the current
sub-goal. Of course, finding the right piece of code in a system
containing hundreds of thousands of lines can be like searching for
a needle in the proverbial haystack. Even using more sophisticated
search strategies—like starting from a recognizable entry point and
tracing backwards through call and inheritance graphs—could be
likened to using a length of thread to find an exit from a labyrinth.
We observed two of our experts struggle with the easy task using
just such a strategy. They eventually succeeded in their search be-
cause of their experience, but a newcomer who failed to solve the
same task, using much the same strategy, got hopelessly bogged
down trying to trace her way out of the intricacies of the code.

The alternative, which we saw among the newcomers, was to use
Hipikat and its recommendations to find code that could be reused

in the task’s solution and/or the probable location of where the solu-
tion should be implemented. However, using the recommendations
poses its own challenges. First, a potentially useful recommenda-
tion has to be recognized. Then the recommended piece of code
has to be understood in terms of what it does and how it fits into
the larger system. Finally, that code has to be adapted to its new
purpose, which may involve moving it to a different place in the
system’s architecture. We explore the first two points in the re-
mainder of this section, and leave the third for the discussion (Sec-
tion 5), when we explore some of its more general implications for
learning from group memories.

Recognizing useful recommendations. We found that the
crucial first condition to recognize a useful recommendation was
whether the description of a problem report looked “interesting.”
That is, it had to be similar enough to the current task to make
it likely that the associated code could be reused, or at least that
the participant could learn from it information relevant to the task.
In the case of such a problem report, the participants would then,
via another Hipikat query, move to investigate the associated file
revisions.

Not surprisingly, participants searched for similar reports by go-
ing down the list of recommendations returned in response to the
query on the task’s problem report. Given the effort needed to un-
derstand the code of more complex recommendations, we observed
reluctance to investigate too many recommendations down the list.
If anything, we noted that participants tended to stop their explo-
ration as soon as they had a starting point from which to look at
source code.

The hard task provides an excellent illustration of this behaviour.
There, the initial Hipikat recommendation list contained two re-
lated problem reports near the top of the list. Both of them pointed
to the same set of files, although the revisions associated with the
one lower in the list actually highlighted code that could be di-
rectly reused to implement two of the task’s basic requirements.
In contrast, the higher-ranked recommendation was only useful in
pointing to the right classes, but its implementation was more com-
plicated and in the end not as useful for the assigned task. And yet,
only two of the eight newcomers ever looked at the code imple-
menting the fix for the lower-ranked, but in reality more relevant,
problem report. Instead, the higher-ranked recommendation was
“close enough.” Its description was similar enough to the assigned
task, and its implementation involved code that looked promising
enough, so participants were reluctant to spend any more effort
looking for something better. In the end, this course of action was
successful, although it almost certainly took longer. Given the un-
certainty whether something better existed, it was not an unreason-
able course to take.

Understanding recommendations. In some cases, for in-
stance in the top recommendation in the easy task, the code in
recommended revisions was easy to understand just by seeing the
modified lines highlighted by Hipikat. At this point, the participant
would switch from the Hipikat view to working with the source
code directly in order to understand it more fully, and especially
how this code interacted with the rest of the system.

In other cases, and in particular in the hard task, this could re-
quire significant effort. For instance, some highly-rated recommen-
dations in the hard task included up to nine files that were imple-
menting the fix for a problem. Understanding just how changes in
those nine files were related to each other, what exactly they do, and
which of them were relevant to the actual task was a serious chal-
lenge. The way Hipikat presented the recommendations involving

file revisions was not sufficiently helpful in such cases. We will
discuss the problem in more detail in Section 5, including poten-
tial avenues for alleviating it. A common “shortcut” used in such
situations was to consider the names of the files included in those
revisions as an indication of their potential relevance, and to switch
to viewing source code even if the revision’s changes were not quite
understood. The participants preferred to build their understanding
of such a file from scratch by reading it in an editor, at the risk of
following a false lead and having to return to searching.

5. DISCUSSION
In our study, the examples of previous changes provided by Hipi-

kat were helpful to newcomers working on the two change tasks.
The recommendations were used as pointers to snippets of code
that could be reused in the new tasks and as indicators of starting
points from which to explore and understand the system. Without
such help, it is hard for a newcomer to a project to even know where
to begin:

before I actually saw the results Hipikat [unclear], I
wondered how I would trace where the hover behaviour
was coming from, and—and really I had no idea how
that stuff is implemented. . . . I mean, I can’t, I don’t
know even if I would have gotten to it. I might have
done some search on breakpoints, maybe that would
have gotten to [unclear]. . . . No I guess the breakpoint
it doesn’t actually implement IMarker. I’m not sure.
Certainly wouldn’t have been as easy.

Moreover, the study also made it apparent that the provided rec-
ommendations were not used to gain wider understanding of the
code, or of the design rationale behind it. For instance, although
the problem reports recommended by Hipikat included developer
discussions, such as design decisions and implementation trade-
offs, it seems that the reports were read mostly to evaluate their
closeness to the task at hand. Otherwise, the participants arguably
should have noticed that the problem report used as a basis for
most solutions in the hard task contained a discussion of what to
do with new files in subdirectories during a versioning operation in
the “Synchronize view.” However, none of the participants consid-
ered checking for this condition.

One possible reason for this oversight is that the study partic-
ipants were focusing on implementing some basic functionality
first, given the study’s time limits, and leaving the improvements
for later. Arguably, this is true in general: programmers and pro-
fessionals are always under time pressure and driven to fix just the
immediate problem. The question is whether project histories will
tend to be used mostly as a source of “shallowly understood” ex-
amples, as we saw in the hard task, with the same consequences—
taking a quick fix without deeper analysis. This is a concern that
deserves further study, but with users who have a real and long-
term involvement in the project, because those users will have a
stronger incentive to gain deeper understanding of the recommen-
dations provided by a project history recommender, such as Hipi-
kat.

On the other hand, it is possible that it was precisely Hipikat
which allowed the study participants to solve the tasks without
gaining a deeper understanding of the system, by making it easy
to “lift” the code from recommendations. Rosson and Carroll [11]
have observed this approach by developers. Developers naturally
engage in an as needed comprehension strategy because it is the
only strategy that is feasible given limited information and time
constraints. Since Hipikat makes a wider range of information

available, we expect that at times when more thorough compre-
hension is necessary, it would be a feasible action to take.

We should also note that the way the discussion was organized
within the problem report—with little structure and no highlighting
of the important parts and conclusions—made it too difficult to fol-
low by someone who is just trying to get the overall picture. This is
precisely the kind of situation that design intent systems attempt to
address, but these systems are impractical to apply to the hundreds
of problem reports that a large project, such as Eclipse, handles
each week. It is possible that a more appropriate compromise can
be found between the formal notations proposed by most design in-
tent systems, and the simple chronological sequence of comments
used in most issue tracking systems today.

Understanding recommendation context. At least some
participants who used Hipikat stated in interviews that they had as-
sumed that the code they were using as a template in their hard task
solutions would automatically handle the subdirectory special case
that was already described. They had misunderstood the context
of the recommended code and how it translates to the new con-
text in which they were developing. In the original context, the
subdirectories were already handled by the caller—something that
was not true in the new context. Although reuse of uses has al-
ready been studied by Rosson and Carroll [11], understanding the
usage context during reuse of Hipikat’s recommendations poses ad-
ditional problems to the developer. Developers studied by Rosson
and Carroll reached the code they were reusing by exploring the
source on their own, building a mental model of the context as they
went. Developers in our study using Hipikat had to build their men-
tal model from the recommendation outward. This exploration was
fairly “breadth-first”, and so it is possible that it was not sufficiently
“deep” to establish the right usage context.

We believe that some form of visualization could make it eas-
ier to understand the provided example in the context of the larger
system, which may help alleviate this problem. Otherwise, Hipikat
users are faced with the situation in which, as one of the study par-
ticipants described it, “everything is in drawers and you open one
drawer at a time and look inside.” (S8)

Impact of extended use of Hipikat. While one of our starting
principles was to require little or no change to the development pro-
cess in order to use Hipikat, it would be interesting to see how ex-
tended use of Hipikat would affect developers. For example, would
developers voluntarily adopt practices that would help Hipikat be
more useful, such as summarizing and highlighting important parts
of discussions in order to make them more understandeable if they
were recommended by Hipikat to a newcomer in the future?

An intriguing question is whether developers would be willing to
accept being asked to do more in order to make Hipikat more effec-
tive, if they came to recognize the tool’s usefulness. At that point, a
feedback mechanism on the relevancy of Hipikat recommendations
might be introduced into the development process. These recom-
mendations could be evaluated together with the new code during
code review, similarly to a process proposed by Terveen et al. [13].

6. SUMMARY
Thanks to electronic communication mechanisms, groups today

can work with members distributed over various locations and mul-
tiple time zones. It can be difficult for newcomers to join such
groups because it is hard to obtain effective mentoring. In this pa-
per, we investigated how an implicit group memory from the digi-
tal archives of an open source software project could be utilized to

facilitate development. Using Hipikat we can form such a group
memory, and we can recommend appropriate parts of the memory
to newcomers working on enhancement tasks. A case study showed
that newcomers can use the information presented by Hipikat to
achieve results comparable in quality and correctness to those of
more experienced members of the team. We found difficulties for
newcomers in understanding recommended artifacts in the context
of the past system, and in taking the knowledge forward and apply-
ing it to the current context. It would be interesting to know if the
problem of too-shallow understandings is an inherent outcome of
learning from the past or if systems such as Hipikat can be designed
to encourage deep understanding.

7. ACKNOWLEDGEMENTS
This work was supported by NSERC and IBM as part of the

Consortium for Software Engineering Research in Canada. The
New Media Innovation Centre (Vancouver) provided observation
facilities for the study. We would like to thank the anonymous re-
viewers for their comments and the study participants for their time
and effort.

8. REFERENCES
[1] L. M. Berlin, R. Jeffries, V. L. O’Day, A. Paepcke, and

C. .Wharton. Where did you put it? Issues in the design and
use of a group memory. In Proc. of CHI 1993, pp. 23–30,
1993.

[2] D. Čubranić and G. C. Murphy. Hipikat: Recommending
pertinent software development artifacts. In Proc. of ICSE
2003, pp. 61–65, 2003.

[3] J. Grudin. Groupware and social dynamics: eight challenges
for developers. Comm. of the ACM, 37(1):92–105, Jan. 1994.

[4] C. A. Hansman, editor. Critical perspectives on mentoring:
Trends and issues. ERIC, Ohio State University, 2002.

[5] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter.
An empirical study of global software development:
Distance and speed. In Proc. of ICSE 2001, pp. 81–90, 2001.

[6] B. M. Lange and T. G. Moher. Some strategies of reuse in an
object-oriented programming environment. In Proc. of CHI
1989, pp. 69–73, 1989.

[7] R. Lougher and T. Rodden. Supporting long term
collaboration in software maintenance. In Conference on
Organizational Computing Systems, pp. 228–238, 1993.

[8] D. W. McDonald and M. S. Ackerman. Expertise
Recommender: A flexible recommendation system and
architecture. In Proc. of CSCW 2000, pp. 231–240, 2000.

[9] P. Pirolli and J. Anderson. The role of learning from
examples in the acquisition of recursive programming skills.
Canadian Journal of Psychology, 35:240–272, 1985.

[10] B. J. Rhodes and T. Starner. Remembrance agent. In The
Proc. of PAAM 1996, pp. 487–495, 1996.

[11] M. B. Rosson and J. M. Carroll. The reuse of uses in
Smalltalk programming. ACM Transactions on
Computer-Human Interaction, 3(3):219–253, 1996.

[12] S. E. Sim and R. C. Holt. The ramp-up problem in software
projects: A case study of how software immigrants
naturalize. In Proc. of ICSE 1998, pp. 361–370, 1998.

[13] L. G. Terveen, P. G. Selfridge, and M. D. Long. From
“folklore” to “living design memory”. In Proc. of CHI 1993,
pp. 15–22, 1993.

