© 2003 | EEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or

redistribution to serversor lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

Design Pattern Rationale Graphs: Linking Design to Source

Elisa L.A. Baniassad & Gail C. Murphy
University of British Columbia
2366 Main Mall Vancouver Canada V6T 1Z4
{bani,murphy} @cs.ubc.ca

Abstract

A developer attempting to evolve a system in which de-
sign patterns have been applied can benefit from knowing
which code implements which design pattern. For instance,
the developer may be able to understand the purpose, or
to assess the flexibility of the code, more quickly. The de-
gree to which the developer benefits depends upon their un-
derstanding of the pattern. Achieving an in-depth under-
standing of even a simple pattern can be difficult as pattern
descriptions span several pages of text, and discuss interre-
lated design concepts and choices. To enable a developer to
effectively trace the design goals associated with a pattern
to and from source, we have developed the Design Pattern
Rationale Graph (DPRG) approach and associated tool. A
DPRG makes explicit the relationships between design con-
cepts in a design pattern, provides a graphical represen-
tation of the design pattern text, and supports the linking
of those concepts to implementing code. In this paper, we
introduce the DPRG approach and tool, and present case
studies to show that a DPRG can, at low-cost, help a devel-
oper identify design goals in a pattern, and can improve a
developer’s confidence about how those goals are realized
in a code base.

1. Introduction

A design pattern names, abstracts, and identifies
the key aspects of a common design structure
that make it useful for creating a reusable object-
oriented design. ...[A design pattern] describes
when it applies, whether it can be applied in view
of other design constraints, and the consequences
and trade-offs of its use. [6, p. 3-4]

A developer who has chosen to implement a particular
design pattern as part of building a software system must
make choices amongst the implementation alternatives pre-
sented in the pattern. For instance, in the OBSERVER de-

Christa Schwanninger
Siemens AG, CTSE 2
Otto-Hahn-Ring 6, 81739, Munich Germany
christa.schwanninger @siemens.com

sign pattern [6], which provides a solution for notifying
registered dependents (observers) when a particular object
(a subject) changes state, the developer must decide how
to transmit information related to the change. One option
is the push model in which the subject sends all observers
detailed information whether or not each observer needs it:
This approach can limit the reusability of observers. An-
other option is the pull model in which the subject may send
little information, requiring interested observers to request
needed details: This approach can be inefficient because an
interested observer has to try to determine what changed.

A developer who is later asked to perform an evolution
task involving this code, such as adding a new feature or
fixing a defect, can benefit from knowing that it represents
the OBSERVER pattern. For instance, the developer may be
able to understand the purpose of the code more quickly, to
posit how the code works, or to understand the flexibility
of the code. The developer may be able to recognize the
pattern by comments in the code, by the names chosen for
the classes or methods in the code, through the use of a pat-
tern finding tool (e.g., [18]), or through the use of a pattern
generation or encoding technique (e.g., [22, 8])

The degree to which a developer benefits from knowing
that a piece of code implements a particular pattern depends
upon the developer’s understanding of the design pattern. If
the developer knows many of the possible implementation
variants and understands their relationship to design goals,
the developer can work with the code effectively. Achieving
an in-depth knowledge of even a single pattern can be diffi-
cult as the pattern description may span several pages of text
and may include several diagrams. The OBSERVER pattern,
for instance, is eleven pages long and discusses more than
seven significant implementation choices, including how to
store the subject-to-observer mapping, and how unexpected
updates can be handled. Trying to understand which variant
was implemented, why that variant was chosen, and the ef-
fect of that variant on design goals requires careful reading
and analysis of the pattern. In the open source and industrial
code that we have examined, the original developers have
seldom provided this kind of rationale in any comments or

documentation associated with the code. A developer en-
countering the code must thus recall or find the rationale
in the pattern. In a small exploratory study we conducted
involving the Visitor [6] and Reactor [19] design patterns,
we found that pattern-experienced developers had difficulty
answering detailed questions about how the pattern worked
based on a reading of the pattern alone [1].

To enable a developer to trace the design goals associ-
ated with an implementation of a pattern to and from source
code implementing the pattern, we have developed the De-
sign Pattern Rationale Graph (DPRG) approach and associ-
ated tool. A DPRG makes explicit the relationships between
design concepts in a design pattern, provides a graphical
representation of the design pattern text, and supports the
linking of the design concepts to the implementing source
code. With a DPRG, a developer can navigate from a design
concept in the pattern to other relevant parts of the pattern,
and to the implementation of the concept in source code. A
developer can also navigate from a class or method in the
source to relevant parts of the pattern. This support helps a
developer reason about their code in the context of the rele-
vant design concepts. Our tool is lightweight: A DPRG can
be built and linked to source at reasonable cost.

In this paper, we present the DPRG approach and tool
in the context of a simple scenario (Section 2). We also
present a number of case studies we have conducted with
pattern-experienced developers to validate the utility of the
approach (Section 3). In the latter part of the paper, we
discuss outstanding issues with our approach (Section 4),
compare to related efforts (Section 5), and summarize (Sec-
tion 6).

2. Design Pattern Rationale Graphs

To introduce the concept of a DPRG, and to explain how
a DPRG can be used by a developer, we consider a sim-
ple scenario. In this scenario, a developer has been asked
to improve the efficiency of a drawing editor built on the
JHotDraw object-oriented framework [9]. The design of
JHotDraw relies on several design patterns, including OB-
SERVER. In our scenario, the developer has decided to in-
vestigate the efficiency of a part of the code implement-
ing the OBSERVER pattern. We describe the format of the
DPRG, how one is created, and how one is used.

2.1. Overview

A DPRG consists of three levels (Figure 1): pattern,
source, and link. Our current DPRG tool requires one
DPRG per instance of a design pattern in the source.

The pattern level consists primarily of sentence chains—
graphical representations of the sentences comprising the
text of the design pattern of interest. The left area of

Pattern Link Source

Figure 1. Three Levels of a DPRG.

Figure 2 shows two sentence chains from the OBSERVER
DPRG including one corresponding to the part of the fol-
lowing sentence from the pattern “pull model may be ineffi-
cient because Observer classes must ascertain what changed
without help from the Subject” [6, p.298]. Noun phrases in
a sentence chain are are shown as rectangular nodes; verb
phrases are shown as oval nodes.! Edges associating noun
and verb phrases are annotated with the parts of the sen-
tence that serve to connect the phrases in the pattern text.
A developer reads this sentence from the DPRG by locat-
ing the root of a verb phrase chain, such as may be. The
subject of this verb can be found by following edges into
the verb, in this case, pull model. The object of the
verb can be found by following edges out of the verb, such
as inefficient. Diamond-shaped nodes are sequence
nodes; when order matters, they indicate the order in which
sentence chains should be read.

Noun phrases that represent a pattern design element are
represented by a single (gray rectangular) node in the DPRG
pattern level, enabling the DPRG to bring together all parts
of the pattern text related to that element.> For example,
the observer node in the DPRG in Figure 2 is a design
element node, and thus brings together, in this fragment,
two sentences related to the concept from the pattern text.
Dashed edges associate these nodes with phrases that mod-
ify them. In this figure, there are two such associations:
update efficiency, and observer classes. When reading sen-
tences, such node-pairs should be read together.

The source level contains information about structural
relationships derived from the code base. Nodes in this
level are entities from the code, such as classes and meth-
ods. Edges are relationships between entities, representing
structural associations such as calls between methods, or in-
heritance relationships between classes. In the area marked
Source Level of Figure 2, seven source level nodes repre-
senting JHotDraw elements are shown. A developer can
determine from this representation that the PolyLineFig-
ure class extends the AbstractFigure class, that Ab-
stractFigure is contained in the standard package and

A noun or verb phrase may consist of a single noun or a single verb.
2Qur tool colour codes the nodes according to their role in a sentence
to make it easier to read a DPRG.

can improve

efficiency

must ascertain

what

from the

PATTERN LEVEL

<> pull model

(atacn |

SOURCE LEVEL

LineConnection

extends

constructor

has

PolyLineFigure extends

removeFigureChangelListener

I addFigureChangeListener

has

Figure 2. Three queries on a DPRG of OBSERVER/JHotDraw: a regular expression query for *¢fficien*,
a link level expansion of subject, and a source level expansion of PolyLineFigure

has two methods, removeFigureChangelListener and
addFigureChangeListener, and that the LineConnec-
tion class extends the PolyLineFigure class, which has
a constructor.

The link level represents the association between ele-
ments from the design pattern and entities in the source.
The link level contains nodes from the pattern level, nodes
from the source level, and edges associating the two. The
left most portion of the graph in Figure 2 shows a por-
tion of the link level where the pattern-level subject node
has been associated with the JHotDraw AbstractFigure
class.

2.2. Creating a DPRG

A developer must create each level of the DPRG. Effort
invested in creating the pattern level can likely be amortized
over the linking of that pattern level to different implemen-
tations of the pattern. Effort invested in creating the source
level can be amortized over the linking of that source base
to different patterns.

Pattern Level Creation Creating the pattern level re-
quires three inputs: the text comprising the pattern, a dic-
tionary of design elements—participants, and concepts—
specific to the pattern, and an encoding of the structure sec-
tion of the pattern.

Providing the text is straightforward: it can be extracted
from a digital representation of the pattern. The only sec-
tions that are not used from the pattern text are those that
relate to sample code, and to known uses of the pattern.
The developer must annotate the text to include sequential
information by adding the word, “first”, to the beginning of
the first sentence in a set of steps, and the word, “then”, to
the beginning of each subsequent sentence. We have not
found this step onerous; it took one of the authors less than
10 minutes to annotate the text of the OBSERVER pattern.

To help the developer provide the dictionary of key-
words, our DPRG tool extracts a list of noun phrases
found in the pattern text. The developer then peruses this
list, and identifies those noun phrases that are design el-
ements. For the OBSERVER DPRG, the design elements
identified included change request,notifyand ob-

server. Nouns not chosen as design elements included
need, state, class, and call. It took developers in
one of our studies (see Section 3), approximately 10 min-
utes to identify 28 (of 400) noun phrases from the OB-
SERVER pattern text as design elements. A developer using
a DPRG can easily refine the design elements, and regener-
ate the DPRG pattern level, if needed.

Providing the encoding of the structure section consists
of extracting the participants and their relationships from
the structural diagram within the pattern, and recording the
information in a simple textual format. The relationships of
interest are the same as those described below for the source
level. These associations are shown in Figure 2 as link level
edges between the pattern level nodes: The subject has
attach and detach methods. This information could be
automatically analyzed and extracted from a digital repre-
sentation of the pattern; our DPRG tool does not yet have
this capability.

Given these inputs, the DPRG tool automatically cre-
ates the pattern level. Using a parts-of-speech tagger called
LTCHUNK [15], the DPRG tool identifies the noun and
verb phrases in each sentence of the pattern text. Each
sentence is then processed individually. Except for noun
phrases included in the dictionary, each occurrence of a
noun or verb phrase introduces a new node into the pat-
tern level. The first node identified in a sentence, whether
a noun or a verb phrase, is considered a source node. Each
subsequent node encountered in the same sentence is con-
sidered a destination node, and causes the introduction of
an edge between the source and destination nodes. When a
node based on a verb phrase is encountered, the source node
is reset to the verb phrase node. Edges are labeled by any
phrase linking the noun and verb phrases.

Source Level Creation To create the source level, the
developer runs a third-party program database tool that can
extract entities and relationships—source models—from
the code base. For the JHotDraw example, we used the
Chava tool [13], which operates on Java class files, and
post-processed its output with a simple script to massage
the data into the format expected by our DPRG tool.

The source models we used for the examples and studies
presented in this paper included: the extends relation be-
tween classes, the calls relation between methods, the has
relation between any source entity, such as a class has meth-
ods, the accesses/writes relations describing when a method
reads/writes the value of a field, the implements relation be-
tween classes and interfaces, and the takes relation where a
method takes a type as a parameter.

Link Level Creation Links between the pattern and
source levels in a DPRG are specified by the developer
through the use of the DPRG tool’s links view. To initialize
this view, the developer provides one or more seeds: A seed
describes an entity in the source level that the developer

believes corresponds to an entity from the structure sec-
tion of the pattern. For instance, for the OBSERVER exam-
ple, the developer may seed an entry associating the Fig-
ureChangeListener interface from JHotDraw with the
observer pattern entity. Positing this relationship re-
quires minimal perusal of the code, and some understanding
of standard Java coding conventions.

Given this seed, the tool can infer additional links. For
instance, after two iterations, our tool presented a number
of possibilities in the links view,? including the following:

, update

subject state

subject, AbstractFigure

attach, addFigureChangelListener
detach, removeFigureChangeListener
, notify, figureInvalidated

PP ag

Each entry in the links view depicts its status: a U indi-
cates an unlinked pattern-level node entry, such as subject
state; an N indicates a link inferred by the tool, such
as subject-AbstractFigure; and an A indicates a link
a developer has accepted as accurate, such as attach-
addFigureChangeListener. From the links view, a de-
veloper can inspect a link, exclude unwanted links, or infer
additional links.

Inspecting a link results in a display of a portion of
the DPRG that shows the pair of nodes comprising the
link, and all nodes which have an edge to or from one of
the nodes in the pair. Edges between these surrounding
nodes are also included. Inspecting the inferred subject-
AbstractFigure link results in display of the link level
shown in Figure 2. The context shown in this view supports
the inferred link since the methods of AbstractFigure
could play the roles of the attach and detach methods
from the pattern.

Excluding a link flags the link in the view as excluded.
An excluded link is not considered in further inference. At
any time, a developer can reaccept a previously excluded
link.

When a developer chooses to infer additional links, the
tool iterates across all seeded and accepted links. For each
such link, the tool compares the relationships emanating
from the source entity node with those emanating from the
pattern level node. Where the relationships agree, the end
points of the matching relationships are suggested as new
links.

A developer continues seeding, inferring, and excluding
links until satisfied that the pattern is linked to the code
base. In one of our studies (Section 3), developers were able
to link JHotDraw to OBSERVER, and to investigate the con-
nection in the context of an assigned task, in approximately
one hour despite being unfamiliar with the code base.

3The links view is a simple textual window. We have chosen not to
reproduce the window for space considerations, showing only the content.

2.3. Investigating a DPRG

To select relevant portions of the DPRG to view to aid
with the task at hand, a developer can use two kinds of query
operations: regular expression searching, and node expan-
sion.

A regular expression query applies to the pattern level,
and results in the inclusion of all sentence chains contain-
ing nodes that satisfy the expression, and all sequence nodes
that point into those sentence chains. This kind of query is
used to focus on a particular concept within a pattern. The
developer can begin investigating efficiency in an imple-
mentation of the OBSERVER pattern using this kind of query
by searching for the regular expression *efficien™ to cap-
ture nouns involved with both efficiency and inefficiency,
such as efficient, efficiency, inefficient, and inefficiency. The
result of this query is shown in the pattern level of Fig-
ure 2. Viewing these results, the developer sees that the
“pull model may be inefficient”.

Node expansion queries support navigation between dif-
ferent levels of a DPRG. For example, expanding the sub-
ject node in the link level of Figure 2 reveals a node
representing the AbstractFigure class in JHotDraw,
which corresponds to the subject, and also reveals the
other link level nodes neighboring the subject and the Ab-
stractFigure nodes. To better understand the context
of AbstractFigure, the developer can expand the class
polyLineFigure at the source level, resulting in the
source level portion of Figure 2, in which all source level
nodes neighboring the expanded node are displayed.

To further investigate efficiency, the developer decides to
expand the pull model pattern level node for more in-
formation about the concept (results not shown). Expanding
a node at the pattern level results in a view of all sentence
chains and all sequences that contain the expanded node.
This query results in a DPRG that includes the following
fragments of sentence chains: “the pull model sends mini-
mal notification”, and the pull model “emphasizes the igno-
rance of the subject”. One sentence chain mentions another
option, the push model, as an alternative strategy.

Based on an investigation of the results of these queries,
the developer determines that efficiency might be improved
by investigating the push model. Changing to the push
model would likely require modifications to the notifica-
tion mechanism. Thus, the developer decides to perform
a regular expression query for *notif*. The sentence chains
displayed include a node called notify method. To see
how this node relates to the code base of interest, the devel-
oper expands the notify method node at the link level,
and finds the FigureInvalidated method. The devel-
oper now has a concrete location in the code from which to
consider the change task.

3. Case Studies

We make three claims about the DPRG approach:

1. Confidence — Access to a DPRG will improve a de-
veloper’s confidence about which design goals are rel-
evant to a (part of a) code base.

2. Completeness — Given a DPRG, a developer can ef-
fectively navigate to all design goals related to (a part
of a) code base.

3. Lightweightness — Developers can create DPRG at
reasonable cost.

We use the term design goal to refer to a property desired
in the system, such as avoiding race conditions, or easing
the introduction of a new algorithm.

We chose to evaluate each of these claims in a separate
case study.

3.1. Confidence Study

The purpose of this study was to investigate whether ac-
cess to a DPRG can improve a developer’s confidence that
design goals are achieved in a code base. The study con-
sisted of two cases. In each case, the subject, a developer
from Siemens AG, was asked to use a DPRG to revisit an in-
vestigation task they had recently finished. The investigator
provided the pattern level of a DPRG for a pattern chosen as
relevant by the subject, and a source model of the subject’s
code base. The subjects were given a 35 minute tutorial on
how to use a DPRG. The subjects were alloted one hour to
apply the DPRG tool to their system. During a session, the
subjects worked only with the DPRG.

Validity We informed each subject that the intent of the
study was to observe their use of the DPRG tool when in-
vestigating design goals. When we analyzed their use of the
tool and their responses to an interview, we focused on what
information a subject learned about their system. If the de-
veloper learned something about the goals associated with
their code, we consider their confidence was increased. We
did not ask subjects directly about their confidence to avoid
hypothesis guessing and evaluation apprehension. The sub-
jects did ask questions about the DPRG approach during a
session; the investigator was careful to limit responses to
the use of the DPRG and did not provide direct assistance
with the task. Our choice of using tasks completed previ-
ously by the subjects may have affected the results because
the subjects may have been unwittingly wary of admitting
they missed information when they performed the task.

Case #1 As part of an earlier task on a system that
supported the visualization of object connections in a dis-
tributed system, the subject had implemented a locking
mechanism to allow only one method of an object to execute

at one time. The subject later learned about the MONITOR
OBJECT pattern [3], which synchronizes concurrent method
execution within an object to ensure only one method runs
at any given time within the object. The subject believed
that this design pattern closely represented her implementa-
tion. The subject had attempted to match her implementa-
tion to the pattern previously with limited success.

Actions The subject started by seeding three
links, including an association between a class,
Monitor Condition, in the pattern and a method,
TransmitCalllID, in the code base. The subject then
used the DPRG tool to infer additional links, resulting in a
suggestion by the tool that the TransmitCallID method
be associated with the synchronized method pattern
element. After inspecting the suggested link, the subject
wanted to know more about synchronization in the pattern
and thus chose to search for “block™ at the pattern level.
This query resulted in 18 sentences, one of which included
the phrase: “if a synchronized method must block or cannot
make immediate progress, it can wait on one of its monitor
conditions”. The subject then revisited the inspection view
of the synchronized method-TransmitCallID link,
and expanded the synchronized method node at the
pattern level. From the resulting graph, the subject learned
about the relationships between the synchronized
method and the monitor object.* Specifically, the
following sentence was displayed: “A monitor object there-
fore contains a monitor lock that serializes the execution of
its synchronized methods, as well as one or more monitor
conditions used to schedule the execution of synchronized
methods within a monitor object”. At this point, the subject
reported that their initial seeding of the TransmitCallID
method with the monitor condition class was incor-
rect, and that the proposed link from the synchronized
method to the TransmitCallID method was correct. The
subject then expanded the monitor object at the pattern
level, revealing the caller of the synchronized method
to be the client. After some investigation, the subject
noted that the methods exported by the monitor object
are often synchronized.

At the end of the session, the subject stated that they be-
lieved the code matched the MONITOR OBJECT pattern.

Results Before using the DPRG, the subject was unsure
whether her code implemented the design pattern despite
having spent time attempting to make the correspondence.
The subject also did not have a good understanding of the
pattern as can be seen from her initial seeding attempt. Be-
fore accepting the tool’s suggestion on a different link, the
subject investigated the context for various portions of the
pattern. After the study, the subject stated that she believed
her implementation was structurally similar to the solution
described in the pattern. Furthermore, the subject was able

4The monitor object is used by the monitor condition class.

to articulate that her solution shared the pattern design goals
of method synchronization, and of allowing only one syn-
chronized method in an object to run at a time to prevent
race conditions. The subject was also able to articulate that
the code and the pattern shared the drawback that it may
be difficult to change the synchronization policy. We in-
fer that this subject’s confidence about their understanding
of the relationship between design goals and the code base
increased after using the DPRG.

When asked whether the DPRG tool had been helpful,
the subject said:

I didn’t even really understand which part of my
code is really a condition and which is the syn-
chronize method. I didn’t know this before. [The
DPRG] helps because you really have a crosscut-
ting view, you can read it in the sentence, and you
can match this to the method you see in the code.
But [the pattern] is quite difficult to understand so
it helps to have this [pattern level] view and this
matching into the source code.

Case #2 The second subject was instrumenting methods
in a system pertaining to certain design patterns to enable
the generation of sequence diagrams from system execution
traces. This study involved the FORWARDER-RECEIVER
pattern, which consists of a forwarder, who upon receipt of
a message, sends the message on to a receiver. The subject
reported only a cursory understanding of the FORWARDER-
RECEIVER pattern at the start of the study, and reported be-
ing familiar with the code base.

Actions The subject began by positing one seed that
related a class in the code to the forwarder, and then
used the tool to infer more links. The tool suggested
that two methods in the pattern, the marshal method,
which prepares a method for forwarding, and the sendMsg
method, which performs the action, as possible links for
the sendCmdAsynch and sendCmdSynch methods in the
code. The subject did not recognize the role of the marshal
method. To investigate, she inspected the suggested link,
and expanded the marshal method at the pattern level.
Upon reading the displayed description, the subject noted
that it was likely that this functionality had been absorbed
into the sendCmdAsynch method and sendCmdSynch
methods.

The subject then chose to investigate the sendCmdSynch
and sendCmdAsynch methods. She was reminded that the
code base to which she was adding tracing had taken two
approaches to implementing the pattern. Given the link-
ing of each of these methods to marshall, she was unsure
of the pattern’s intent with relation to asynchronous versus
synchronous approaches. To investigate further, she per-
formed a search for “asynch”, which resulted in several sen-
tences, including one stating that the developer “must de-

cide whether the receiver should block until the message ar-
rives”. The subject said that she was unware that the pattern
had not required both the asynchronous and synchronous
options, but she now understood that the original develop-
ers had implemented both options.

The subject then performed a pattern-level search for
the regular expression “blocking”, which resulted in sev-
eral sentences, including the following: “if the underlying
IPC mechanism does not support non-blocking, the devel-
oper could use a separate thread to handle communication”.
The results of the query also included the information that
certain timeout values were involved in the non-blocking
implementation. The subject indicated that this was likely
the approach taken in the asynchronous version of the im-
plemented code.

Results Using the DPRG tool, the subject learned about
differences between the concrete design provided in the pat-
tern and the implementation of the pattern in the system be-
ing studied. The subject used information from the pattern
level to investigate the differences until she was satisfied the
differences were consistent with intent of the pattern. The
subject also learned about options in the pattern of which
she was unaware. With the help of the DPRG tool, she was
able to focus on the pertinent parts of the pattern, and was
able to then explain the code. We infer from her explana-
tions that her confidence about which design goals were met
in the system increased after the use of the DPRG tool.

3.2. Completeness Study

To verify that relevant design goals could be identified
from portions of code, we conducted a case study that in-
volved two industrial software developers with expertise in
both patterns and a particular code base, and one DPRG tool
user (an author on this paper) who was unfamiliar with both
the patterns and the code base. The experts worked together
to report design goals relevant to certain portions of the Zen
CORBA ORB [23]. The implementation of this system was
based on a number of design patterns. Based on informa-
tion provided by the experts, the investigator created several
DPRG’s. The tool user was then asked to report the design
goals related to the code linked in the provided DPRGs. The
user used expansion queries from the link level up to the
pattern level to prepare the results reported. Three design
patterns were used in the study: CACHING [11], THREAD
SPECIFIC STORAGE [3] and STRATEGY [6].

Validity To ensure the DPRG tool user did not fish for
high-level goals, the user was not informed of any target
design goals, and was restricted in the kinds of searches al-
lowed.

Results The tool user identified six of the seven goals
identified by the experts, and noted eleven additional goals.
The one goal missed was the avoidance of blocking over-

head in the THREAD SPECIFIC STORAGE pattern. This
goal may have been missed for several reasons. First, block-
ing is not mentioned specifically in the pattern, although
locking is mentioned extensively. Thus, the goal could not
be directly derived from the DPRG. Second, none of the
pattern level entities related to locking were linked in the
DPRG. Since the user was working from linked elements
up, the goals related to locking were not encountered. When
the expert participants were asked to examine the list of
eleven additional goals, they reported that all were con-
sidered applicable, though of secondary importance. From
these results we conclude that the DPRG representation and
tool do enable a developer to effectively navigate to the rel-
evant high-level design goals.

3.3. Lightweightness Study

To be useful, it must be possible for a developer to cre-
ate and use a DPRG at reasonable cost. To investigate
whether our approach meets this goal, we conducted a study
in which two industrial developers from Siemens AG were
given the task of finding portions of JHotDraw code related
to efficiency in the OBSERVER pattern using a DPRG that
they had to create. We provided the subjects with the source
level for JHotDraw, and the massaged text and encoded
structure section of the OBSERVER pattern. We provided
these inputs as the need to provide this information is de-
pendent upon the current state of the tool, and is not central
to the approach. To create the DPRG, the subjects had to
create the dictionary to be used in pattern level creation,
and had to create the link level.

Validity The developers had access only to the DPRG
tool. The task we chose stressed information across the lev-
els of the DPRG. The session time allotted was sufficient
for the task.

Actions Each participant was able to create the dictio-
nary, and the initial unlinked DPRG with relative ease; the
first subject completed in 10 minutes, the second in 15 min-
utes. The subjects then began the task of finding the code
related to efficiency. Completing this task required link-
ing the pattern to the source level. The first subject com-
pleted the task in 70 of the 120 allotted minutes, reporting
that the code implementing the subject’s registration inter-
face effects efficiency. The second subject, after the full 120
minutes, had correctly identified several links including an
observer and a subject, but was unable to locate the at-
tach method.

Results The first subject demonstrated that it was possi-
ble to create a DPRG for an unfamiliar code base and com-
plete the task in a short amount of time. The second sub-
ject was able to address efficiency at the pattern level, but
had taken a source-centric approach to linking, and was hin-
dered by the inability of the DPRG tool to support browsing

of the source model and source. This subject spent consid-
erable time reading the source model itself in database form.

3.4. Synthesizing Results

The investigation paths followed by the subjects in the
confidence and lightweightness studies support our motiva-
tions for introducing the DPRG approach.

First, the investigation paths spanned all levels of the
DPRG (Figure 3). Each dot in a graph in Figure 3 corre-
sponds to a query or operation performed by a subject. The
queries and operations are connected to make the progress
between levels clearer. These investigation paths show that
the subjects did not intuit how design goals likely played
out in the source, nor how the code related to the goals. In-
stead, they chose to browse the levels of the DPRG to make
the connections.

Second, at some point, all of the subjects moved through
the pattern level when traversing to, or from, the source
level, rather than merely switching between a point in the
pattern and the source level. These actions are shown in
grey in Figure 3. For example, the second grey portion of
(A) shows a movement from a low-level pattern element,
the synchronize method of the MONITOR OBJECT
pattern, up to its design context involving serialization and
scheduling. This pattern is also visible in (B) in the first grey
segment, which involved moving up from a more concrete
pattern level node to its design context in the FORWARDER-
RECEIVER pattern. Similarly, a downward movement is
seen in portion (C) and (D), in which developers were con-
cretizing their information on efficiency in the OBSERVER
pattern.

Although the generalization of our results is limited, we
believe our claims about the DPRG approach likely apply to
other development settings for three reasons. First, the con-
fidence study used two realistic cases; industrial developers
examining their own systems and revisiting investigation
tasks that they had previously performed. Second, across
the three studies, six patterns from four sources were used.
Finally, the results of the less realistic completeness and
lightweightness studies are corroborated by the experiences
of the developers participating in the confidence study.

4. Discussion

Why not use grep? A DPRG of a pattern, even when
not linked to source, can be used to understand a pattern.
However, the DPRG approach, whether linked or not linked
to source, is not intended to replace either the reading or tex-
tual searching of design patterns. Instead, it provides com-
plementary support. Whereas a lexical search typically re-
sults in a user sequentially visiting each result in the text, the
results of a regular expression search on a DPRG are a graph

that presents the information separately from its structure in
the document. An obvious limitation of this presentation is
a lack of context for a sentence matching a query. On the
other hand, a different presentation of the sentence may lead
to a different focus on the information by a user. The ability
of a DPRG to collect crosscutting information and present
it in the context of a design element can also make it easier
to understand some aspects of a pattern. For instance, in
the CACHING pattern, it is possible, by reading on the verb
nodes surrounding the Resource User element, to learn
that the resource user acquires something, uses something,
accesses something, and calls something.

Overlapping patterns With our current tool, a DPRG
can represent only one pattern. Since one portion of a code
base may represent more than one pattern, it may be useful
to consider extending a DPRG to represent multiple patterns
whose implementations may or may not overlap. There are
two hurdles to providing this support.

First, the same term may mean different things in dif-
ferent patterns. Since a DPRG presents only local context
for nodes, it may be difficult to identify which pattern-level
nodes refer to which pattern and which meaning. Visual
cues or filtering to differentiate the sentence chains from
different patterns might be sufficient to overcome this hur-
dle.

Second, the developer gains from a DPRG represent-
ing multiple patterns when it is useful to display informa-
tion in response to a query from multiple patterns. It is an
open question whether it is helpful to show the results if
they are not integrated. An integrated display, for instance,
would make explicit the relationships between the patterns,
as when one pattern refers to another. Any significant inte-
gration of pattern information would require a deeper auto-
matic semantic analysis.

Improving link inference Our current approach for
inferring links does not consider the names of pattern or
source model entities. Several developers who have used
the tool have noted that an ability to express lexical rules
for inclusion, exclusion, or prioritizing of links would be
helpful. For instance, when linking a pattern level method
with a name like “acquire”, a developer might suggest tar-
get strings, such as “get” or “acquire”, and might suggest
exclusion strings such as “set”, or “release”.

Pattern level reusability We expect that the pattern
level of a DPRG can be used many times for different sys-
tems. We have not yet tested this hypothesis. It may be that
its reusability is limited if the dictionary choices made by a
developer are task- or source-base specific.

5. Related Work

Expressing Design in Code With literate programming,
Knuth suggested that programs should be human-readable

Confidence Study Lightweightness Study
g Case 1 Case 2 Subject 1 Subject 2
£ A= = b
£|L,a /\ fT\ N AV FLtnanrl|Lagen AP
1/ AR 1) - Rl
= time ¢

(A) (B)

(C) (D)

Figure 3. Subjects’ Investigation Paths

in addition to being executable [12]. In this style of pro-
gramming, documentation and code are combined in a sin-
gle artifact: tools are then used to produce appropriate views
for humans or computers. Griswold has advocated the
embedding of knowledge about interdependencies between
parts of a system into code through the use of information
transparency techniques, such as such as naming conven-
tions, formatting style, and placement within the source [7].
The degree to which a developer evolving the code bene-
fits from these kinds of approaches depends on the quality
and extent of the design expressed in the code. Although
DPRGs apply in a narrower context, they can provide deep
design information for pattern-related code even when such
information has not been encoded beforehand.

Several researches have investigated generative and
language-based approaches to ease the use, and subsequent
recognition, of design patterns in code. For instance, in
the Generic Pattern Implementation [22] approach based
on C++ templates, a developer tags a location in the code
where a particular pattern is to be used; code to config-
ure the concrete instance of that pattern can then be gen-
erated automatically. As another example, Hannemann and
Kiczales have shown how aspect-oriented programming can
improve the modular expression of some kinds of patterns,
improving the reusability, composability, and pluggability
of patterns [8]. These approaches can help a developer use
and recognize patterns, but they do not help a developer un-
derstand the subtleties of a pattern and its implementation

Inferring Design from Code Reverse engineering tech-
niques produce abstract models of a software system, such
as a subsystem diagram (e.g., Rigi [16]) or a sequence di-
agram (e.g., Shimba [21]), from source code or execution
traces. These models can help a developer understand how
a system works, but they do not describe why particular
choices were made in the implementation. Pattern mining
techniques help a developer search for and recognize de-
sign patterns in the source code of a system (e.g., [18, 10]).
DPRGs are complementary to pattern mining techniques:

A DPRG can be used to help a developer understand the
pattern once found.

Verifying Design Design conformance tools check
whether the implementation of a system conforms to an
intended design. PatternLint is one example tailored to
design patterns [20]. Rules about conformance and non-
conformance to the structure of a pattern are specified in a
logic fact base. These rules are compared against structural
features, such as the calls between classes, extracted from
source code. PatternLint can help a developer understand
how an implementation may or may not structurally corre-
spond to a pattern. The DPRG approach can also help in
assessing conformance; it is less automatic than PatternLint
but it can provide more detail about implementation vari-
ants, and can be used to match against partial implementa-
tions of a pattern.

Capturing Design Rationale A number of techniques
help a developer capture design rationale and link it to code.
These techniques vary in what rationale is captured, how it
is captured, and how it is represented. In the LaSSIE sys-
tem [4], for instance, an action-object format is used to cap-
ture and integrate architectural, conceptual, and implemen-
tation information about a system. In the DESIRE frame-
work [2], an object-oriented domain model is used as the
basis to guide the recovery of design concepts, and to link
those concepts to a code base. These techniques both re-
quire a significant investment of developers time to encode
the knowledge base prior to its use. The DPRG approach
can be applied at much lower cost, albeit to a narrower range
of code.

Other techniques focus on lower-cost capture and link-
ing. Lougher and Rodden tool, for instance, allows devel-
opers performing maintenance tasks to annotate code with
text and graphics, enabling the capture of rationale and the
sharing of information over time [14]. The SLEUTH tool
takes a generative approach by helping a developer to link
existing design documentation to source [5]. Links are
formed based on regular expressions specified by a devel-

oper. Links within the design documents are limited to
pre-specified anchor points; links to source are limited to
files. In contrast, the DPRG approach links design informa-
tion on the basis of dictionary words that can be easily re-
specified, and supports links to specific program elements.
Both Lougher and Rodden’s tool and SLEUTH require the
maintenance of information added to development artifacts,
whereas the DPRG approach can be applied on demand.

6. Summary

Parnas used the term ignorant surgery to refer to changes
made to a software system by developers who do not un-
derstand the original design concepts behind the code [17].
When ignorant surgery occurs, the structure of a system
tends to degrade, leading to increased costs for subsequent
evolutionary tasks.

Design Pattern Rationale Graphs (DPRG) are intended
to reduce occurrences of ignorant surgery by making the
design rationale behind parts of a system associated with
design patterns accessible to a developer. A DPRG makes
the relationships amongst design concepts in a pattern ex-
plicit, and enables the linking of the concepts to the parts
of a system implementing the pattern. The cost of creating
and linking a DPRG is reasonable; a developer can create a
DPRG within the context of a particular evolutionary task.

Through a series of case studies, we have shown that
DPRGs show promise in improving a developer’s confi-
dence about the design goals related to a piece of code, that
a developer can effectively access all relevant design goals
represented in a DPRG from code, and that the approach
can be applied within a short amount of time.

7. Acknowledgments

This work has been funded in part by Siemens AG and
in part by a University of British Columbia fellowship. We
would like to thank all of the participants in the case studies
for their time and feedback. We thank M. Robillard, J. Han-
nemann and Y. Coady for insightful comments on an earlier
draft.

References

[1] E. Baniassad.
Pattern Rationale Graphs.
Columbia, 2002. To appear.
T. Biggerstaff, B. Mitbander, and D. Webster. Program un-
derstanding and the concept assignment problem. In CACM,
pages 72-83, 1994.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture: A System
of Patterns, volume 1. Wiley & Sons, 1996.

Linking Design to Source Using Design
PhD thesis, Univ. of British

(2]

(3]

10

[4] P. T. Devanbu, R. Brachman, P. Selfridge, and B. Ballard.
Lassie: a knowledge-based software information system. In
Proc. of Int’l Conf. on SE, pages 249-261, 1990.
J. C. French, J. C. Knight, and A. L. Powell. Applying hy-
pertext structures to software documentation. Info. Proc. and
Mngmt, 33(2):219-231, 1997.
E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.
W. Griswold. Coping with crosscutting software changes
using information transparency. In Proc. of Reflection 2001,
pages 250-265, 2001.
J. Hannemann and G. Kiczales. Design pattern implemen-
tation in Java and Aspectj. In Proc. of OOPSLA, 2002. To
appear.

[9] jhotdraw software. http://www.jhotdraw.org.
[10] R.K. Keller, G. Knapen, B. Lagu, S. Robitaille, G. SaintDe-
nis, and R. Schauer. The SPOOL design repository: Archi-
tecture, schema and mechanisms. Adv. in Soft. Eng.: Topics
in Evolution, Comprehension, and Evaluation, pages 269—
294, 2000.
M. Kircher and P. Jain. Caching architectural design pat-
tern. In Tech. Rep. of Corporate Technology, Siemens AG,
Munich, Germany, 2002.
D. Knuth. Literate programming.
27(2):97-111, 1984.
J. Korn, Y. Chen, and E. Koutsofios. Chava: Reverse engi-
neering and tracking of java applets. In Working Conf. on
Rev. Eng., pages 314-325, 1999.
R. Lougher and T. Rodden. Group support for the recording
and sharing of maintenance rationale. Soft. Eng. Journal,
pages 295-306, November 1993.
LTCHUNK. http://www.ltg.ed.ac.uk/index.
html.
H. Miiller and K. Klashinsky. A system for programming-
in-the-large. In Proc. of Int’l Conf. on SE, pages 80-86,
1988.
D. Parnas. Software aging. In Proc. of Int’l Conf. on SE,
pages 279-287, 1994.
L. Prechelt and C. Kramer. Functionality versus practical-
ity: Employing existing tools for recovering structural de-
sign patterns. J. of Universal Computer Science, 4(12):866—
882, Dec. 1998.
D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for Con-
curren and Networked Objects, volume 2. Wiley & Sons,
2000.
M. Sefika, A. Sane, and R. Campbell. Monitoring compli-
ance of a software system with its high level design models.
In Proc. of Int’l Conf. on SE, pages 387-397, 1996.
T. Systa, K. Koskimies, and H. Miiller. Shimba — an envi-
ronment for reverse engineering java softare systems. Soft.:
Pract. and Exp., 31(4):371-394, 2001.
J. Vlissides and A. Alexandrescu. To code or not to code,
part i and ii. C++ Report, March and June 2000.
Zen CORBA ORB. http://www.zen.uci.edu.

(5]

(6]

(7]

(8]

(11]

[12] Computer Journal,

(13]

[14]

[15]

(16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

