
Overcoming the Prevalent Decomposition in Legacy Code
Jan Hannemann and Gregor Kiczales

University of British Columbia
{jan|gregor}@cs.ubc.ca

The potential benefits of advanced separation of
concerns (ASOC) techniques are well known and
many programmers find the idea of using them
appealing. For new software engineering projects
these modularization mechanisms offer
guidelines of how to structure the system
modules. But how can legacy systems profit
from them? Code related to concerns not
represented in the current modularization has to
be carefully identified and extracted while
preserving system integrity.

This paper presents a refactoring tool that aids in
the extraction of concerns that are ill-represented
in the prevalent OOP decomposition1.

Mining for Concerns

While contemporary modularization techniques
such as OOP have proven to be successful, their
approach of modularizing software systems
according to a single concern is inherently
insufficient and might not provide enough
structure for developing complex systems [6, 7,
8]. Concerns not represented in the current
system decomposition can decrease the code
quality, as they have to be “pressed” into the
primary decomposition. We call such concerns
hidden concerns (HCs). Code related to these
concerns can show two symptoms of poor
modularity: it can be scattered over the whole
project or it can be tangled with other code.
Code tangling is a state where lines related to
different concerns are interwoven.

ASOC techniques promise to overcome these
problems by providing constructs to represent
otherwise hidden concerns. However, regardless
of which ASOC technique is used, software
developers face the same problems when
applying these paradigms to legacy systems:
How to identify and extract the code related to a
hidden concern? Due to the scattered nature of

1 For object-oriented software, the dominant
decomposition is into classes (data concerns).

hidden concerns, searching for them in existing
code is a non-trivial task.

Text-Based Mining

The complex traces of HCs2 can prevent them
from being found using traditional, text-based
analysis techniques (i.e. pattern matching). Text-
based techniques work best if consistent naming
conventions for types, methods, variables and
classes are carefully followed. When not strictly
adhered to, these methods may fail altogether
and important parts of hidden concerns might be
missed. Unfortunately, legacy code might not
comply with such conventions.

What is worse, these methods fail quietly. If the
majority of the code adheres to naming
conventions while the rest does not, the results
may be convincing enough not to question them.
If the discovered lines were extracted into a
module while the others were not, the modularity
of the system would not improve but might even
get worse.

As an example, consider the code in figure 1. It
is a method that creates the button menu for an
application that handles files and allows for user-
defined system settings. Consequently, we have
two different kinds of buttons: those related to
system settings and those related to files. Using
text-based methods to identify all occurrences of
settings buttons would be trivial if naming
conventions were followed. The expression

2 Traces describe the way code related to a hidden
concern is spread throughout the project.

Text-Based Analysis

Works better for: Many instances of the
same types, with strict naming
conventions

Not helpful if: Naming conventions are only
partially followed (or not at all)

JPanel createButtonMenu() {

// Creating the Menu (panel)
JPanel buttonMenu = new JPanel();

// Creating Setting Buttons
JButton loadSettingsButton = new JButton(loadSettingsIcon);
JButton saveSettingsButton = new JButton(saveSettingsIcon);
JButton resetSettings = new JButton(resetSettingsIcon); // Added in rev. 2

// Creating File Buttons
JButton loadFileButton = new JButton(loadFileIcon);
JButton saveFileButton = new JButton(saveFileIcon);
JButton printFileButton = new JButton(printFileIcon);
JButton newFile = new JButton(newFileIcon); // Added in rev. 2

// Adding Action Listeners
...

// Setting ToolTipTexts
loadSettingsButton.setToolTipText("Load Settings");
saveSettingsButton.setToolTipText("Save Settings");
resetSettings.setToolTipText("Reset Settings"); // Added in rev. 2
loadFileButton.setToolTipText("Load File");
saveFileButton.setToolTipText("Save File");
printFileButton.setToolTipText("Print File");
newFile.setToolTipText("Create A New File"); // Added in rev. 2

// Adding Buttons to the Panel
...

return buttonMenu;
}

Figure 1: Limitations of text-based and type-based analysis

A

B

*SettingsButtons would find them all. On
the other hand, if we assume that the code was
revised later on (see comment “Added in rev. 2”
in the figure) and the new code does not comply
with the old conventions, we would miss
resetSettings in (A). Similarly, it would be
difficult to find the newFile JButton (B) if we
are looking for buttons related to file
management (FileButton)3.

Type-Based Mining

An alternative method to identify possible
hidden concerns is to analyze the usage of types
in the sources. This approach does not suffer
from convention-less coding since naming of
objects, classes, and variables becomes
irrelevant. It is especially helpful if many
similarly named types
are to be differentiated.

Furthermore, the usage
of types can provide
hints about meeting
modularization design
goals. If a programming
project is well
modularized,
subsystems and modules
should show high
coherence and low
coupling [4]. A single
module that uses only a
few types is likely to
have high coherence
(strong dependencies
within the module since
few external types are
used) and low coupling
(low dependencies
between this and other
modules). Therefore,
type-based analysis can
show where these

3 Searching for other patterns like *Settings* or
File would create too many false positives
(similarly named Icons, ToolTipText, etc.).

design goals are met and where the project might
profit from further decomposition.

Besides, type-based analysis can help to identify
code tangling. Repeated, interwoven usage of
specific types is a possible indication of tangled
code.

But type-based analysis has limitations, too. If
we were to search for the same objects as in the
example above, we could not differentiate
between buttons for settings and those for files.
Searching for occurrences of JButton objects
would produce too many false positives (marked
red in figure 1). However, if we could combine a
text-based search for *Settings* with a type-
based search for JButton, we would find exactly
the lines in question.

The comparison above shows that the two
analysis methods are not exclusionary but do in
fact complement each other quite well.
Furthermore, a combination of these techniques
can be used to identify method signatures (i.e. a
specific type as the method receptor, certain
types as method arguments and a text-based
search for the method name).

These findings motivated us to develop a multi-

modal analysis tool. With the potential to
combine different kinds of queries we think the
tool is less likely to produce false positives or to
miss important lines (false negatives).

Type-Based Analysis

Works better for: Many similarly named
objects of the different types, no naming
conventions

Not helpful if: Many instances of the same
type are used for different purposes

The Aspect Mining Tool

Our Aspect Mining Tool (AMT) is an open
multi-modal analysis framework. It was
originally developed for mining aspects [6, 3],
but is well-suited for identifying hidden concerns
in general. It currently provides type-based and
text-based analysis techniques, and is extensible.
Other analysis methods are under investigation,
such as signature-based searches.

Program sources are represented using the
Seesoft concept [1,2]. Each compilation unit (i.e.
class) itself is represented as a collection of
horizontal strips that correspond to the relevant
lines of source code4. The tool allows user-
defined queries based on type usage and regular

4 For the purpose of analysis, “relevant” source code is
stripped of comments and empty lines.

expressions, displaying matching lines in
specific colours. If a line matches more than one
criterion, it will be separated into two or more
differently coloured parts.

AMT uses a modified version of the AspectJ [3]
compiler to extract the type information for each
line of source code. To analyze sources, the
AMT compiler first collects all the information
relevant to the lines of code. The system then
displays the extracted information graphically.
The user can highlight lines that use selected
types, match specific patterns, or a combination
of the two.

Figure 2: AMT highlights lines associated with Session Expiration in the TomCat projectFigure 2: AMT highlights lines associated with Session Expiration in the TomCat project

Information Extraction

As an example of the kinds of searches AMT is
intended to handle, consider a well-known open
source project: TomCat, which is the Official
Reference Implementation for Java Servlet 2.2
and JavaServer Pages 1.1.5

As most services provided by TomCat have to
deal with different (HTTP) sessions, it needs to
keep state information associated with them.
However, as HTTP itself is stateless, TomCat
must explicitly maintain any state information
itself. As a starting point for the analysis we
suspected that the code associated with session
states is likely to be scattered throughout the
project.

We focussed specifically on code
related to Session Expiration, i.e.
code responsible for killing sessions
when they have been inactive for too
long. Session Expiration basically has
to deal with three different kinds of
session state types:
StandardSession,
ServerSession, and
ApplicationSession. Objects of
type ManagerBase and
ServerSessionManager manage
the session expiration. Methods
related to this concern create, delete
or access the types named above.

To identify the lines that are likely to
be associated with session expiration,
we combined type-based and text-
based analysis. Figure 2 shows a

5 TomCat is part of the Apache project [5]. For this
example, we used version 1.3 of TomCat

snapshot of the AMT tool.
Lines of interest match both
type and text query (i.e.,
they have two colours).

Looking at the figure, it is
apparent that the code
related to this concern is
spread over a number of
different classes. Extracting
the relevant lines into a
single module may enhance
the modularity and
maintainability of the code.

Hidden concerns are not
always that apparent. If the
programmer has no intuition

as where to start and what to look for, type-based
analysis can help, too. Just by browsing the types
used in the project, the developer can see where
and in how many classes they are used. If the
usage of a specific type is not well localized, it
can indicate a possible hidden concern and thus a
starting point for extracting HCs.

Benefits of Multi-Modal Analysis

Figure 3 shows a short piece of source code.6 We
are looking for calls of the “invalidate()” method
sent to an object of type ServerSession. Usages
of the ServerSession type are in red (identified
by type-based analysis), calls to the
invalidate() method are shown in green

6 The excerpt is from: ServerSessionManager.java
in: org/apache/tomcat/session

synchronized void removeSession(ServerSession session) {
String id = session.getId();
session.invalidate();
sessions.remove(id);

}

public HttpSession findSession(Context ctx, String id) {
ServerSession sSession=(ServerSession)sessions.get(id);
if(sSession==null) return null;
return sSession.getApplicationSession(ctx, false);

}

public void removeSessions(Context context) {
Enumeration enum = sessions.keys();
while (enum.hasMoreElements()) {

Object key = enum.nextElement();
ServerSession session = (ServerSession)sessions.get(key);
ApplicationSession appSession =

session.getApplicationSession(context, false);
if (appSession != null) appSession.invalidate();

}
}

A

BB

Figure 3: ServerSessionManager: A combination of the two analysis techniques identifies the lines of interest

protected Vector recycled = new Vector();
protected Hashtable sessions = new Hashtable();

public Session[] findSessions() {
synchronized (sessions) {

Vector keys = new Vector();
Enumeration ids = sessions.keys();
while (ids.hasMoreElements()) {

String id = (String) ids.nextElement();
keys.addElement(id);

}
...
return (results);

}
}

public Session createSession() {
StandardSession session = null;
synchronized (recycled) {

int size = recycled.size();
if (size > 0) {

session = (StandardSession) recycled.elementAt(size - 1);
recycled.removeElementAt(size - 1);

}
}
...

}

A

B

Figure 4: ManagerBase: Serching for synchronized accesses to Hashtable objects

protected Vector recycled = new Vector();
protected Hashtable sessions = new Hashtable();

public Session[] findSessions() {
synchronized (sessions) {

Vector keys = new Vector();
Enumeration ids = sessions.keys();
while (ids.hasMoreElements()) {

String id = (String) ids.nextElement();
keys.addElement(id);

}
...
return (results);

}
}

public Session createSession() {
StandardSession session = null;
synchronized (recycled) {

int size = recycled.size();
if (size > 0) {

session = (StandardSession) recycled.elementAt(size - 1);
recycled.removeElementAt(size - 1);

}
}
...

}

A

B

Figure 4: ManagerBase: Serching for synchronized accesses to Hashtable objects

(identified by text-based analysis).

Text-based analysis alone would not have found
just the appropriate line (A), but produced false
positives. The invalidate() method can be
received by both ServerSession and
ApplicationSession objects (B). Similarly,
type-based analysis would not have been able to
identify the proper method call as
ServerSession objects are used throughout the
ServerSessionManager source. In this specific
case, signature-based analysis would have been
ideal, but would be less flexible.

The example also shows that naming
conventions for ServerSession objects were not
adhered to, as even in the short code example we
have two different names for ServerSession
objects: session and sSession. Type-based
methods would manage to find all
ServerSession objects, but only the
combination of the type-based search for
ServerSession and the text-based search for
“invalidate()” manages to capture the affected
line of code.

Figure 4 illustrates another useful application of
a combination of type-based and text-based
searches. Given that we want to identify all
synchronized accesses to a specific type (here:
HashTable), we can simply search for lines both
using the HashTable type and matching the
“synchronized” string (A). Each method alone
can produce too many false positives (e.g.: B) in
a large project.

Conclusion

Improving modularity of legacy code can be a
complex task. Applying ASOC techniques
implies extracting code related to concerns that
are ill-represented in the systems current
decomposition. While some of these hidden
concerns are intuitive to identify, others have
complicated patterns. No one method excels in
identifying all affected fragments. We propose
using multi-modal analysis techniques.

The authors introduced type-based analysis as an
alternative to text-based analysis and showed its
potential benefits for mining hidden concerns.
The examples provided show that the two
analysis techniques complement each other well
and that a combination can prevent false
positives in source code analysis.

The Aspect Mining Tool is available for
download at

www.cs.ubc.ca/~jan/amt/

In its current version, AMT offers text-based and
type-based analysis techniques. The tool is still
in active development, with future extensions
planned, such as hot spot detection (sections of
code that use too many different types). Other
analysis techniques like signature-based methods
are under investigation.

References

1. Griswold, W. G., Kato, Y. and Yuan, J. J.
Aspect Browser: Tool Support for Managing
Dispersed Aspects. Position paper for the
First Workshop on Multi-Dimensional
Separation of Concerns in Object-oriented
Systems (at OOPSLA '99)

2. Eick, S. G., Steffen, J. L. and Sumner, Jr. E.
E. Seesoft – A Tool for Visualizing Line-
Oriented Software Statistics. IEEE
Transactions of Software Engineering
18(11): 957-968, 1992

3. Kiczales, G., Aspect-Oriented Programming
with AspectJ. Foundations of Software
Engineering, 2000

4. Bruegge, B., Dutoit, A. H. Object-Oriented
Software Engineering. Prentice Hall, 2000

5. The TomCat project is part of the Apache
project. The website is:
http://jakarta.apache.org/

6. Kiczales, G., Lamping, J., Mendhekar, A.,
Maeda, C., Lopes, C. V., Loingtier, J.-M.
and Irwin, J. Aspect-Oriented Programming.
In: proceeding of the European Conference
on Object-Oriented Programming (ECOOP),
1997

7. Tarr, P., Ossher, H., Harrision, W. and
Sutton, S. M., N Degrees of Separation:
Multi-Dimensional Separation of Concerns.
In: proceedings of the International
Conference on Object-Oriented
Programming (ICSE), 1999

8. Harrison, W. and Ossher, H., Subject-
Oriented Programming (A Critique of Pure
Objects). In: proceedings of the conference
of Object-Oriented Programming: Systems,
Languages, and Applications (OOPSLA),
1993

