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ABSTRACT

Many design concepts can be expressed only indirectly in
source code. When this occurs, a single concept at de-
sign results in a verbose amount of code that is scattered
across the system structure. In this paper, we present ex-
plicit programming, an approach that enables a developer
to introduce new vocabulary into the source to capture a
design concept explicitly. An introduced vocabulary item
modularizes the implementation details associated with a
design concept, reducing the scattering of code needed to
express the concept. The vocabulary item appears in the
code where the concept is needed; uses of the vocabulary
may thus remain distributed through the code. We believe
explicit programming provides a useful engineering point,
balancing modularization and separation in (at least) two
cases. First, when a design concept is tightly coupled with
particular constructs in a program, separation is unlikely
to lead to any benefits of reusability or comprehensibility.
Second, concepts that emerge as a system evolves can be
encapsulated and recorded, paving the way for later sepa-
ration when conditions warrant it. We introduce ELIDE,
a tool that supports explicit programming in Java, and de-
scribe several cases showing the utility of the explicit pro-
gramming approach.

1. INTRODUCTION

Many design concepts do not map directly into source
code written in a general-purpose programming language.
All too often, a single concept in the design requires ver-
bose amounts of code to express. Sometimes this code is
localized within a small part of the system’s source; more
often, it is scattered. Scattered, verbose code introduces at
least two problems for software developers who must evolve
the system. First, it is difficult for developers to understand
the design of the system, leading over time to a degrada-
tion in the structure and conceptual integrity of the system.
Second, even when a design concept is rediscovered, it is
difficult for developers to change the concept consistently.
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Aspect-oriented approaches attempt to address these
problems by modularizing the scattered pieces of source code
that implement a concept [15]. At one end of the spectrum of
aspect-oriented approaches are language mechanisms, such
as AspectJ [14, 2] and Hyper/J [18, 12], that allow the scat-
tered code to be localized and separated. The developer
must state how a separated unit composes with the rest
of the system. At the other end of the spectrum are ap-
proaches, such as information transparency [11] and concern
graphs [20], that allow the scattered code to be identified
and reasoned about as a unit. The developer must still ma-
nipulate the scattered and verbose code.

In this paper, we propose an approach, called explicit pro-
gramming, that allows a developer to introduce new vocab-
ulary into the source. The definition of a vocabulary item
modularizes the implementation details associated with rep-
resenting the concept in general-purpose source code. The
use of a vocabulary item in the source makes the design con-
cept explicit. Explicit programming falls into the middle of
the spectrum outlined above. Although the definition of a
vocabulary item localizes previously scattered code, the uses
of the item remain distributed through the code.

We believe explicit programming provides a useful engi-
neering point balancing modularization and separation in
(at least) two cases. First, when a design concept is tightly
coupled with particular constructs in a program, separation
may not improve the reusability or comprehensibility of the
code. Second, concepts that emerge as a system evolves can
be encapsulated and recorded, paving the way for later sep-
aration when conditions warrant the separation. We expand
on these points in Section 2.

To investigate this approach, we have built a tool, called
ELIDE, to support explicit programming in Java™. We
outline explicit programming in Section 3, we describe the
ELIDE tool in Section 4, and we present several uses of the
tool in Section 5. In Section 6, we discuss the relationship
between our approach and aspect-oriented programming.
‘We compare explicit programming to related approaches, in-
cluding macros and domain-specific languages in Section 7,
before summarizing the paper in Section 8.

Our paper makes three contributions.

1. We identify and describe two situations in which it is
helpful to modularize a scattered concern without fully
separating the concern from the rest of the system.

2. We characterize the explicit programming approach,
which provides a useful set of engineering tradeoffs for
supporting these two situations.



3. We introduce the ELIDE tool to support explicit pro-
gramming in Java.

2. TO SEPARATE OR NOT?

The concept of separating concerns is fundamental in soft-
ware development. Although the separation of a concern can
bring many benefits, such as making it easier to understand
a concern or to reuse a component, separation can also entail
costs, such as making it more difficult to understand the be-
havior of the system as a whole. In this section, we discuss
two situations in which there are benefits to modularizing,
but not fully separating, a concern.

2.1 Coupled Concepts

Some design concepts are strongly coupled to program-
ming language constructs. An example of such a con-
cept is the design-by-contract (DBC) style of program-
ming [16] that advocates the specification of run-time check-
able method pre-conditions, method post-conditions, and
class invariants.

Since Java does not directly support design-by-contract
concepts, programming in this style requires the checks of
the specifications to be encoded as assertion tests. This
approach litters the code with similar assertion tests. The
management of these similarities can be eased by captur-
ing the coding idiom in an aspect, perhaps even separating
the aspect from the main class code. But, since individual
conditions and invariants are tightly coupled to the classes
and methods to which they are applied, the separation of the
checks may not be beneficial; for instance, when a method is
changed, its pre- and post-conditions must be re-examined.
Moreover, code is less likely to be shared between the tests
by separating the assertion testing code.

Specific tools, such as iContract [13], capture precondi-
tions, postconditions, and class invariants ezplicitly in the
code by embedding the checks in stylized comments. These
stylized comments localize and hide important details about
the design-by-contract concept, such as the precise points
at which the checks must be made. The uses of these state-
ments remain scattered, appearing relatively close to the
constructs to which they are coupled. One benefit of retain-
ing these scattered uses is that a developer reading the code
can use the statements as documentation about the class.

Other common design concepts also exhibit this close cou-
pling to language constructs. For example, test code is
strongly coupled to the code it tests. We expand on this
example in the context of JUnit [9] in Section 5.1. The con-
cept of properties in the JavaBean™" standard, such as the
vetoable property, are strongly associated with a particular
field (or fields) of the Bean class. A more general solution
than creating a specific tool for each such design concept is
desirable.

2.2 Concept Evolution

Some useful design concepts emerge only as a software
system evolves. For example, a designer decides that some
objects need to be shared, as in the flyweight design pat-
tern [10], to overcome performance problems. If such shar-
ing is introduced at different times in multiple parts of the
system, it may be difficult to separate the design concept of
sharing until the regularities between the different uses are
understood. In fact, the regularities may only become ap-
parent through deliberate restructuring and refactoring. An

approach that allows the capture of such a concept in place
may make it easier for a developer to proceed in smaller
steps towards further modularization. Some concepts cap-
tured this way may evolve towards being fully separated; for
instance, they may be expressed as an aspect in AspectJ.
Others may be better left in place because they may have
strong local coupling. In Section 5.2 we present a case study
of a small object-oriented system in which it was helpful to
incrementally evolve towards the more explicit representa-
tion and modularization of concepts.

3. EXPLICIT PROGRAMMING

We use the term ezplicit programming to describe ap-
proaches that support the modularization, without separa-
tion, of a design concept. Using explicit programming, a
developer can make design concepts explicit in their source
code by incrementally introducing new vocabulary that can
be used where the concept occurs in the code, and whose def-
inition modularizes the implementation details of the con-
cept.

By modularization, we mean that the mechanism must
localize code associated with the implementation of the de-
sign concept. This localization is intended to help clarify
the code and to ease the evolution of the concept. Simple
naming conventions used to mark otherwise indistinguish-
able language constructs, such as the use of special names
for classes or methods, are not sufficient to be considered a
form of of explicit programming because they do not meet
this last criterion.

4. ELIDE

To provide a cost-effective approach for making non-local
design concepts explicit, we have developed the ELIDE tool
that supports explicit programming in Java. This section
describes the ELIDE tool. A complete example of using
ELIDE appears in the Appendix.

4.1 Overview

ELIDE provides a single syntactic extension to the Java
language: it permits a developer to introduce new modifiers
for classes, fields, and methods. This approach balances the
need to express a wide range of design concepts with famil-
iarity: ELIDE modifiers are used identically to the standard
Java modifiers such as public, private, and synchronized,
and can be freely intermixed with them.

Each ELIDE modifier triggers a transformation on the
source code. The transformation may add new classes, insert
fields, modify existing methods, or generate new ones. As
a simple example, consider marking a particular field as a
JavaBeans property.

private property<> String name;

The transformation associated with this ELIDE modifier
would generate the required mutator and accessor methods
needed for the field to be a JavaBeans property.

ELIDE modifiers must be followed by a list of (possi-
bly empty) parameters enclosed in angle brackets.! The

!Our syntax will likely not be compatible with Java 1.5. We
are contemplating a change in syntax to be compatible. A
simple transformation tool will suffice for moving from the
existing syntax to the new syntax we are investigating.



presence of the parameter list, even if empty, helps dis-
tinguish ELIDE modifiers from ordinary Java modifiers for
both parsers and programmers. The ability to specify pa-
rameters adds flexibility to the introduced vocabulary. For
example, the property<> modifier might take an optional
read_only parameter, that causes the mutator method to
be omitted.

private property<read_only> String name;

A single modifier can take a varying number of parame-
ters; these can be symbols, type names, string literals, or
even code snippets. To make it easier to include verbatim
Java code, the snippets are enclosed in an extended string
literal syntax. Extended string literals are delimited by %{
and }% and can span multiple lines of text. Additionally,
inside the literal, the delimiters #{}# can be used to provide
gaps in which arbitrary Java expressions can be evaluated
and inserted. For example, the code below shows how an
ELIDE modifier can be used to state a design-by-contract
class invariant that ensures the number of elements in the
set, indicated by count is never less than zero.

public invariant< %{count >= 0}}, > class Set
{

}
4.2 Defining the semantics

The transformational semantics of ELIDE modifiers are
specified by implementing specific Java classes. We chose
this approach to make the tool accessible: Developers do
not need to learn a special transformation language. This
approach also allows the tool to be applied to itself. Several
built-in ELIDE modifiers are used to ease the implemen-
tation of other modifiers. Further details are provided in
Section 4.4.

Each introduced modifier corresponds to a subclass of
Transform, the base class for all ELIDE extensions. The im-
plementation of the modifier consists of one or more atomic
transformations, each of which is represented by a separate
method in the class. For example, the property<> modifier
adds both a mutator and an accessor method. To define this
property, we could introduce two separate atomic transfor-
mations, addMutator and addAccessor, as shown below.

public class Property extends Transform

{
public satisfies<methodDefinition>
void addMutator(FieldNode target) {...}
public satisfies<methodDefinition>
void addAccessor(FieldNode target) {...}
}

An atomic transformation can perform many actions on
the source. We use the term atomic because we treat such
a transformation as an indivisible operation when stating
and resolving dependencies (Section 4.4). A method is des-
ignated as being an atomic transformation method by the
satisfies<> and requires<> modifiers. A class defining a
modifier may have additional private helper methods.

The first argument to each of these methods is an object
that represents the target—the entity in the source code
to which the modifier is attached—of the transformation.
In the example above, the target is a field: The argument

of type FieldNode is the node in the abstract syntax tree
representing the declaration of the field. The remaining ar-
guments, if any, correspond to parameters that appeared
within the angle brackets of the modifier.

4.3 The ELIDE API

The body of an atomic transformation describes the ef-
fect that a portion of the modifier has on the structure and
behavior of the system. To ease the definition of these trans-
formations, the tool provides an API. This ELIDE API pro-
vides classes and methods for inspecting and modifying the
parse tree of the program.

To make the API intuitive and familiar to Java
programmers, the core of this API is modelled af-
ter the java.lang.reflect API, with accessor methods,
such as getDeclaringClass(), and getDeclaredFields(),
amongst others. This introspective API is complemented
with basic mutator functionality, including add (someNode)
and makePublic().

The basic API enables simple transformations to be im-
plemented easily. For example, the following transformation
method makes all fields of its target class private.

public void mkAllFieldsPrivate(ClassNode target)
{
FieldNode[] fields = target.getDeclaredFields();
for(int i = 0; i < fields.length; i++)
fields[i] .makePrivate();

To ease the definition of more complex transformation
methods, the API offers a number of methods that accept
(and parse) strings containing Java code. These methods
are intended to be used with ELIDE’s extended string literal
syntax to pass in blocks of code. This mechanism eases the
assembly of larger chunks of code. For example, a method
to add an accessor for a field can be written as follows.

public void addAccessor(FieldNode target)
{
String uppercaseName =
Utils.methodCase(target.getName());
target.getDeclaringClass() .extend(

%t
public #{target.getType()l}#
get#{uppercaseNamel}#()

return #{target.getName()}#;
}
YR ;

Support for API methods to accept code from strings is
beneficial for two reasons. First, this mechanism eases the
writing of more complex transforms. Second, the mechanism
enhances readability of the transforms because the imple-
mentation of the transform method wvisually resembles the
code that is produced.

4.4 Managing Transformation Dependencies

To meet the goals of explicit programming, ELIDE sup-
ports the incremental introduction of modifiers into a sys-
tem. As modifiers are introduced, interactions between
modifiers are likely to occur. Consider adding a DBC-like
invariant<> modifier, which adds assertions at the begin-
ning and end of each public method, to a class that makes
use of property<>. If the property<> transformations occur



first, then invariant<> will find the newly introduced ac-
cessor methods and will add the proper assertions to them.
However, if invariant<> occurs first, then any methods in-
troduced by property<> will not contain the assertions.

Since many interactions between different modifiers man-
ifest themselves as constraints on the transformation order-
ing, ELIDE provides a simple dependency system for manag-
ing the transformation order. Each transformation method
is marked with a user-defined list of dependencies that it sat-
isfies, and a list that it requires. These lists define a partial
order on the transformations, ensuring that a transforma-
tion satisfying a dependency is always executed before any
transformation requiring it. For instance, using the built-in
modifiers, satisfies<> and requires<>, the example given
above could be disambiguated as follows.

//in Invariant
requires<methodDefinition>
public addAssertions() { ... }

//in Property
satisfies<methodDefinition>
public addAccessorMethod(D) { ... }

These modifiers and their parameters ensure that the ad-
dAccessorMethod(), as well as any other transformation
method marked as satisfying a methodDefinition, executes
before addAssertions().

ELIDE will check for circular dependencies before execut-
ing any transformations. If it detects a deadlock, it will
report an error to the user. The user must alter the depen-
dencies to resolve the deadlock before the transformations
can be applied.

4.5 Implementation

ELIDE is implemented in Java as a Java two-pass prepro-
cessor. A typical run cycle of ELIDE involves the following
five steps:

e process modifier definitions with ELIDE,
e compile the resulting source,

o load the compiled modifiers into ELIDE,
e process the target source files, and

e compile the output source files.

ELIDE outputs code that looks as much as possible like
the code a developer would expect if they were not using
the tool. This transparency helps minimize the conceptual
distance between the versions of a system before and after
capturing a concept.

ELIDE’s speed is limited primarily by the parser, which
is generated by the SableCC [8] system. A typical first run
of ELIDE over 17000 kLOC takes approximately 21 seconds
on a 1GHZ PC. To improve these times, the internal rep-
resentation of source files is serialized to disk as they are
parsed, and, when possible, this cached information is then
used on subsequent runs. With the majority of files cached,
the runtime decreases to approximately 9 seconds.

An issue with the current version of ELIDE is that sepa-
rate compilation is practically impossible because we chose
not to limit the scope of transforms. This choice was de-
liberate because we wanted to investigate the capture of
scattered concepts. To date, most of the modifiers we have

defined have had localized effects, affecting only the code in
their surrounding classes. The few exceptions are modifiers
used to help write tests in JUnit (Section 5.1), and those
used to implement some design patterns (i.e. Visitor and
Flyweight [10]). Although these modifiers affect more than
one class, they do so in a predictable way. Based on this
experience, we intend to investigate an approach in which
modifiers have explicitly declared scope, enabling separate
compilation without impeding usability.

5. USING ELIDE

We have used ELIDE on several systems to capture differ-
ent kinds of design concepts. We describe two of these uses
in detail: the use of ELIDE to support unit testing with
JUnit, and the use of ELIDE to capture design concepts in
an evolving visualization system. These uses demonstrate
the useful range of design concepts that can be captured in
a cost-effective way.

5.1 Using the JUnit Framework

We used ELIDE to simplify the writing of tests using JU-
nit [9]. JUnit is structured around TestCase classes. Typi-
cally there is one TestCase class per Java class being tested,
each such class has a number of test methods that makes
various assertions about the tested class.

Adding JUnit tests to a system involves a fair amount of
overhead. Each TestCase class must follow a number of con-
ventions; for example, the class must provide a constructor
with a particular form. Each test that will be run requires a
main() method that invokes JUnit’s TestRunner, and run-
ning more than one test at once requires a TestSuite class to
be created that lists the TestCases for a particular package.

To automate and standardize this process, we created a
test modifier. The test modifier can be attached to blocks
of code inside a class body that contain testing code.

class SomeClass

{
test<i{ ... }W>
void method1() { ... }
test<%{ ... }>
void method2() { ... }
}

The transformation defined for this modifier extracts the
test code into methods of a newly created TestCase class,
and registers that class with a TestSuite for the package.
There are two benefits to using this modifier. First, a de-
veloper may be more likely to keep tests up-to-date when a
separate set of test classes need not be maintained. Second,
the test code, when kept close to the method being tested,
may provide additional documentation about the method.

5.2 The AVID Visualization System

To understand whether ELIDE could capture useful de-
sign concepts in an existing system, we applied ELIDE to
the AVID Java tool developed at the University of British
Columbia.

AVID Java supports the visualization of the dynamic
execution of object-oriented Java-based systems in terms
of user-defined architectural entities [25]. The version of
the system with which we started consisted of approxi-
mately 17,000 lines of commented Java code or 7000 non-
commenting source statements (NCSSs). We focused on



a subset of the system that supported the manipulation
of the execution trace. This subset consisted of approxi-
mately 4200 lines or 1100 NCSSs. The bulk of this code
defined different events that might appear in a trace, such
as InstanceMethodEntryEvent. These classes formed a sin-
gle complex inheritance hierarchy (24 classes and depth 7).
In addition, there were various reader and writer classes that
were used to provide persistence to the trace data types.

We approached the task of increasing the design content
of the code incrementally. Small changes and brief analysis
lead to new understanding which, in turn, led to further
changes. The developer performing this task was familiar
with both AVID and ELIDE.

5.2.1 Refactoring and Design Rediscovery

Initially, the developer focused on the use of ELIDE to
remove straightforward redundancies and boilerplate code.
This analysis resulted in the definition of three class-level
ELIDE modifiers: type<>, equals<>, and allAccessors<>.
The type<> modifier generates appropriate factory classes
for all classes to which it was attached. The equals<> mod-
ifier generates appropriate equals behavior given the fields
on a class. The allAccessors<> modifier generates acces-
sors for all fields on a class.

After the addition of these modifiers, the code output of
ELIDE was the same as the original code, but it was eas-
ier to modify and understand. For example, the fact that
all classes used all fields for equality testing was explicit in
the definition of the equals<> modifier, not something that
would have to be recovered by examining all of the classes
equals() methods at a later point.

5.2.2 Persistence and Efficiency

The original code contained reader and writer classes to
access the trace files. An examination of these readers and
writers revealed that they were tightly coupled to the struc-
ture of the trace data types. This coupling was needed to
support efficient encoding of the data types. The intent of
the reader and writer classes was clear: The classes encap-
sulated persistence support. The problem was that the data
type encapsulation was broken in the process.

The developer introduced ELIDE modifiers to support a
better factorization of the program: Each class became re-
sponsible for its own persistence, but the similarities of per-
sistence that crosscut those classes were captured in ELIDE
modifiers. Specifically, we defined read<> and write<> mod-
ifiers to introspect on trace data type classes and to generate
the appropriate read() and write() methods to support
persistence. The reader and writer classes were essentially
simplified to iterators that called these methods. We decided
not to remove these classes outright in order to maintain the
current interface to the rest of the system.

5.2.3 The Flyweight Pattern

The original system employed a version of the Flyweight
design pattern [10] to save space at run-time. The use of this
pattern was mentioned in the design document. However,
its implementation was non-obvious. The developer added a
flyweight<> modifier to capture the particular implemen-
tation of flyweights used. This modifier made the type<>
modifier added earlier obsolete: It had referred to charac-
teristics of the entire hierarchy collectively, but the addition
of the flyweight<> modifier necessitated a division of the

hierarchy into non-flyweight and flyweight types. Since in-
troducing type<> was not costly, it could be disposed of
without hesitation. The full implementation of a version of
flyweight<> similar to the one used in AVID can be found
in the Appendix.

5.2.4 Summary

Quantitatively, applying ELIDE to the tracing portion
of AVID reduced the original 1100 NCSSs to 300 NCSSs
of AVID code and about 250 NCSSs of modifier definition
code. Much of this reduction is due to the replacement of
boilerplate code in trace data type classes. For example, the
ELIDE output for the following ELIDEJ class is about 100
lines of Java code.

read<>

write<>

equals<>

flyweight<>

allAccessors<>

public abstract class EventEncoding
extends Encoding

{
private ThreadID threadID;
private ClassID classID;

This example shows that ELIDing the AVID code helped
make design concepts explicit in the code. At a glance, a
developer can see that this class provides persistence, has
accessors for all fields, supports equals, and is used as a
flyweight. Just as important is what the developer does not
see: Lines and lines of boilerplate code that might obscure
the only thing differentiating this encoding class from others,
the two ID fields. In addition to being more comprehensible,
the system is more modifiable and extensible. A change in
the way persistence is handled can be achieved through a
change to the definition of the persistence modifiers. Adding
a new trace data class is also much easier, requiring only a
dozen of lines of code instead of about a hundred. Since
ELIDE produces (readable, commented) Java code, a client
of the EventEncoding class can still get access to the class’
full interface description.

6. DISCUSSION

Modifiers in ELIDE play a similar role to pointcut declara-
tions in AspectJ: each is used to designate a set of joinpoints.
There are two differences between these constructs.

One difference is the target of the constructs. In AspectJ,
joinpoints are dynamic execution points. In ELIDE, join-
points are points in the program text.

A second difference is the placement and form of the con-
structs. In AspectJ, pointcuts designate sets of joinpoints
from a place conceptually outside of the affected (part of
the) program by means of expressions that match joinpoints.
In contrast, ELIDE modifiers are placed in the affected pro-
gram and are attached to joinpoints, or to regions of code
where the joinpoints are to be found. For example, a mod-
ifier attached to a class can implicitly designate all of the
class’ methods to be joinpoints.

Since the intent in ELIDE is to modularize a crosscut-
ting concept without separating the concept, associating the
modifiers directly with the joinpoints is reasonable. How-
ever, in the course of making these direct associations,
broader patterns may become clear. For example, in the



AVID case study, we introduced two modifiers, read<> and
write<>, to make explicit similarities in the persistence of
event classes. These modifiers were used in a regular way
within a group of classes: They were applied to each class
within a particular package. This regular usage raises the
question of whether the application of these modifiers should
be placed into a separate crosscutting transform. For such
cases, it might be desirable to introduce a method of specify-
ing joinpoints through patterns, more akin to the joinpoint
model of AspectJ.

The code below specifies such a crosscutting transform
where '@’ is used as a wildcard to apply the modifiers to all
classes in the encodings package.

package encodings;

read<>
write<>
public class @ {}

An experimental extension to ELIDE permits such speci-
fications, as well as more complicated forms. The following
code, for example, specifies that the 1og<> modifier should
be applied to all public methods of all public classes.

public class @ {
log<> public void @();
}

A disadvantage of such transforms is that they reduce the
explicitness of the source with respect to particular encod-
ings. On the other hand, these transforms make it more
explicit that all classes in the package provide persistence,
or that all public methods are logged. A developer using
ELIDE can choose whether or not to take this step of sep-
aration. The developer applying ELIDE to AVID never did
perform the separation. The knowledge that a clean path to
separation exists, provided the developer the confidence to
postpone the actual decision until the benefits become clear.

7. RELATED WORK

Explicit programming and ELIDE are intended to in-
crease the amount and kinds of conceptual information that
can be captured in source code. Broadly, there are three
approaches that have been taken to this problem: domain-
specific languages, macros, and static meta-programming.
In this section, we compare explicit programming and
ELIDE to representative work in these areas, and we com-
pare the role of ELIDE modifiers to UML stereotypes in a
design-driven code generation approach.

7.1 Domain-Specific Languages

The development of a language to express the concepts
of a specific domain can yield many advantages. SQL,
for example, is a domain-specific language for querying a
database; in a few lines, a query may be stated that might
take a screenful or two otherwise. Creating a domain-specific
language typically requires a substantial investment: a do-
main analysis must be performed, a language must be de-
signed, and tools to support the language must be created.
To lessen the cost of providing a domain-specific language,
numerous generators and toolkits have been developed [23].
For example, the Jakarta Tool Suite (JTS) [5] supports the
extension of Java with new language constructs.

Explicit programming differs from domain-specific lan-
guages in two ways. First, explicit programming helps a
programmer exploit immediate opportunities to improve a
code base by refactoring and capturing design concepts that
emerge from, and that are typically tied closely to, the
current code base. In contrast, domain-specific languages
seek to encode broadly applicable and reusable design con-
cepts. Second, an explicit programming tool is intended to
be widely accessible to programmers: A programmer need
not have any expertise in language implementation. In con-
trast, domain-specific language tools, such as JTS, require
a developer to understand language parsing to be able to
define grammar extensions.

7.2 Macros

Macro systems provide a more economical, but also more
limited, means of extending the vocabulary a developer may
use in expressing a system than the typical domain-specific
language tool. Macros are less flexible in the changes they
can introduce into a language, and macro systems do not
typically provide any support for handling errors or debug-
ging in terms of the introduced vocabulary. ELIDE makes
similar tradeoffs and is thus closely related to macro sys-
tems.

The Lisp macro system [19] is the prototypical ancestor
of most macro systems in use today. A lisp macro is imple-
mented as a procedure: The procedure accesses the macro’s
arguments in the form of Lisp lists and computes a suitable
substitution syntax for the macro. This mechanism is most
suitable to define very local program transformations. Al-
though it is theoretically possible to wrap a macro around
a large chunk of Lisp code and to have that macro per-
form arbitrary transformations on that code, the program-
mer would need to implement syntax analysis as list ma-
nipulation, making it difficult to define the transformation.
Wide-ranged transformations are also hard to compose be-
cause Lisp provides no mechanism for managing interactions
between different macros. ELIDE overcomes these impedi-
ments by providing the developer with a suitable interface
to define a transformation, and by providing a dependency
mechanism to guide the application of interdependent trans-
formations.

More recently, hygienic variants of the Lisp macro sys-
tem have been developed [6]. These systems improve on
earlier macro systems by ensuring names in the code are
not accidentally captured. Our current implementation of
ELIDE does not support hygienic transformations. In the
long run, hygiene may become an important issue for explicit
programming, but a simple ad-hoc solution using developer-
generated symbols was sufficient for initial exploration.

The Java Syntax Extender (JSE) [3] and Maya [4] are
two macro packages for Java. JSE is a hygienic, infix ver-
sion of Lisp macros for Java. JSE is oriented at defining
non-interacting local transformations that require little or
no structural information, whereas ELIDE is designed to
express interacting non-local structural-based transforma-
tions. Maya includes a multi-method-like dispatching mech-
anism to determine which macro expansion to apply, sup-
port for extending the Java grammar, and the ability to re-
define existing language elements using macro expansions.
This greater flexibility requires more expertise from the user.
For example the user has to understand LALR parsing tech-
nology and must manage the laziness of Maya’s mixed pars-



ing and type-checking algorithm. ELIDE tries to provide
less power beyond standard macro expansion packages with
the intent of remaining more accessible to programmers.

7.3 Static Meta-Programming

A number of systems are similar to ELIDE in that they
are also based on compile-time meta programs that reason
about program structure, and that transform it by means of
a meta-programming APL

Within this spectrum of compile-time meta programming
systems, intentional programming [21, 1] is most similar in
motivation to explicit programming. The intentional pro-
gramming system is an extensible programming environ-
ment that defines a programming language as a set of in-
tentions. A developer can add domain-specific language fea-
tures, including design concepts, by defining new intentions.
Although ELIDE and intentional programming both define
domain-specific features through transformations on an ab-
stract syntax tree, they differ in the trade-offs made be-
tween expressiveness and ease of definition. In intentional
programming, complete programming language are imple-
mented as a set of intentions, whereas ELIDE only supports
simple modifier definitions for Java. Consequently, an in-
tentional abstract syntax tree is modelled at a fine level of
detail, whereas in ELIDE it is coarse-grained. Also since
large numbers of intentions are active in a system, given
that a whole language is described by intentions, a number
of transformation ordering mechanisms are provided, includ-
ing guilds for organizing global transformations, identifica-
tion of independent subtrees for managing locality and ques-
tions which offer more finer control of transformation order.
It has been sufficient in ELIDE to have a simple dependency
mechanism based on user-defined categories of transforma-
tion effects. Overall, then, a developer using ELIDE can
capture less domain-specific features, but the cost of intro-
ducing a feature is also lower.

OpenJava is a static meta-programming system that is
based on a compile-time, class-based, meta-object proto-
col [22]. Its compile-time MOP enables OpenJava to ad-
dress the lack of structural and contextual information in
Lisp macros. This compile-time MOP is similar to ELIDE’s
API in that it essentially provides a java.lang.reflect
introspection-like API with additional mutation operations.
OpenJava meta-classes also share similarities to ELIDE’s
class-level modifiers. However, the combination of meta-
classes is restricted: Two OpenJava meta-classes cannot
be applied to the same class. When we applied ELIDE
to AVID, we found it useful to have more than one class
modifier associated with a single class.

As another example, the MAGIK system is an open
C compiler that can be extended by writing static meta-
programs [7]. A developer expresses a desired transforma-
tion using an interface to the compiler’s intermediate code
representation. In contrast to explicit programming and
ELIDE where the goal of a developer is to capture and elide
design concepts using vocabulary, MAGIK meta-programs
are oriented at implementing compiler optimizations and to
enhancing error checking.

7.4 Design Pattern Capture

Generic Pattern Implementations (GPI), in which C++
templates are used to generate implementations of design
patterns [24], share a similar intent as explicit programming.

GPI enables a developer to label the location of a particular
design concept in the code where the concept is used. For
example, a developer can indicate where the Abstract Fac-
tory pattern [10] is used in the code; the code to configure
a particular concrete instance of the pattern can then be
automatically generated. Describing the code to be gener-
ated in the GPI approach requires sophisticated knowledge
of the C++ template mechanism. We believe explicit pro-
gramming, and in particular ELIDE, is more accessible to
an individual developer because of the emphasis we have
placed on simplifying the definition of a vocabulary item.

7.5 Design-based Generation

Our use of modifiers in ELIDE to tag elements of the
source as participating in a particular design concept is sim-
ilar to a suggested use of UML stereotypes in the OMG
Model Driven Architecture (MDA) [17]. In the context of
the MDA, which enables an implementation-independent
way to describe distributed applications, stereotypes are
used as a means of describing the role of a UML model
entity. For example, an Account class may be tagged as a
BusinessEntity or it may be tagged as a CORBAInterface
depending on its role in the design. Code generators can
then be built to take advantage of this stereotype informa-
tion when refining a design into code.

8. SUMMARY

Explicit programming enables a developer to cost-
effectively modularize, but not fully separate, useful design
concepts. In explicit programming, a developer is able to
incrementally make design concepts explicit in their source
code by introducing new vocabulary. The definition of a vo-
cabulary item modularizes the implementation details of the
concept, but uses of that vocabulary can remain scattered
in the code where the concept occurs.

In this paper, we have characterized situations where
explicit programming is beneficial, we have described the
ELIDE tool that supports explicit programming in Java,
and we have described various uses of the tool, including
the incremental ELIDing of a non-trivial system. These uses
demonstrate the flexibility of ELIDE.

Explicit programming and ELIDE complement existing
technologies. ELIDE can pick up where macros leave off,
providing support for making crosscutting concepts explicit.
With ELIDE, such concepts can be captured at lower-cost
than with a domain-specific language. In some cases, cap-
turing a concept with ELIDE could potentially pave the way
for later separation of the concept with an aspect-oriented
programming language.
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APPENDIX

This appendix presents a complete ELIDE example, showing
a simple implementation of the flyweight design pattern via
the flyweight<> modifier. A similar implementation was
used during the AVID study described in Section 5.2. The
main differences between the definition shown below and
that used for AVID involve details specific to retrofitting
legacy code. For example, the existing AVID code base
used a more complex set of getter methods. Since ELIDE
modifier semantics are by design disposable and flexible, it
was easier to have flyweight<> generate code consistent
with the existing system than to change the usage. There
are many possible implementations for any pattern; for the
purpose of providing a comprehensive ELIDE example, the
AVID-specific details would simply be a distraction and are
thus omitted. Note that we also ignore the abstract base
classes often present in treatments of flyweight [10].

We begin by presenting the use of the flyweight<> mod-
ifier. Our implementation here expects the name of the cor-
responding factory class, as well as the type and name of
the key used to identify the flyweight via the factory as pa-
rameters.



/* in regular code base */
flyweight<CharFactory, Character, charRep>
public class Char
{

private Character charRep;

}

Using the modifier as shown above will generate the fol-
lowing code, implementing our version of the flyweight pat-
tern. If the factory class does not already exist in the current
package, it is created. Then a get method is added to it.
A constructor is added to the flyweight class, parameterized
with the key.

/* in file Char.java */
public class Char extends Object

{
private Character charRep;
public Char(Character charRep)
{
this.charRep = charRep;
}
¥

/* in file CharFactory.java */
import java.util.x;

public class CharFactory extends Object

{
private Map flyweights = new HashMap();
public Char getChar(Character charRep)
{
Char result = (Char)flyweights.get(charRep);
if(result == null)
{
result = new Char(charRep);
flyweights.put(charRep, result);
return result;
}
}

The Flyweight class provides the definition of the mod-
ifier. The addGet transformation method adds the getter
method (getChar above) to the factory. addConstructor
adds the required parameterized constructor to the flyweight
class. getFactoryClass, a helper method for addGet, cre-
ates the factory class if necessary, or returns the existing
one. Note that the parameters to the transformation meth-
ods correspond to the parameters passed to the modifier.

import ca.ubc.cs.elide.nodes.*;
import ca.ubc.cs.elide.*;
import java.util.x;

public class Flyweight extends Transform
{
satisfies<methodDefinition>
public void addGet(
ClassNode target,
String factoryName,
String keyType,
String keyName)
{
// retrieve or create the
// factory class node
ClassNode factory =
getFactoryClass(target, factoryName);
String targetName = target.getShortName();
// add getter to the factory class using

// the templating system

factory.extend(

w{
public #{targetName}#
get#{targetName}#(#{keyTypel# #{keyNamel}#)
{

#{targetName}# result =

(#{targetName}#)flyweights
.get (#{keyName}#) ;

if( result == null )

{
result = new #{targetNamel}#

(#{keyName}#) ;

flyweights.put (#{keyName}#, result);

return result;
}
Y
}

satisfies<methodDefinition>

public void addConstructor(ClassNode target,
String factoryName,
String keyType,
String keyName)

String targetName = target.getShortName();
// add constructor to the flyweight class
// using the templating system
target .extend(
#{

public #{targetNamel}#(

#{keyTypel}# #{keyName}#)
{
this.#{keyName}# = #{keyName}#;

}
Yh);
}

private ClassNode getFactoryClass(
ClassNode target,
String factoryName)

PackageNode parentPackage =
target.getPackage();

ClassNode factory =
parentPackage.getClass(factoryName) ;

// check if factory class already existed

if( factory == null )

{
// if factory didn’t exist, create one
factory = new ClassNode(factoryName);
// give class public access
factory.makePublic();
// add a required import statement
factory.add(new ImportNode("java.util.*"));
// add class to same package
// as flyweight
parentPackage.add(factory);

}

// fields can also be added to classes
// using extend()
factory.extend(
w{
private Map flyweights = new HashMap();
YR

return factory;



