
© ACM, 2002. This is the authors' version of this work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published
in AOSD 2002, http://doi.acm.org/10.1145/508386.508401.

Managing Crosscutting Concerns During Software
Evolution Tasks: An Inquisitive Study

Elisa L.A. Baniassad and Gail C. Murphy
Department of Computer Science,

University of British Columbia, 201-2366 Main Mall
Vancouver BC Canada V6T 1Z4

{bani, murphy}@cs.ubc.ca

Christa Schwanninger and Michael Kircher
Siemens AG, ZT SE 2

Otto-Hahn Ring 6, 81739,
Munich, Germany

{christa.schwanninger, michael.kircher
@mchp.siemens.de}

ABSTRACT
Code is modularized for many reasons, including making it easier
to understand, change, and verify. Aspect-oriented programming
approaches extend the kind of code that can be modularized,
enabling the modularization of crosscutting code. We conducted
an inquisitive study to better understand the kinds of crosscutting
code that software developers encounter and to better understand
how the developers manage this code. We tracked eight
participants: four from industry and four from academia. Each
participant was currently evolving a non-trivial software system.
We interviewed these participants three times about crosscutting
concerns they had encountered and the strategies they used to deal
with the concerns. We found that crosscutting concerns tended to
emerge as obstacles that the developer had to consider to make the
desired change. The strategy used by the developer to manage the
concern depended on the form of the obstacle code. The results
of this study provide empirical evidence to support the problems
identified by the aspect-oriented programming community, and
provide a basis on which to further assess aspect-oriented
programming.

Keywords
Empirical study, aspect-oriented programming, software evolution

1. INTRODUCTION
Code is modularized to make it easier to read, change [1], and
verify, amongst other reasons. Aspect-oriented programming
approaches [2, 3, 4, 5, 6, 7, 8] extend the kind of code that can be
modularized by providing support for modularizing crosscutting
code.
The aspect-oriented approaches were developed based on certain
instances of crosscutting code, such as code associated with
distribution [9], synchronization policies [10] and some kinds of
features [7]. To our knowledge, no independent empirical studies
have been undertaken to consider the range of crosscutting
concerns that software developers would find beneficial to
modularize, nor how those software developers are currently
managing those concerns in existing systems. This paper helps fill

this gap: It reports on a study in which eight software developers,
each of whom was currently evolving a (different) system, were
interviewed over a period of three weeks about their progression
on a change task. Half of these participants were from industry
and half were from academia. All were working on non-trivial
changes to non-trivial systems.
Our analysis of the data collected during the study indicated that
each of the developers had to consider at least one crosscutting
concern. Crosscutting concerns arose when participants
encountered obstacles in making their desired change. For
instance, one participant encountered a memory allocation
concern when trying to tailor an algorithm to a specific new
purpose. Three strategies emerged for managing the obstacles: in
some cases, the entire concern was changed, in other cases, the
developers chose to work within the conventions of the concern,
and in yet others, the choice was to alter the change task rather
than to try to cope with the concern. The strategy chosen
depended on how the concern interacted with the core code
associated with the change.
This study and its results make two contributions. First, the results
provide empirical evidence about the kinds of crosscutting
concerns that impact software developers and the strategies
developers use to cope with these concerns in existing systems.
Second, the results provide a basis on which to compare whether
the use of aspect-oriented approaches enables developers to better
represent and work with crosscutting code. For example, if the
use of an aspect-oriented approach eliminated the need to alter a
change task in situations similar to those described in this paper,
then that would be evidence of a benefit of the aspect-oriented
approach.
We begin in Section 2 with a description of the study format. In
Section 3, we report on the results of the study. In Section 4, we
discuss the implications of the results. In Section 5, we review
previous work related to this study. In Section 6, we summarize
and conclude.

2. STUDY FORMAT
Our study was inquisitive [11]: we interviewed rather than
observed or shadowed the participants. Over a three-week time
period, we tracked the progress of participants on a change task to
a system that they were evolving. In this section, we describe the
details of the study. We discuss the limitations of the format in
Section 4.

2.1 Background of Participants
The study involved eight participants with a broad range of
backgrounds: four had years of programming experience in an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.

AOSD 2002, Enschede, The Netherlands

Copyright 2002 ACM 1-58113-469-X/02/0004...$5.00

Permission to make digital or hard copies of all or part of this work for

industrial setting, and were practicing software engineers from
Siemens AG; four were graduate students from the University of
British Columbia with a range of programming experience.
Only two of the participants were familiar with the concept of
aspect-oriented programming prior to the study. One of these two
participants was actively applying aspect-oriented programming
ideas in the change task with which they were involved during the
study, and the other had experience working with an aspect-
oriented language. The rest of the participants had no knowledge
of aspect-oriented programming at the start of the study.
To participate in the study, we required that a participant be
working on, or have recently worked on, a program change task to
a system for which they were neither an initial nor a principal
developer. The rationale for this constraint was to ensure that
participants would have to investigate the scope of the change
since they had limited prior knowledge of the code base. Each
participant in the study was working on a separate system.
Before commencing the study, participants were asked to provide
the interviewer with a copy of the code they were working on to
serve as a reference.

2.2 General Format
We organized the study as a series of interviews: each participant
was interviewed three separate times, with each interview lasting
up to an hour. The same interviewer conducted all interviews.
General guidelines to focus the interviews were prepared in
advance. The specific questions that were asked depended upon
the flow of conversation. Our goal was to determine four different
pieces of information during each interview:

1. The program change task of the participant,
2. The approach of the participant to the task,
3. The approach used by the participant to determine

which pieces of code needed to change, and
4. Whether the participant thought that the change was

difficult to make and if so, why it was difficult.
To help focus the discussion, participants were asked to identify
the portions of code that had, and that were, being changed. To
keep track of these locations, we annotated the interviewer’s copy
of the source files.
All the interviews were audio taped and later transcribed.

2.3 Questioning Convention
A primary purpose of the study was to determine the kinds of
crosscutting concerns that developers must consider in existing
code bases. Rather than ask the participants directly about these
concerns, we asked them questions about the change task on
which they were working, and we attempted to glean concerns
from their responses.
We took this approach for three reasons. First, most of the
participants had never thought about crosscutting concerns.
When we attempted to pose questions that directly asked about
concerns, the participants were unable to understand the meaning
of our questions. Second, there was a danger that the participants
who did have some knowledge of this area would simply respond
with popular crosscutting concerns like tracing, debugging, or
distribution. Such a quick response might have hidden more task-
related concerns. Third, when programmers are heavily involved

in the details associated with a task, it takes time to ease them into
coarser-grained thinking about their problem. Asking participants
questions that they could answer readily from their own
experience facilitated the gathering of data.
At the beginning of an interview, participants tended to talk about
their change task in a detailed way. For example, one participant
provided in-depth information about specific data structures used
in the application. Typically, by the end of an interview,
participants began to talk about their task at a more conceptual
level. This shift in the level of detail enabled participants to
consider higher-level questions, such as labels that they might use
to describe the code they were examining, or methods that they
had used to find the relevant portions of source for their task. The
more conceptual level of thinking about the task enabled the
interviewer to ask participants to think, between interviews, about
the following question: If you could have any view of the code,
what view would have helped you perform this task? This
question was intended to help identify the portions of code that
the participant would like to see modularized. To help make the
question concrete, the interviewer provided sample answers, such
as “all the code pertaining to the database system”, or “all the
code related to printing”.

2.4 Method of Qualitative Analysis
To analyze the data, we examined the transcripts of the interview
sessions and the annotated source code.
Our examination involved three passes of the transcripts. First, we
perused the transcribed interviews to try to understand the range
of responses. Second, we categorized the responses in terms of
how the participants described the change they were attacking,
and what they encountered while working on the change. Finally,
we examined the responses for commonalties.
We also examined the annotated source code, looking at the form
of the statements highlighted. We looked for commonalities in
terms of syntax, semantics, or function. We also examined the
code to try to determine whether the changes themselves could be
characterized as belonging to a particular concern.

3. QUALITATIVE ANALYSIS
Most participants described their change task from two
perspectives: a structural perspective, and an emergent obstacle-
based perspective. Almost every participant at some point in an
interview used the phrase: “Everything was going fine until …”.
We describe each of these two perspectives and then describe the
results of an analysis on the change and obstacle code.

3.1 Straightforward Structural Perspective
Each participant began by providing detailed descriptions of the
application problem domain and of the change. They described
the field in which they were working, how their application fit
into that field, and how their change fit into the application.
The participants’ initial descriptions of their change task were in
terms of easily identifiable structure in the code. Specifically,
most participants described their change in terms of a particular
data structure or a particular module in the code, such as “I was
changing the components of a data structure”, or “I was changing
the methods related to the user interface”. Describing the change
in this way was straightforward, even though the code was often
spread throughout the code base. The programmers could
understand the purpose of the code and its context within the

structure of the application. They could point out portions of the
code that corresponded to their change.

Only one participant participant one described crosscutting
code as the target of the change. This participant was working in
the area of aspect-oriented programming.

Table 1: Participants’ task descriptions

Participant

Straightforward
Structural view

Non-
straightforward
Obstacle View

Strategy

1 Moving particular
computation to an
aspect-like module

Synchronization,
Performance

Within

2 Tailoring a
matching algorithm
for a specific
purpose

Memory allocation Change

3 Changing matrix
calculation

Memory allocation Around

4 Changing table
representation

Implicit
assumptions
about data
structure
representations

Around

5 Changing
packaging of user
interface
mechanism

Distribution,
Tracing

Within

6 Changing the
mathematical model
applied

Security issues,
Communication
protocols,
Hardware platform
dependencies

Within

7 Changing printing
look and feel

User Interface
consistency,
Printing speed

Change

8 Adding cancellation
notification to an
existing system

Multithreading,
Behavioural
consistency

Within

3.2 Non-straightforward Obstacle Perspective
After participants had described their change task, and after they
had pointed out the locations in the code that they had to change,
we asked them to consider if these were the only portions of code
that had to change to complete the task. Invariably, they said
“no”. It was at this point that the participants revealed a set of
obstacles that they had encountered when making the change.
Obstacles comprised portions of code that were relevant to the
task but that also affected an underlying concern; this code was at
the intersection of the core change and the broader concern. For
example, participant eight was adding a feature to the system and
had to ensure that the change was consistent with behavioural
conventions. To make the change, the participant had to overcome
the obstacles and to try to understand the entire underlying
concern, the behavioural conventions, that led to the presence of
that portion of code. Since that underlying concern was neither

well-modularized nor well-documented, it was difficult to
conceptualize and to reason about.
The participants used three strategies to cope with the obstacles:
1. Change: Alter the concern code to enable the change task.
2. Within: Understand, but do not change, the underlying

concern associated with the obstacle sufficiently to make the
change work within the concern.

3. Around: Completely alter the change task to account for the
concern without understanding the concern.

Table 1 summarizes the program change tasks for each
participant, the obstacles each encountered and the strategy each
employed.
Change Strategy. Participants two and seven used the first
strategy: they changed the relevant portions of the crosscutting
concern to suit the change. For participant seven, this approach
was facilitated by the fact that the changes were at the user-
interface level, and thus were more visible during testing.
Participant two’s changes are discussed in more detail in Section
3.3.
Within Strategy. Participants one, five, six and eight used the
second strategy. They worked hard to understand the effect of
their code on the crosscutting concern that presented an obstacle
to their change, and they worked within the conventions of the
concern. Participant eight had to perform considerable testing to
ensure the obstacle had been dealt with appropriately.
Around Strategy. Participants three and four used the third
strategy: they each worked around the obstacle. They
significantly rethought their original approach to their change task
because they could neither adequately understand the obstacles,
nor address the concern. Participant four, for example, ran into
memory allocation problems after making what should have been
a simple change to a table representation. After failed attempts to
understand how the change affected the memory allocation for the
application, a work-around was devised to trick the memory
allocation portions of the source into thinking that the change had
not been made.

3.3 Code Perspective
By examining the code associated with the changes and with the
participants’ comments, we learned more about how participants
addressed the obstacles they faced. Our examination focused on
the obstacle points; the locations at which the change task
intersected the crosscutting concern. We discovered that there
were certain patterns of interaction between the concern and the
change code, and we determined that there was a correspondence
between the patterns and the strategy the participant chose to
address the obstacle.
Change Strategy. Code associated with participants who chose the
first strategy, the change strategy, had a structural intersection
point. Participants could identify, from the code related to the
change, certain structures types, objects, and computations
directly related to those structures as obstacles to their change
task. Figure 1-A depicts this situation. These obstacle points,
shown as black boxes, provided enough information about the
broader concern to lead the participant along the outward
reasoning arrow to the points of change, located in the broader
concern shown in light grey. This situation was particularly true

for participant two. For this participant, the obstacle points were
easily identifiable by the type of the data structure affected.
Participant two was able to extrapolate that all functionality of a
certain kind involving a particular type would have to be altered.
It was then straightforward, though tedious, to make the changes.
Within Strategy. Code associated with participants who chose the
second strategy, the within strategy, followed a behavioural
pattern. Participant eight worked within computational
conventions, and participant one had to work within a particular
synchronization policy. The intersection of the change code and
the behavioural concern code could not be as easily assessed as
for the structural case above. As is shown in Figure 1-B, the
obstacle points were implied. Comments alerted each of the
participants to the presence of the obstacle, and gave them clues
as to the existence and nature of the broader concern. Based on
the comments, these participants had to examine the broader
concern to understand the conventions of the concern. The
participants then had to reason inward about how to change the
core code to work within the broader concern. Their analysis
techniques were ad hoc, and it was difficult for them to describe
their approach. Essentially, they reported that they had to gain a
general understanding of the code base in order to work within the
concerns. Once they gained this understanding, they were able to
identify portions of code that would allow them to reason inward
about their specific change task.
Figure 2 shows the inward reasoning, and resultant code used by
participant one. This participant was moving pre-fetching
functionality within operating system code into a separate aspect-
like module. Specifically, the participant wanted to migrate the

circled code in the black box on the left of Figure 2 to the pre-
fetching module on the right. Based on previous knowledge, and
on comments in the code, the participant knew that this change
would impact synchronization in the system. Relevant
synchronization code, shown in boxes A1 and B1, was identified
by tracing up the call chain and pinpointing locking and
unlocking code that could affect the code of interest. The
developer had to reason inward from the synchronization concern
to the core change. Synchronization code similar to that in boxes
A1 and B1 had to be included in the new pre-fetching module
(boxes A2 and B2) even though the code was not directly related
to the core of the change. The inclusion of this code ensured that

Figure 1. Obstacle types: Core-Concern Intersections

“Change” “Within” “Around”
A B C

Implied Obstacle Explicit Obstacle Encoded Obstacle

Point of Change Concern Reasoning

Figure 2: Code alterations show inward reasoning

 fs.map = map;

 /*
 * Find the backing store object and offset into it to begin the
 * search.
 */

 if ((result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry, &fs.first_object,
 &fs.first_pindex, &prot, &wired)) != KERN_SUCCESS) {
 if ((result != KERN_PROTECTION_FAILURE) | |
 ((fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)) {
 return result;
 }
 /*
 * If we are user-wiring a r/w segment, and it is COW, then
 * we need to do the COW operation. Note that we don't COW

 }

 /*
 * Make a reference to this object to prevent its disposal while we
 * are messing with it. Once we have the reference, the map is free
 * to be diddled. Since objects reference their shadows (and copies),
 * they will stay around as well.

 (((fault_flags & VM_FAULT_WIRE_MASK) == 0) | | wired))
 | | (fs.object == fs.first_object)) {

 if (fs.pindex >= fs.object->size) {
 unlock_and_deallocate(&fs);
 return (KERN_PROTECTION_FAILURE);
 }

 * Allocate a new page for this object/offset pair.
 */

 fs.m
vm_page_alloc(fs.object, fs.pindex,

 (fs.vp | | fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);

 if (fs.m == NULL) {
 unlock_and_deallocate(&fs);
 VM_WAIT;
 goto RetryFault;
 }
 if (fs.object->type != OBJT_DEFAULT &&
 (((fault_flags & VM_FAULT_WIRE_MASK) == 0) | | wired)) {
 int rv;
 int reqpage;
 int ahead, behind;

 if (fs.first_object->behavior == OBJ_RANDOM) {
 ahead = 0;
 behind = 0;
 } else {
 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
 if (behind > VM_FAULT_READ_BEHIND)
 behind = VM_FAULT_READ_BEHIND;

 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
 /*
 * now we find out if any other pages should be paged
 * in at this time this routine checks to see if the
 * pages surrounding this fault reside in the same
 * object as the page for this fault. If they do,
 * then they are faulted in also into the object. The
 * array "marray" returned contains an array of
 * vm_page_t structs where one of them is the
 * vm_page_t passed to the routine. The reqpage
 * return value is the index into the marray for the
 * vm_page_t passed to the routine.
 */

 faultcount = vm_fault_additional_pages(
 fs.m, behind, ahead, marray, &reqpage);

 /*
 * Call the pager to retrieve the data, if any, after
 * releasing the lock on the map. vm_pager_get_pages(fs.object, marray, faultcount,
 reqpage) : VM_PAGER_FAIL;

 if (rv == VM_PAGER_OK) {
 /*
 * Found the page. Leave it busy while we play
 * with it.
 */

 /*
 * Relookup in case pager changed page. Pager
 * is responsible for disposition of old page
 * if moved.
 */
 fs.m = vm_page_lookup(fs.object, fs.pindex);
 if(! fs.m) {
 */

unlock_map(&fs);

B1

A1

VM_fault routine

if (object->behavior !=
OBJ_RANDOM) {

allocate_prefetch_pages(
marray, faultcount, reqpage
);

 }

Pre-fetching Module

B2 vm_map_unlock(map);

A2 vm_map_lock(map);

BEFORE AFTER

the locking invariants encoded in the synchronization concern
were maintained.
In all cases, participants were unable to cleanly determine when
they had addressed all of the code related to their change. Our
examination of their code yielded limited similarities about the
nature of the concern code. In particular, for participant eight, the
concern conventions could be gleaned by scanning for instances
of a particular sequence of calls. When asked, participant one
reported that this “sequence of calls” analysis might have been
helpful. Participant one might also have been helped by
information about a pattern of access to particular data structures.
Around Strategy. Obstacle code associated with participants who
chose the third strategy, the around strategy, was dense. The code
made ambiguous use of assumptions from around the code base
and was thus subtle and difficult to reason about. Originally,
these participants had wanted to change the relevant portions,
rather than to avoid the code. However, when the change
approach became too onerous, the participants were forced to
work around both the obstacle and the concern code. It was
typically unclear why particular data structures were altered in
particular ways, and why the ordering of certain computations was
important. For instance, the obstacle code encountered by
participant four assumed that a data structure of a certain number
of bytes (16) would be used. This number was relied upon
heavily in the computations for allocating memory, but was never
indicated explicitly.
The code in Figure 3 illustrates this situation in which it is neither
mentioned in the comments, nor obvious from the code that the
computations will be correct only when DdNode is equal to 16.
When the participant wanted to change that value, it caused
unpredictable results.

This situation is depicted more abstractly in Figure 1-C. The
obstacles associated with the strategy are encoded, meaning that
they are neither structurally explicit, nor are they implied by
comments or conventions. As a result, the participant was unable
to use either of the inward or outward reasoning strategies
employed by other participants. In the end, the participant simply
worked around this difficult code.

3.4 Summary of Results
For all participants, overcoming an obstacle involved significant
effort to understand the relevant portions of the crosscutting
concern associated with the obstacle. Determining the interface
between the broader concern code, and the code related to the
change was considered a non-trivial task, especially by the
participants who faced implied obstacles and who applied the
within strategy. Consistently, participants wanted an answer to the
question: If I change this location in the code, how will that
crosscutting concern be affected?

4. DISCUSSION
We claim that our paper provides contributions in two areas:
empirical evidence of crosscutting concerns and the strategies
used in coping with such concerns, and input to future assessment
of aspect-oriented programming. In this section, we discuss our
contributions in each of these areas.

4.1 Empirical Validity
Our study considered eight separate change tasks. Each task was
being performed on a unique system. The systems were
implemented in range of programming languages: three systems
were implemented in C [12], three in C++ [13], and two in Java
[14]. The participants performing the changes were not novice
developers: four of the participants were practicing software
developers in industry. The questions asked of participants
focused on the changes being performed rather than on the
crosscutting concerns encountered. Despite the differences in
participants, tasks and systems, similarities emerged in the form of
the crosscutting code involved, and in the strategies used by the
participants to cope with the crosscutting concerns. These
similarities increase our confidence that the results are indicative
of real software developments and that the results may generalize.
Two limitations of our study are the small number of systems and
tasks considered, and the short amount of time that we tracked the
progress of the developers. Our study had these limitations
because it was exploratory in nature. Originally, we had
hypothesized that concerns might be more directly linked with
change tasks. For instance, a change might correspond with a
concern. Through this exploratory study, we found that concerns
typically intersected changes. A larger, longitudinal study to
further test the hypothesis that concerns intersect change is
needed.

4.2 Assessing Aspect-oriented Programming
The results of our study provide a basis for helping to assess
aspect-oriented programming. Specifically, if a particular
crosscutting concern was modularized, and perhaps separated, we
would assume that programmers would not have to choose the
around strategy to cope with obstacles encountered when making
a change. One could test this hypothesis by taking a system that
was used in this study, representing the crosscutting concerns as
aspects, subjecting the aspect form of the system to the same
change, and then observing the actions of the developer(s).
Alternatively, one could follow changes to a system built using
aspect-oriented ideas and technology and see if the strategy
occurs. We would still expect the change and within strategies to
occur as changes were made to an aspect-oriented system.
However, we would expect the aspect form of a system would

if (mem != NULL) {

/* successful allocation; slice memory */

 ptruint offset;

 unique->memused +=

 (DD_MEM_CHUNK + 1) * sizeof(DdNode);

 mem[0] = (DdNodePtr) unique->memoryList;

 unique->memoryList = mem;

 offset =

 (ptruint) mem & (sizeof(DdNode) - 1);

 mem += (sizeof(DdNode)

- offset) / sizeof(DdNodePtr);

. . .

Figure 3. Code containing data structure assumptions

make it easier for the developers to analyze and understand the
interactions between the core change code and the concerns.

5. RELATED WORK
We compare our study to empirical work in two areas: empirical
studies of programmers performing software change tasks, and
empirical efforts to assess aspect-oriented programming.
Empirical Study of Programmers. A significant amount of work
has been undertaken to analyze the cognitive and mental
approaches used by programmers to understand source code.
Four basic approaches have been characterized: top-down [15,
16], where the programmer begins with understanding of a
general nature, bottom-up [17, 18], where programmers begin by
reading source code and by mentally forming higher-level
abstractions, knowledge-based [19] which involves assimilating
domain knowledge and the mental models formed during program
analysis, and integrated [20] which incorporates all of the above.
We see all of this work as complementary to our own. These
empirical approaches place emphasis on the work practices used
and on the types of mental and cognitive models built by
programmers while understanding code. Our work looks at a
more specific concept: what is the form and role of the code that
programmers examine when performing a program change task.
Empirical Work on Aspect-oriented Programming. In a case study
on the use of AspectJ to modularize and separate exception
detection and handling, Lippert and Lopes noted several strengths
and weaknesses of the aspect-oriented approach [21]. In
particular, they noted that at certain points when performing a
task, programmers needed to see the behavioural effects of aspects
on methods of interest. The participants in our study expressed a
similar desire: They wanted to see their concern with respect to
portions of the code of interest.
Walker and colleagues report on a controlled experiment to
investigate whether aspect-oriented programming could ease
program maintenance tasks [22]. They reported that programmers
found it difficult to reason about a separated concern when the
interface between the core code and the concern code was too
broad. Restated, the more constrained and defined the interface,
the easier it was for programmers to determine the area of
influence between the code and concern code. Our study
corroborates this result. The narrowest interface occurred when
programmers could reason out from their code; when they were
able to capture the interface based on information within the core
of their task. Participants working in these conditions were able
to find relevant portions of the code to change, though they noted
that it was a tedious process. The interface in this case was clear:
all methods that performed a particular function related to a
particular type had to be considered. A wider interface
corresponds with the inward-reasoning situation when
programmers had to take information from other portions of the
code and then had to analyze their core in terms of the
assumptions and invariants in the broader code. These
participants reported more difficulty in finding those external
points of reasoning than those working with outward reasoning.
Finally, the widest interface was the one that could not be defined
at all, and which lead to the around strategy in which the attempt
to understand the concern code was abandoned.

6. SUMMARY
This paper reports on a study conducted to examine where
developers encounter crosscutting code during a program change
task, and how the developers chose to manage that code. We
found that crosscutting code emerged as obstacles that the
programmers had to manage when making the desired change.
When obstacle code related to a broader concern was
encountered, developers had to try to understand both how the
changes they were making affected the crosscutting concern, and
how the crosscutting concern affected their change. We
discovered they used one of three strategies to deal with the
crosscutting concern: in some cases, developers altered the
crosscutting code to accommodate the change, in other cases,
developers made the change work in the context of the
crosscutting code, and in yet other cases, developers worked
around the crosscutting code. Each strategy corresponded to a
different form of the obstacle code. When there were suitable
structural links and a developer could reason out from the obstacle
point in the code related to the change to the concern code, the
first strategy, the change strategy, was used. When there were
behavioural patterns but no structural links, developers reasoned
from the concern code into the change code and adopted the
second strategy, the within strategy. When neither of these
reasoning approaches was possible because of dense and subtle
code, developers took the third approach of working around the
crosscutting code.
This paper provides empirical evidence to support the existence
and type of crosscutting concerns on which aspect-oriented
programming approaches are based. This paper also lays the
groundwork for further assessment of aspect-oriented
programming.

ACKNOWLEDGMENTS
This work was funded, in part by Siemens AG Corporation, in
part by a University of British Columbia Graduate Fellowship,
and in part by a grant from the National Science and Engineering
Research Council of Canada (NSERC).
We thank all participants who provided their time and experiences
for our study.
We would also like to thank the anonymous reviewers for their
comments on this paper.

REFERENCES
[1] D. L. Parnas, On the Criteria To Be Used in Decomposing

System into Modules, Communications of the ACM, pp.
1053-1058,1972.

[2] AspectJ� web site: www.aspectj.org
[3] Hyper/J� web site:

www.research.ibm.com/hyperspace/HyperJ/HyperJ.html
[4] M. Askit, L. Bergmans and S. Vural. An Object-Oriented

Language-Database Integration Model: The Composition-
Filters Approach, In Proc of European Conference on
Object-Oriented Programming (ECOOP), Lecture Notes in
Computer Science Vol. 615, pp. 372-395, 1992.

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda and C.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect Oriented
Programming. In Proc. of European Conference on Object-
Oriented Programming (ECOOP), Lecture Notes in
Computer Science Vol. 1241, pp. 220-242, 1997.

[6] H. Ossher, M. Kaplan, A. Katz, W. Harrison and V. Kruskal.
Specifying subject-oriented composition. TAPOS, Vol. 2,
No. 3. pp. 179-202, 1996.

[7] P. Tarr, H. Ossher, W. Harrison and S.M. Sutton. N degrees
of separation: Multi-dimensional separation of concerns. In
Proc. of the 21st International Conference on Software
Engineering, pp. 107-119, 1999.

[8] C.V. Lopes and G. Kiczales. “Recent Developments in
AspectJ�”. Aspect-Oriented Programming Workshop,
European Conference on Object-Oriented Programming
(ECOOP). In Object-Oriented Technology: ECOOP’98
Workshop Reader, Lecture Notes in Computer Science, Vol.
1543, pp. 398-401, 1998.

[9] C.V. Lopes. D: A Language Framework for Distributed
Computing, Ph.D. Dissertation, College of Computer
Science, Northeastern University, Boston, 1997.

[10] C.V. Lopes and K.J. Lieberherr. Abstracting process-to-
function relations in concurrent object-oriented applications.
In Proc. European Conf. on Object-Oriented Programming
(ECOOP), Lecture Notes in Computer Science, Vol. 821, pp.
81-99, 1994.

[11] T. Lethbridge, S. Sim, and J. Singer. Studying Software
Engineers: Data Collection Methods for Software Field
Studies, Submitted May 2000 to Empirical Software
Engineering.

[12] B.W. Kernighan and D. M. Ritchie. The C Programming
Language: Second Edition. Prentice Hall, Englewood, New
Jersey, 1988.

[13] B. Stroustrup. The C++ Programming Language: Second
Edition. AddisonWesley Publishing Co., 1991.

[14] K. Arnold and J. Gosling. The Java Programming Language.
ACM Press Books, Addison Wesley Longman, 1996.

[15] R. Brookes. Towards a theory of the comprehension of
computer programs. International Journal of Man-Machine
Studies, Vol. 18, pp. 543-554, 1983.

[16] E. Soloway and K. Erlich. Empirical studies of programming
knowledge. IEEE Transactions on Software Engineering,
SE-10, No. 5, pp. 595-609

[17] B. Schneiderman and R. Mayer. Syntactic/semantic
interactions in programmer behaviour: A model and
experimental results. International Journal of Computer and
Information Sciences, Vol. 8 No. 3, pp. 219-238, 1979.

[18] N. Pennington. Stimulus structures and mental
representations in expert comprehension of computer
programs. Cognitive Psychology, Vol. 19, pp. 295-341,
1987.

[19] S. Letovsky. Cognitive Processes in Program
Comprehension. In Empirical Studies of Programmers, pp.
58-79, 1986.

[20] A. von Mayrhauser, A. Vans. Comprehension processes
during large scale maintenance. In Proc. of the 16th
International Conference on Software Engineering, pp. 39-
48, 1994.

[21] M. Lippert and C.V. Lopes. A Study on Exception Detection
and Handling Using Aspect-Oriented Programming. In Proc.
22nd International Conference on Software Engineering, pp.
418-427, 2000.

[22] R. Walker, E. Baniassad and G. Murphy. An Initial
Assessment of Aspect-Oriented Programming. In Proc. of
the 21st International Conference on Software Engineering,
pp. 120-130, 1999.

