
© 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

Behavioural Concern Modelling for Software Change Tasks

Albert Lai and Gail C. Murphy
Department of Computer Science
University of British Columbia

2366 Main Mall Vancouver B.C. Canada V6T 1Z4�
alai, murphy � @cs.ubc.ca

Abstract

Many modification tasks on an existing software system
result in changes to code that crosscuts the system’s struc-
ture. Making these changes is difficult because a developer
must understand large parts of the system, and must rea-
son about how the modification will interact with the ex-
isting behaviour. Typically, developers make these kinds of
changes using an ad-hoc approach with tools that help in
gaining some understanding of the existing system, but that
do not provide any specific support for reasoning about, im-
plementing, or analyzing just that part of the system re-
lated to the modification. In this paper, we present the
Behavioural Concern Modelling (BCM) approach and tool
that provide direct support for a systematic approach to
modification tasks. This approach enables a developer to
create a partial, abstract, grounded behavioural model of
a concern(s). By grounded, we mean that the relationship
between the model and the code is explicit: A developer de-
scribes which code contributes to which parts of the model.
The examples we describe use a finite state machine as a
model. We show how the approach can help a developer
capture a concern, reason about design options, and imple-
ment modifications.

1 INTRODUCTION
All too often, modifications to an existing software sys-

tem are made in an ad-hoc manner. A developer determines
some parts of the code relevant to the modification and
then starts to iteratively identify, understand, and change the
code to perform the modification. When the points in the
program related to the modification are well-localized, this
approach can be effective. When the relevant points cross-
cut the system structure, this approach begins to fall apart:
Developers have a difficult time estimating how long it
will take to complete the modification task, the code added
and changed as part of the modification introduces defects
into seemingly unrelated parts of the system, amongst other
problems. In this paper, we refer to the code related to a

particular feature as a concern.
The ad-hoc approach to making a change seems to break

down when the modification crosscuts the system because
many of the subtasks the developer must perform to com-
plete the modification task become harder. It is harder for
the developer to identify relevant portions of the existing
code because large parts of the system may need to be con-
sidered and understood. It is harder for the developer to
evaluate options for the design of the modification because
large parts of the existing design must be considered. It
is harder for the developer to determine how the code im-
plemented to satisfy the modification impacts other cross-
cutting concerns because those concerns are also typically
implicit [3].

Existing tools can help the developer with some parts
of some of these subtasks. Lexical searching tools, such
as grep and Aspect Browser [7], can help identify relevant
code. Structural analyzers, such as FEAT [14], flow ana-
lyzers, such as program slicers [17], and some reverse en-
gineering tools, such as Shimba [16], can help a developer
identify and build up an understanding of how relevant code
works. These tools help a developer deal with the existing
system, but they do not provide a developer any direct help
with reasoning about, implementing, analyzing, or verify-
ing the system with the modification.

We hypothesize that a developer can perform a modifica-
tion task more systematically when the developer has access
to a behavioural model of a concern (or concerns) relevant
to the modification that is partial, abstract, and grounded.
By behavioural, we mean a model that helps a developer
reason about how the existing code works and how the mod-
ification might work. By partial, we mean that the model
need represent only those parts of a concern relevant to the
task at hand. By abstract, we mean that the model is of
a size and complexity amenable for the developer to rea-
son about. By grounded, we mean that there is a mapping
between the model and the existing source. This mapping
enables the model to be used to direct analysis on the code.
For example, the mapping permits us to analyze whether the
data- and control-flows in the system respect the model.

To investigate this hypothesis, we have developed an
approach, called Behavioural Concern Modelling (BCM)
(Section 2), and a supporting tool (Section 4). In the BCM
approach, a developer iteratively posits all or part of a finite-
state machine (FSM) representing the behaviour of a con-
cern or concerns, and maps the pieces of that FSM to the
source. The developer then uses the BCM tool to under-
stand how data- and control-flows in the source relate to the
posited state machine. Based on the flow information, the
developer adjusts the FSM until a model suitable for reason-
ing about the modification is reached. The BCM tool builds
on previous work in conceptual modules [2] (Section 4.1).

We have applied our approach to help assess a modifica-
tion in two systems. First, we used our approach and tool
to help assess a change to an FTP server. (Section 3). In
this case, we chose the change task. We use this task to de-
scribe our approach and to demonstrate how the BCM ap-
proach can permit a more systematic evaluation of different
ways to implement the change. Second, we applied our ap-
proach to assess an outstanding change to a public-domain
web browser (Section 5). We present this task to demon-
strate that the approach is viable for larger unfamiliar code
bases.

The contribution of this paper is to propose, and demon-
strate a viable approach for modelling the behaviour of a
concern. This model can help a developer manage a concern
during the performance of a software enhancement task. It
may also help support the task of remodularizing the system
(See Section 6.4). In this paper, we demonstrate the need to
ground a model in the source to support such tasks.

2 BCM OVERVIEW
The BCM approach helps support a systematic modifi-

cation process that consists of six steps.

1. The developer identifies concerns relevant to the mod-
ification. These concerns may be identified in a top-
down fashion based on design information, or in a
bottom-up fashion based on information in the code.

2. The developer iteratively builds an abstract, partial,
behavioural model of the identified concerns, and
grounds this model in the source.

3. The developer evaluates different design options by
considering their impact and interaction with the be-
havioural concern model.

4. The developer selects a design.

5. The developer uses the behavioural concern model as
a guide to implement the chosen design.

6. The developer uses the behavioural concern model to
help verify the new implementation.

Our focus to date has been on the first five steps of the
process. To clarify the BCM approach, we describe its use
to plan a modification to an FTP server. We discuss the role
of a behavioural model and BCM for the last step of the
process in Section 6.3.

3 MODIFYING A FTP SERVER

jFTPd 1 is a FTP server written in Java (11 classes con-
taining approximately 3000 lines of code) that supports ba-
sic FTP commands and anonymous login. For our case
study, we chose to consider the addition of named-user lo-
gins to the jFTPd system.

3.1 Forming the Model

We began by identifying the concerns relevant to the
modification at hand. We used our knowledge of existing
jFTPd features to posit that the anonymous login concern
would be impacted by the addition of named-user logins,
and thus should be modelled.

To form the FSM behavioural model of the anonymous
login concern we interchangeably performed two activities.
First, we looked for code related to the concern, and based
on our understanding of that code, we posited states and
transitions in the FSM. Second, we used our belief of how
the concern worked to extend the FSM, looking for support
for the added states and transitions in the code. We describe
this process in more detail.

Logging into an FTP server involves the USER FTP com-
mand. We began the formation of the model by looking for
source that implemented this command. Using grep, we
searched for the string “user” and found the doUserCom-
mand method in the class FTPConnection (Figure 1).
Some of the code in this method sets a userName field
based on user input. To capture this behaviour, we intro-
duced a setUser transition into the FSM for the anonymous
login concern, and associated a subset of the code in the
doUserCommand method as implementing that transition
(Figure 2(a)). (A detailed description of how the FSM is
recorded, and how code is associated with states and tran-
sitions of the FSM is provided in Section 4). We modelled
this action as a transition because we had already started
formulating a mental picture of the FSM as having authen-
ticated and unauthenticated states.

Based on our experience of using FTP servers, we then
considered the next behavioural step after determining the
user, getting and checking the password, which involves the
PASS command. Searching for the “pass” string, we iden-
tified the doPassCommand method. Examination of this
method revealed that it is responsible for deciding whether
a user has permission to log in, and whether to grant or
deny access to the user. To model this behaviour, we added

1Available from http://jftpd.prominic.org/1.3/index.
html.

protected boolean doUserCommand(String line) {
if (line.length() <= 5)

return false;
* if (anonUser) {

out.print("530 Can’t change user ...");
* } else {
* String user = line.substring(5);
* userName = user;

String userLower = user.toLowerCase();
if (userLower.equals("ftp") ||

userLower.equals("anonymous")) {
out.print("331 Guest login ok, send ... ");

} else {
out.print("331 Password required for ... ");

}
}
return true;

}

Figure 1. Code for SetUser Transition

a handleAnonymousPass transition, a permitAnonymousLo-
gin state, an authenticAnonymousUser transition and a re-
jectUser transition (Figure 2(b)) to the anonymous login
FSM. We also associated the relevant code with these states
and transitions.

Next, we tried to identify the code connecting the se-
tUser transition and the handleAnonymousPass transition.
We knew there must be a means to connect these transitions
because setUser must occur before handleAnonymousPass
for a login to be successful. We expected there to be both
a control-flow and a data-flow between the code associated
with these transitions because of the ordering of the opera-
tions and because the input user name is passed between the
transitions.

Instead of tracing these flows manually, which would be
tedious, we used a relatedness query supported by the BCM
tool. This query examines the data- and control-flows be-
tween two parts—states or transitions—of the FSM within
a particular context of the program. The query returns infor-
mation about the set of statements that comprise the flows,
as well as providing class and method summaries for those
statements. In this case, we performed a relatedness query
between the setUser transition and handleAnonymousPass
transition using all the classes from jFTPd as the context.
This query returned the following class summary.
FTPConnection � PassiveConnection

FTPConnection � WildcardFilter

FTPConnection � FTPHandler

FTPHandler � FTPConnection

This summary informed us of overall connections be-
tween classes involved in providing the anonymous login
behaviour. For example, the summary tells us that informa-
tion may flow from objects of the FTPConnection to ob-
jects of the PassiveConnection class. As is often the
case, this first query returned broad results. To narrow the

b)

Permit

Anon.

Login

Set

User

Handle

Anon.

Pass

Auth.

Anon.

User

Reject

User

Got

User

Permit

Anon.

Login

Set

User

Handle

Anon.

Pass

Auth.

Anon.

User

Reject

User

c)

Got

User

Permit

Anon.

Login

Set

User

Handle

Anon.

Pass

Auth.

Anon.

User

Reject

User

Authen-

ticated

Unauthen-

ticated

d)

a)
 Set

User

Figure 2. Steps in Building jFTPd Model

results, we refined the context of the query by removing the
WildcardFilter class from consideration. We made
this choice because we noticed that WildcardFilter
extends java.io.FilenameFilter and we reasoned
that it was unlikely that the filter was related to the setUser
and handlePass transitions. To confirm this reasoning, we
examined the source and found that WildcardFilter is
used to implement the FTP LIST command, which is not
related to user authentication.

To determine what specific code to investigate for the
missing part of the FSM, we considered the method sum-
mary returned from the above refined query. Of the approx-
imately twenty entries returned from the query, several of
them were unrelated to setUser and handlePass; the flows
these entries described handled other FTP commands. We
refined our context to ignore flows in unrelated methods and
the following method summary was returned.

doPassCommand � printWelcome

doUserCommand � doPassCommand

doCommand � doUserCommand

doCommand � doPassCommand

run � doCommand

doCommand � run

doCommand � setBusy

doCommand � setLastCommandTime

We examined the code in these methods and found that
the doCommand method parses FTP commands and calls
appropriate methods to handle the commands. We also de-

termined that the flow from run to doCommand was the
result of a while-loop in run that reads FTP commands and
passes those commands to doCommand. After the user is
set via the setUser transition, jFTPd continues to process
commands via the while-loop in run. Thus the same code
also executes after jFTPd has determined the user. We as-
sociated code from run and doCommand with a GotUser
state (Figure 2c).

We continued in this manner, expanding the model, and
associating code with pieces of the model using the BCM
tool, until we were satisfied that our model was sufficiently
complete to reason about the modification task. Figure 2d
shows the final model. To check that our model was suffi-
ciently complete, we queried the tool for all of the control-
and data-flows to and from all of the states and transi-
tions in the FSM, and checked that none of the flows were
pertinent to the model. No unexpected values were re-
ported as flowing from the FSM, but unexpected values
were reported as inputs. Specifically, the query reported two
fields, FTPConnection.anonUser and FTPConnec-
tion.userName as being used by the FSM; these fields
were defined outside of the code associated with the FSM.
Since jFTPd uses the anonUser field to indicate whether
the current user is an anonymous user, all uses of this field
needed to be assessed as to whether they should be part of
the model. A closer look at the query results indicated that
we had not included a definition of the anonUser field
from an instance initializer; we updated both the Unauthen-
ticated and Authenticated states with that code as the states
use that field to represent whether an anonymous user has
logged in or has been authenticated. Similarly, the user-
Name field is also defined in an instance initializer; we
added an association of that statement to both the Authenti-
cated and Unauthenticated states as well.

3.2 Considering Design Options
Based on the model we formed, we considered two dif-

ferent design options for implementing named-user authen-
tication. One option was to generalize the existing mecha-
nism, considering an anonymous login as a special case of
named-user logins where the login name is “anonymous”.
The second option was to consider anonymous login as a
separate case from named-user logins.

Figure 3(a) depicts the first option. This option requires
minor modifications to the transitions and state associated
with handling and authenticating passwords. In this option,
only one path is needed from the unauthenticated state to
the authenticated state. This option is conceptually simple,
but it may be difficult to implement policies in which anony-
mous users need to be treated separately. For example, we
might want to limit the number of anonymous logins as well
as the total number of named-user logins.

Figure 3(b) depicts the second option. If we consider
anonymous login and named-user login as separate mech-
anisms, anonymous login would be more explicitly repre-

Unauthen-

ticated

Got

User

Permit

Anon.

Login

Authen-

ticated

Permit

Named

Login

Set

User

Handle

Anon.

Pass

Auth.

Anon.

User

Handle

Named

Pass
Reject

User

Auth

Named

User

Reject

User

Unauthen-

ticated

Got

User

Permit

Named

Login

Authen-

ticated

Set

User

Auth.

Named

User

Handle

Named

Pass

Reject

User

(a)

(b)

Figure 3. jFTPd Model Options

sented in the source code, and it may be easier to implement
such policies as described above.

3.3 Implementing the Chosen Design

After we decide on a design, we must make the modifi-
cations to the code. The behavioural concern model can be
used as a guide when performing the modifications as the
model points to the specific code a developer must consider
when making the change. For instance, if we choose the
first option, we can determine from the model that we did
not have to modify the code associated with the Unauthen-
ticated, GotUser, and Authenticated states, or the setUser
transition. The model can also help us determine that the
PermitAnonymousLogin state and the AuthenticateAnony-
mousUser transition must be modified as shown in Fig-
ure 3.3. We compared the modifications to our model of
the design option and found that modifications were well-
aligned with our model elements.

4 THE BCM TOOL

The grounding of a behavioural concern model in the
source is a critical part of our approach. Without this
grounding, it is easy to create a model that overlooks im-
portant details about how the concern is implemented. The
grounding also helps in the formation of the behavioural
model. In this section, we describe the tool support we
developed to help a developer create and investigate the
grounding of the model. Since this tool builds on earlier
work in conceptual modules, we begin with a description of
conceptual modules.

protected boolean doPassCommand(String line) {
...
String password = line.substring(5);
String userLower = userName.toLowerCase();

if (userLower.equals("ftp") ||
userLower.equals("anonymous")) {

authorized = true;
anonUser = true;
return true;

} else {
try {

Properties access = new Properties();
access.load(new
FileInputStream("access.lst"));
if (access.get(userName).equals(password)) {
* authorized = true;
* out.print("230 Logged in");
} else {

out.print("530 Login incorrect.\n");
userName = null;

}
} catch (Exception e) {
...

}
}
return true;

}

Figure 4. Code forh PermitNamedLogin(#)
and AuthenticateNamedUser(*) transitions

4.1 Conceptual Modules
The Conceptual Module (CM) approach supports the

overlaying of logical structure on the structure of an existing
system [2]. Each piece of the logical structure is modelled
as a CM. A CM treats a collection of non-contiguous source
code lines from multiple parts of the existing system as a
logical unit. Tool support is provided to allow a developer
to query about the control- and data-flows between CMs and
between a CM and the existing source. For example, a de-
veloper can query about the interface to a CM. The tool will
respond with a list of the inputs expected by the CM, the
outputs the CM produces, and the control-flows emanating
from the CM. Earlier work demonstrated the utility of the
CM approach for reengineering C [2] programs.

In the work described in this paper, we use CMs to rep-
resent the states and transitions in a FSM. At its core, the
BCM tool is a CM tool for Java. As we describe the BCM
tool, we indicate where the basic CM concept and tool
have been refined and extended to help support the software
change process.

4.2 Tool Interface
The BCM tool provides three operations to a developer:

CM creation, a relatedness query, and an interface query.
Prior to running any of these operations, a developer must
have specified a set of classes that form the world for the
BCM tool. All subsequent analyses are conservative, within

the limitations described in Section 4.4, with respect to this
world.

CM Creation A developer creates a CM that represents
a state or a transition by giving the CM a name and asso-
ciating a set of source code lines from the world with the
named CM. A developer can select individual lines, all of
the lines within a method, or all of the lines within a class.
A developer can also use set operations applied to existing
CMs, such AND, and OR, to define new CMs consisting of
the intersection or union of other CMs.

The original CM tool did not have the ability to create
CMs from other CMs.

Relatedness Query A developer uses the relatedness
query to determine the data- and control-flows that exist
between two CMs. This query requires three inputs: a
source CM, a target CM, and a context, which is also spec-
ified as a CM. The relatedness query identifies all data- and
control-flows emanating from the source that reach the tar-
get through code included in the context. The query reports
the flows in a method summary, and a class summary.

The original CM tool did not provide any hierarchical
reporting of the flows between CMs, nor did it allow the
filtering of results through a context.

Interface Query A developer can also perform an in-
terface query on a defined CM to elucidate the data- and
control-flows to and from the CM. The query determines
which variables and fields, within the world, are possible
inputs to the CM, which variables and fields are possible
outputs to the CM, which control transfers might emanate
from the CM. As described in Section 2, this query is help-
ful in gaining confidence that the appropriate code has been
modelled as part of an FSM when using the BCM approach.

4.3 Tool Internals

The BCM tool works on Java bytecode using the Jikes
Bytecode Toolkit (JikesBT 2). To improve the efficiency
of queries, BCM pre-processes the methods in the defined
world, creating a method digest for each method. A method
digest summarizes which fields and arguments a method
might possibly use or define, and which methods it might
possibly call.

To build a digest for a method, the tool first computes a
control-flow graph for the method in which a vertex repre-
sents a bytecode and an edge represents a possible control-
flow between bytecodes. This control-flow information is
used to guide a simulation of the possible effects of the
method on the Java Virtual Machine stack and on local vari-
ables. The BCM tool iterates over the methods until all
method digests have reached a fix-point. At the end of this
pre-processing, only the method digests are retained. Data-
and control-flows within methods that are needed for par-
ticular queries are recalculated on demand.

2Available from http://www.alphaworks.ibm.com/tech/
jikesbt.

The BCM tool takes a conservative approach to the anal-
ysis. For method-call bytecodes that have multiple possible
targets, the BCM tool uses the union of the method digests
of all possible targets. The possible targets are determined
using JikesBT. The values of objects are not tracked, lead-
ing to additional imprecision in the results reported.

At any given time, the BCM tool retains only the data-
and control-flows for the method it is currently analyzing.
The performance of the tool is thus more dependent upon
the complexity of a method’s control-flow rather than the
overall number of classes or methods in a given application.
Using the Java 1.3 HotSpot VM running on a PIII 1Ghz
machine, we were able to preprocess the 29000 lines-of-
code XBrowser system in 10 minutes and the longest query
completed in 15 minutes.

4.4 Tool Limitations

The current BCM tool does not support the analysis of
native methods. The imprecision introduced by this limita-
tion was not an issue in our analysis of jFTPd or XBrowser.
Since most native methods are used for performance or for
interfacing with external libraries, the control- and data-
flows are often contained within the native code. One ex-
ception to this statement occurs with classes that extend
java.lang.Thread and that override the run method.
At some point, the native method start is called and it
eventually calls the run method. This control-flow is not
detected by BCM because it occurs in native code. We have
worked around this problem by writing a temporary sub-
class of Thread with an overridden start method that
explicitly calls run.

The BCM also does not perform any alias analysis, nor
can it determine the results of calls using Java’s reflection
capabilities. Each of these limitations introduces impreci-
sion into the control- and data-flow results.

5 EVALUATING BCM

For the BCM approach to be viable, it must be possible
for developers to create useful models of a concern within a
reasonable amount of time. To date, our focus has been on
the first part of this statement within a specific context: is it
possible to create a useful model of a concern for reasoning
about a change? In this section, we describe a case study
of applying the BCM approach to an outstanding change
task on an unfamiliar system to provide additional evidence
that model creation is possible. The model created for this
change task provided a framework for introducing the de-
sired behaviour and for examining how it would interact
with the existing behaviour. Once the modifications to the
model were complete, the existing mapping between the
model and source code aided in identifying the structural
units that needed modification.

5.1 XBrowser
The target of this study was the XBrowser system, which

is a Web browser written in Java using Swing with features
similar to Netscape Navigator version 3. 3 The code for
XBrowser comprises 171 classes and approximately 29000
lines of code.

One of the outstanding feature enhancements for
XBrowser was a request for Meta-Refresh support. In an
HTML document, the META elements contain metadata
such as a document’s keywords and author. The META el-
ement may also be used to refresh a document window to
another URL after a specified number of seconds.

For our study, we chose to apply the BCM approach to
support the addition of Meta-Refresh feature to XBrowser.
Little documentation about XBrowser was available; a situ-
ation that is all too common when evolving a software sys-
tem.

5.2 Modelling the Existing Behaviour
We used our knowledge of the Meta-Refresh feature to

predict what concerns in XBrowser would likely be im-
pacted by the change, and thus which would be of interest to
model. First, we predicted that the addition of Meta-Refresh
would change the current URL, and thus would involve a
navigation concern. Second, we predicted that the feature
would require parsing the current document, and thus would
involve a document parsing concern.

Similar to our description in Section 2, we grew partial
models of each of these concerns by identifying code snip-
pets of interest with grep, by positing model pieces and as-
sociating code with those pieces, and by using the BCM
tool to perform relatedness queries to check that we had
modelled the code of interest. As before, context was spec-
ified as part of the relatedness queries to make the output
of queries feasible to read. Reducing the context was rela-
tively easy; for instance, we filtered graphical user interface
classes because these classes fell outside of our scope of
interest.

Figure 5 shows the model resulting from this iterative
process. The document parsing concern is captured by the
Parsing state. Only one state is needed because a large por-
tion of the HTML parsing is handled by Swing; the little
parsing that is done by XBrowser is well-localized. The
navigation concern is captured by the remaining states and
transitions. The Back Action transition represents all of the
actions, such as pressing the forward button in the browser,
that may cause XBrowser to load a different document. The
Process HyperLink state represents loading and display of
an HTML document in a given frame target. The GUI
thread interacts with the Page-Loading thread via the com-
bined Page Load Stop, Page Load Start transition; in this
combined transition, first the Page Load Stop event occurs,

3XBrowser is available from http://xbrowser.sourceforge.
net.

Page Load Stop,

Page Load Start

Back Action

 Page Load

Stop

 Page Load

Start
 Display

Page

Process

HyperLink

Stopped

Parsing

GUI
 Page-Loading Thread

Figure 5. XBrowser Model

and then the Page Load Start event occurs. This transition
stops the Page-Loading thread if it is running to prevent the
thread from displaying previous requests. On receipt of a
Page Load Stop request, the Page-Loading Thread enters
the Stopped state. The Page Load Start transition causes the
display of requested URL. Swing calls methods associated
with the Parsing state to parse a HTML Document. After
Swing has processed the page, it displays the page and the
Page-Loading Thread returns to a stopped state.

This model has two interesting features: different frag-
ments of state machines are used to represent behaviour in
different threads, and some model elements, those that are
dashed in Figure 5 and subsequent figures, do not have any
code associated with them.

Each fragment of the model represents a part of the be-
haviour exhibited by a given thread. The two fragments of
the state machine reflect the fact that the GUI thread and
the Page-Loading thread may be in different states at dif-
ferent times. Had we merged the two, there would be a
set of states representing the cross-product of the individual
threads’ states.

In the Page Loading thread Stopped, Page Load Stop, and
Display Page are all model elements that do not have any
associated code. Their behaviour is implemented by Java
core libraries. Without these elements, the model would not
accurately reflect the behaviour of the system. They pro-
vide context that helps developers make sense of the others
elements.

5.3 Modelling the Meta-Refresh Feature

The model of the navigation and document parsing con-
cerns provided a basis on which to consider approaches for
implementing the Meta-Refresh feature. We considered two
approaches: modelling the Meta-Refresh feature as part of
the Page-Loading thread, and modelling the Meta-Refresh
feature as a separate thread.

Page Load Stop,

Page Load Start

Back Action

GUI
 Page-Loading

Thread

Process

HyperLink

 Page Load

Stop

 Page Load

Start

Display

Page

Stopped

Parsing

Continue

Parsing

Refresh

Request

Awaiting

Refresh

Another

Refresh

Request

Display

Page

Refresh

Page

Figure 6. XBrowser Model with Meta-Refresh
Feature as part of Page-Loading Thread

Figure 6 shows a model corresponding to the first ap-
proach. The Page-Loading thread notes any refresh META
element it encounters while parsing, retaining only the last
META element if multiple exist. This behaviour is mod-
elled by the Parsing, and Continue Parsing states, and the
Refresh Request and Another Refresh Request transitions.
The Parsing state and Continue Parsing state need to be dis-
tinct because the Continue Parsing state represents the fact
that we have encountered a META element. The Another
Refresh Request handles HTML pages with multiple META
elements. When parsing is complete, a Display Page tran-
sition is taken which causes Swing objects to display the
document. If we had reached the Awaiting Refresh state,
then we need to delay the appropriate number of seconds
before taking the Refresh Page transition to start displaying
the new page.

In the second approach, we create a new Meta-Refresh
thread as Figure 7 shows. While parsing a document, the
Page-Loading Thread may encounter a refresh META el-
ement. When this occurs, the Refresh Stop, Refresh Start
transition is taken. This transition stops the Meta-Refresh
thread if it is running and starts a new Meta-Refresh thread.
Once the Meta-Refresh Thread receives a Refresh Start re-
quest, it enters the Waiting state and delays for the appro-
priate amount of time. The Refresh Thread then takes the
Display New Page transition to start displaying the refresh
page. Once the Refresh Thread reaches the Process Hyper-
Link state, if the desired URL is not loading already, the
Refresh Thread takes the Page Load Stop, Page Load Start
transition. This transition instructs the Page-Loading thread
to stop and display the new page refresh page.

Extending the model for the second approach helped us

Stopped

Meta-

Refresh Thread

 Refresh Stop
 ,

 Page Load Stop,

 Page Load Start

Back Action

 Page Load

Stop

 Page Load

Start
 Display

Page

Refresh

Start

Refresh Stop
 ,

Refresh Start
 Display

New Page

Process

HyperLink

Refresh

Stop

Page Load Stop,

Page Load Start

GUI

Page-Loading

Thread

Process

HyperLink

Stopped

Parsing
 Waiting

Figure 7. Meta-Refresh Feature as Separate
Thread

consider subtle pieces of the Meta-Refresh feature. As one
example, we had to consider the situation where a user de-
cided to visit another page before a refresh had completed.
Suppose a user visits a page with a refresh META element
causing the browser to start a refresh thread. Suppose that
before the refresh thread changes the current URL, the user
visits a different page. The existing refresh thread is no
longer relevant to the current page and should not change
the current URL. We model this behaviour by modifying
the GUI thread’s Page Load Stop, Page Load Start transi-
tion. We rename it to Refresh Stop, Page Load Stop, Page
Load Start to reflect the desired behaviour.

The two approaches both have their merits. The first
approach does not require a new thread and thus is less
complex and less prone to synchronization and threading
bugs. The second approach is more flexible because the
meta-refresh behaviour is implemented in a second thread.
This enables more design choices for the developer such as
whether or not the refresh should start when the META ele-
ment is first encountered or when the document has finished
loading.

5.4 Implementing the Meta-Refresh Feature
We used the changes to our model to guide us to the

points in the source code we needed to modify or to aug-
ment. As one example, consider the the Refresh thread’s
Page Load Stop, Page Load Start transition. We need to
ensure code exists in the system to perform this function.
Since this transition is similar to the GUI thread’s Refresh
Stop, Page Load Stop, Page Load Start transition, we first

consider the use of that code to perform the function. After
examining the code and determining its suitablity, we can
record it as an implementation appraoch in the model by
grounding the Refresh’s thread transition with that code.

6 Discussion
The BCM approach shows promise, but several ques-

tions remain. In this section, we discuss some of the choices
we made in the definition of our approach and the imple-
mentation of our tool, describe extensions to the approach
that would further help in systematizing the change process,
and discuss how the approach might help in further modu-
larization of a code base.

6.1 Form of the Model

We chose to use finite state machines (FSM) to model
concern behaviour for several reasons. Their lightweight
syntax and semantics allow developers to focus on describ-
ing the behaviour of a concern. Single elements in FSM’s
rely only on local knowledge, enabling developers to de-
scribe parts of a concern without knowledge of other parts
of the concern.

The states in our models typically represent modes of
computation; the transitions typically represent a possible
change in modes. This interpretation may be confusing to
developers who expect states to represent the potential val-
ues of fields, and transitions to represent changes in those
fields, or flows of data. Further case study work is needed
to determine if this interpretation is suitable for a wide range
of change tasks, or if other model types, such as UML se-
quence or collaboration diagrams [9], may be more appro-
priate all, or some, of the time. In addition, the form of the
model may be dependent not just on the change task, but
also on the concerns involved. For example, sequence di-
agrams may be the best choice for modelling a transaction
concern for a student enrollment system. Since the BCM
tool is not currently sensitive to the form of model, the tool
may be used to experiment with these different choices.

6.2 Filtering Relatedness Query Results

The query that returns information about how two ele-
ments of the FSM relate tends to produce a large number
of results. The BCM tool can filter these results based on
structural contexts described by classes, methods, or lines of
code. Another possibility is to filter based on lexical infor-
mation, such as variable and field names, or other structural
information, such as inheritance relationships. Yet another
possibility is to filter on a graph theoretic basis: A devel-
oper may only want results that are strongly-connected, or
results that form the shortest path from the source to the tar-
get. Each of these filtering methods represents a tradeoff
between returning too much information, and accidentally
filtering out desired information. The situations in which
these queries work best is an open question.

6.3 Verification

Our description of the uses of the BCM approach fo-
cused on five of six steps outlined as part of a systematic
change process in Section 2. The sixth step involves verify-
ing the implementation to determine whether the change has
been made correctly. The BCM tool can also be used for this
step to support simplistic data-flow based verification tasks.
After mapping the changed source code to model elements,
a developer can perform the relatedness query on a source
and a target element to see if any unexpected flows may oc-
cur between the model elements. For example, consider the
User Authentication concern from Section 3. If there is an
unexpected flow from Unauthenticated to Authenticated, a
malicious user might be able to gain unauthorized access to
jFTPd.

This approach is a simplistic form of model check-
ing [10]. Unlike model checking tools, the developer is re-
sponsible, using the BCM approach, to be systematic about
the queries and is more limited in the queries that can be
run. An advantage compared to existing source code model
checking tools, such as Bandera [5], is that a higher-level
model can be used. By higher-level, we mean that the states
in a BCM model represent large pieces of processing, than
a particular localized piece of state represented in Bandera.
More investigation is needed to understand whether bounds
can be placed on the uncertainty of the verification queries
performed using the BCM tool. For example, is there a
more precise way for a developer to know if they have cap-
tured enough of a concern to be confident about the correct-
ness of a change.

6.4 Modularizing the Concern

In some cases, once a concern is identified in the code,
it may be advantageous to capture that concern explicitly.
Aspect-oriented approaches [11], such as AspectJ, 4 pro-
vide one means of modularizing and separating crosscutting
code. Before creating an aspect, it is important to under-
stand how the code contributing to a concern works. The
BCM tool can help in this step but would need to be com-
bined with other tools, such as refactoring tools, to help cre-
ate the appropriate joinpoints between the concern and the
core code.

7 RELATED WORK

In helping a developer during a change task, the BCM
approach is similar to work on impact analysis. In creat-
ing a model of a program from existing artifacts, the BCM
approach is similar to existing behavioural reverse engineer-
ing approaches. In helping to identify code related to a par-
ticular concern or feature, the BCM approach is similar to
feature-finding tools.

4http://www.aspectj.org

7.1 Impact Analysis
To understand the scope of a software enhancement, a

developer may prior to making a change, perform an impact
analysis (e.g., [1]). Given a point in the system involved
in the enhancement, an impact analysis determines others
points in the system that are transitively dependent upon the
seed point. This set of points is intended to help a developer
estimate the effort required to make the change, determine
the code that may need to be examined to make the change
correctly, amongst other tasks.

In allowing a developer to investigate control- and data-
dependencies in the code, BCM is similar to code-based im-
pact analysis techniques. The BCM approach differs from
these techniques in two ways. First, using BCM, a devel-
oper need only form a model and link it to the code when
analyis is needed that involves that behaviour. Other im-
pact analysis techniques, such as Sneed’s [15], rely on trace-
ability between artifacts, such as between use cases and the
code, to be in place for the whole system. A developer us-
ing BCM thus pays the cost of the traceability only when
the impact analysis is needed.

Second, using the BCM approach, a developer need not
compute nor analyze a larger scope of impact in the system
than necessary as the analysis is directed by the behavioural
model. In comparison to slicing approaches to impact anal-
ysis [6], the BCM approach may thus scale better.

7.2 Reverse Engineering Tools
Reverse engineering tools help a developer build mod-

els of an existing system from source code and other arti-
facts. We limit out comparison to tools that produce be-
havioural models, models which describe how (part of) a
system works.

Several researchers have developed techniques for gen-
erating state machine representations, such as UML stat-
echarts, from scenario diagrams or message sequence
charts [12, 18]. These tools build a state machine repre-
sentation per class, and thus cannot model the crosscutting
behaviour that is possible in the BCM approach.

The Shimba [16] tool can generate sequence diagrams
that model crosscutting behaviour at the class and class
member level. In contrast, the BCM approach can model
crosscutting behaviour at the statement level, producing
more abstract and compact models by summarizing a col-
lection of statements (possibly across classes) into a single
element in a BCM model.

Di Lucca and colleagues has considered the recovery of
use case models from object-oriented code [13]. In this ap-
proach, a developer identifies statements which correspond
to user-level input or output events, and then a tool auto-
matically identifies the portions of the code base that corre-
spond to these potential use cases. This approach is limited
to identifying code that corresponds to externally visible be-
haviour; the BCM approach does not have this limitation.

7.3 Feature-finding Tools
To help support software change, a number of tools have

been built to aid in the identification of the parts of a code
base related to a particular feature, or concern.

Wilde and Wong each use an approach based on com-
paring execution information collected for test cases exer-
cising a feature with execution information collected for
test cases that do not exercise the feature [19, 20]. Chen
and Rajlich advocate the determination of code related to a
feature through a systematic exploration of an abstract pro-
gram dependence graph representation of a system [4]. The
Aspect Browser tool helps a developer identify a concern
through the use of lexical queries [7]. The Aspect Mining
tool (AMT) [8] augments the queries of Aspect Browser by
supporting lexical queries over expressions that include type
information. The FEAT tool supports concern identification
through the use of structural queries [14].

These feature-finding tools complement the BCM ap-
proach by helping identify code of interest when planning a
change. The identified code can be used as a basis to help
build a BCM model. The BCM model can then be used to
help reason about different design possibilities, and to help
implement and verify the modification.

8 Summary
When performing modification tasks, developers often

encounter crosscutting concerns. It is difficult for devel-
opers to understand how modifications interact with these
concerns. Current tools help a developer analyze the exist-
ing code, but do not help the developer reason about, imple-
ment, or analyze a modification.

In this paper, we have presented the Behavioural Con-
cern Modelling approach and tool that provide direct sup-
port for a systematic approach to modification tasks. The
tool helps a developer model concerns pertinent to a modi-
fication and supports the querying of source through a cre-
ated model. A developer may then use the model to reason
about design choices and may use the model as a guide to
performing the modification.

9 Acknowledgements
We thank Jonathan Sillito for comments on an earlier

draft of this paper. This research was funded in part by an
IBM University Partnership Research Grant, and in part by
a University of British Columbia graduate fellowship.

References
[1] R. Arnold and S. Bohner. Software Change Impact Analysis.

IEEE Computer Society Press, 1996.
[2] E. Baniassad and G. Murphy. Conceptual module querying

for software reengineering. In Proc. of Int’l Conf. on Soft.
Eng., pages 64–73. IEEE Comp. Soc. Press, 1998.

[3] E. Baniassad, G. Murphy, C. Schwanninger, and M. Kircher.
Managing crosscutting concerns during software evolution

tasks: An inquisitive study. In Proc. of the 1st Conf.
on Aspect-oriented Software Development, pages 120–126.
ACM Press, 2002.

[4] K. Chen and V. Rajlich. Case study of feature location using
dependence graph. In Proc. of the 8th Int’l Workshop on
Program Comprehension, pages 241–247. IEEE Comp. Soc.
Press, 2000.

[5] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu,
Robby, and H. Zheng. Bandera: extracting finite-state mod-
els from java source code. In Proc. of Int’l Conf. on Soft.
Eng., pages 439–448. IEEE Comp. Soc. Press, 2000.

[6] K. Gallagher and J. Lyle. Using program slicing in soft.
maint. IEEE Trans. on Soft. Eng., 17(8):751–761, 1991.

[7] W. Griswold, J. Yuan, and Y. Kato. Exploiting the map
metaphor in a tool for software evolution. In Proc. of Int’l
Conf. on Soft. Eng., pages 265–274. IEEE Comp. Soc. Press,
2001.

[8] J. Hanneman and G. Kiczales. Overcoming the prevalent de-
composition of legacy code. Workshop on Advanced Sepa-
ration of Concerns at the Int’l Conf. on Soft. Eng., 2001.

[9] I. Jacobson, J. Rumbaugh, and G. Booch. The Unified
Software Development Process. Object Technology Series.
Addison-Wesley, Reading, MA, 1999.

[10] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J.
Hwang. Symbolic Model Checking: �����	� States and Be-
yond. Information and Computing, 98(2):142–170, 1992.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In ECOOP’97—Object-Oriented Programming,
pages 220–242. Springer, 1997.

[12] K. Koskimies, T. Syst, J. Tuomi, and T. Mnnist. Auto-
mated support for modeling OO software. IEEE Software,
15(1):87–94, 1998.

[13] G. A. D. Lucca, A. R. Fasolino, and U. D. C. i. Recovering
use case models from object-oriented code: a thread-base d
approach. In Working Conf. on Reverse Engineering, pages
108–117. IEEE Comp. Soc. Press, 2000.

[14] M. Robillard and G. Murphy. Concern Graphs: Finding and
describing concerns using structural program dependencies.
In Proc. of the Int’l Conf. on Soft. Eng., pages 406–416.
IEEE Comp. Soc. Press, 2002.

[15] H. Sneed. Impact analysis of maintenance tasks for a dis-
tributed object-oriented system. In Proc. of Int’l Conf. on
Soft. Maint., pages 180–189. IEEE Comp. Soc. Press, 2001.

[16] T. Systa, K. Koskimies, and H. Muller. Shimba – an environ-
ment for reverse engineering java softare systems. In Soft.:
Pract. and Exp., volume 31, 4, pages 371–394, 2001.

[17] M. Weiser. Program slicing. In Proc of the 5th Int’l Conf. on
Soft. Eng., pages 439–449. IEEE Comp. Soc. Press, 1981.

[18] J. Whittle and J. Schumann. Generating statechart designs
from scenarios. In Proc. of Int’l Conf. on Soft. Eng., pages
314–323. IEEE Comp. Soc. Press, 2000.

[19] N. Wilde, J. Gomez, T. Gust, and D. Strasburg. Locating
user functionality in old code. In Proc. of Int’l Conf. on Soft.
Maint., pages 200–205. IEEE Comp. Soc. Press, 1992.

[20] W. Wong, S. Gokhale, J. Horgan, and K. Trivedi. Locat-
ing program features using execution slices. In Proc. of the
Symp. on App.-Specific Sys. and Soft. Eng. and Tech. (AS-
SET), pages 192–203. IEEE Comp. Soc. Press, 1999.

