
Separating Features in Source Code: An Exploratory Study

Gail C. Murphy, Albert Lai, Robert J. Walker, and Martin P. Robillard
Department of Computer Science
University of British Columbia

2366 Main Mall
Vancouver BC Canada V6T 1Z4

1.604.822.5169
fmurphy,alai,walker,mrobillag@cs.ubc.ca

ABSTRACT
Most software system codebases are inflexible. Reconfigur-
ing the software modules comprising a system to add or to
delete a feature typically requires substantial effort. This lack
of flexibility increases the costs of building variants of a sys-
tem, amongst other problems.

New languages and tools that are being developed to pro-
vide additional support for separating concerns in a system
show promise to help address this problem. However, apply-
ing these mechanisms requires determining how to enable a
feature to be separated from the codebase. In this paper, we
investigate this problem through an exploratory study con-
ducted in the context of two existing systems: gnu.regexp and
jFTPd. The study consisted of applying three different sepa-
ration of concern mechanisms—Hyper/JTM, AspectJTM, and a
lightweight, lexically-based approach—to separate features
in the two packages. In this paper, we report on the study,
providing contributions in two areas. First, we characterize
the effect different mechanisms have on the structure of the
codebase. Second, we characterize the restructuring process
required to perform the separations. These characterizations
can help software engineering researchers elucidate the de-
sign space of using these mechanisms, tool developers design
support to aid the separation process, and early adopters ap-
ply the techniques.

Keywords
design space, feature separation, aspect-oriented program-
ming, hyperspaces

1 INTRODUCTION
Most software system codebases are inflexible. Reconfigur-
ing the software modules in a codebase to add or to delete
a feature typically requires substantial effort. Adding a new
feature into a telecommunications system, for example, re-
quires substantial effort simply in understanding how the fea-
ture interacts with potentially hundreds of other features [4].
This lack of flexibility increases the costs of building vari-
ants or versions of a system, and delays the time to market of

Paper submitted to ICSE 2001. August 28, 2000.

products, amongst other problems.

New languages and tools that are being developed to pro-
vide additional support for separating concerns in a system
show promise to help address this problem. These mecha-
nisms provide a means to express which code relates to a con-
cern and a means to compose (or decompose) desired con-
cerns into (or out of) a system. Since these mechanisms are in
their infancy, there is no definition of what constitutes a con-
cern. Concerns may range from performance enhancements
to features. In this paper, we focus on concerns comprised
of code supporting user-relevant features. We use the terms
concern and feature interchangeably.

Abstractly, separation of concern mechanisms sound ideal to
use to improve the flexibility of software systems. Features
can be encapsulated and then composed into a system as de-
sired. Practically, there are many challenges involved in us-
ing these mechanisms [15, 2]. One challenge is determining
what concerns are useful to encapsulate. Another challenge
is understanding how to structure the base code to enable a
concern to be separated.

In this paper, we focus on this second challenge, consider-
ing how various software structures support the separation
of a concern. We investigate the structures possible by fo-
cusing on two primary ways in which concerns may interact
in an object-oriented system: within methods, and between
classes. For each of these interaction types, we apply three
different separation of concern mechanisms: Hyper/J, a tool
that supports the concept of hyperspaces [14, 11], AspectJ,
a tool that supports the concept of aspect-oriented program-
ming [7], and a lightweight, lexically-based approach [13]
that considers what separation is possible without advanced
tool support. The investigations were undertaken on two ex-
isting object-oriented systems: gnu.regexp and jFTPd.

We chose to investigate the impact of these mechanisms on
structure in the context of existing systems because we be-
lieve that many concerns will not be determined a priori but
instead will emerge as the codebase for a system matures.
Studying existing systems allows us to consider how con-
cerns are encoded, different means of restructuring the sys-
tem to expose and extract a concern, and the process required
to perform the separation.

No single structure in our study is obviously “right”: each
carries with it a different set of tradeoffs. Based on our expe-

riences we report on lessons we have learned about designing
appropriate target structures for the base and separated code,
for preparing a system to separate concerns, and for restruc-
turing the code.

This paper makes two contributions:

� It provides an initial characterization of the process of
restructuring a codebase to permit the separation of con-
cerns.

� It provides an initial characterization of the effect of
separating concerns on the structure of both the non-
separated and the separated pieces of a codebase.

These characterizations can help software engineering re-
searchers elucidate the structural design space for these new
separation of concern mechanisms. They can also help early
adopters apply the technologies by suggesting alternative
ways of applying the mechanisms and by providing a means
of selecting amongst alternatives. Tool developers may also
benefit through guidance about the kind of design methods,
design patterns, and tools needed to support the use of the
mechanisms. Finally, the structural characterizations can
help the developers of separation of concern mechanisms
evolve their techniques.

Section 2 provides a brief overview of the code and concerns
used in the study. Section 3 provides an overview of the three
separation of concern mechanisms applied. Section 4 and
Section 5 describe the study and provide a synthesis of the re-
sults. Section 6 discusses limitations of the study. Section 7
compares our study to others that have been conducted. Sec-
tion 8 concludes the paper.

2 DETERMINING CONCERNS
The two systems we selected for our study were gnu.regexp
and jFTPd.1 These systems were chosen because they are of
moderate size, they include a range of functionality, and their
JavaTM source is readily available.

To determine concerns in the two packages, two of the au-
thors marked concerns in the source using the Feature Selec-
tion tool [8]. This tool parses a set of Java files and allows
a user to highlight and tag segments of code as belonging to
one or more user-defined concerns. All tagging is free-form:
a user may choose any portion of the code to mark as belong-
ing to a concern.

The markers selected concerns based on a variety of criteria.
Some concerns encapsulated code implementing a standard,
such as pieces of code supporting the FTP protocol in jFTPd.
Other concerns encapsulated a configuration of the software
package; for example, in gnu.regexp, different concerns were
defined for different forms of input, such as character arrays
and strings. Most concerns were selected based on the crite-
rion that they represented portions of code—features—that a
developer might want to change or remove. For instance, one

1Version 1.0.8 of gnu.regexp was written by Wes Biggs and comprises
approximately 25 classes and over 3500 lines of source. This package pro-
vides regular expression support in Java. Version 1.3 of jFTPd was written
by Brian Nenninger and comprises approximately 11 classes and just over
2900 lines of source. This package implements an FTP server in Java.

concern selected in gnu.regexp captured code related to the
matching of a regular expression over input spanning multi-
ple lines. More detail about the concerns selected is available
elsewhere [8].

3 SEPARATION OF CONCERN MECHANISMS
We chose three different methods for separating the concerns
identified in gnu.regexp and jFTPd. Two of the methods,
hyperspaces [14] and aspect-oriented programming [7], are
supported by special purpose tools, Hyper/J and AspectJ re-
spectively. The third method is a lightweight, lexical means
of separating some concerns which we have been investigat-
ing [13]. We included our lightweight approach because it
provides a means of comparing the separation possible within
the object-oriented paradigm. Although the lightweight ap-
proach is not a mechanism per se, for simplicity, we refer to
all three approaches as mechanisms.

In this section, we provide a brief overview of each mecha-
nism, deferring examples of each mechanism until Section 4.

Lightweight Concern Separation
Our lightweight lexical approach to concern separation
(LSOC) is based on three simple ideas:

� refactor the code to capture concerns as classes,
� use a naming convention to refer to the concern classes

in the base code, and
� use a simple lexical tool, such as grep, to factor a con-

cern out of a codebase based on the naming convention.

This approach does not include any composition mechanism:
a concern may be removed from a system but not added. As
a result, it is not as flexible as the other two mechanisms in-
cluded in the study.

Hyper/J
The Hyper/J2 tool permits a set of Java source to be decom-
posed along multiple dimensions simultaneously. Each di-
mension may be partitioned into a set of concerns. For ex-
ample, a Feature dimension in jFTPd may be partitioned into
several concerns: some methods or classes may be desig-
nated as contributing to a feature that logs FTP server infor-
mation, while others contribute to a feature that allows users
to issue commands to connect to the server.

Hyper/J allows different dimensions of concern to be inte-
grated using declarative composition rules. For example, a
developer for jFTPd might describe how to compose the fea-
tures related to issuing connection and directory commands
while leaving out the functionality to support the listing of re-
mote directories. The resultant system represents one mem-
ber of a product family.

When using Hyper/J, a developer provides three inputs:

� a hyperspace file that describes the Java class files that
can be manipulated,

� a concern mapping file that describes which parts of the
codebase map to each dimension of concern, and

2See www.research.ibm.com/hyperspace for more in-
formation.

2

� a hypermodule file that describes which hyperslices3—
dimensions of concern—should be integrated and how
that integration should proceed.

Given these inputs, Hyper/J produces a new set of class files
which include the specified behaviour.

AspectJ
AspectJ is an extension to the Java programming language.4

AspectJ provides support for encapsulating concerns that
crosscut a system’s structure, such as exception handling,
synchronization policies, or features.

Developers encapsulate a concern using the aspect con-
struct. This construct is similar to the Java class construct:
it provides a means of grouping together code related to a
concern. Within an aspect, developers may use advice and
introduce constructs. The advice construct groups to-
gether code that is to be executed at some defined point in
the system’s execution. The defined point may be before,
after, or around the execution of a method, amongst other
possibilities. Before and after advice is straightforward.
The code associated with an around advice is given con-
trol before execution of the associated method; the code may
or may not cause the actual method to be executed. The
introduction construct provides a means of adding new
behaviour to the classes participating in a concern.

The AspectJ language is supported by a compiler that, given
the Java source for a system and a set of aspects, applies the
aspects to the system and produces a set of source and class
files for the combined product. For this study, we used Ver-
sion 0.7b3 of the AspectJ tool.

4 STUDY
Concerns are coded into systems in a variety of ways. Some-
times, concerns are encapsulated in methods or classes.
Other times, single methods include code associated with
multiple concerns. In yet other cases, code contributing to
a concern may be split across multiple methods of multiple
classes.

To provide an initial analysis, we chose to focus on two com-
mon situations: the tangling of multiple concerns in a sin-
gle method, and the tangling of multiple concerns in a small
number of classes. The particular cases we considered are by
no means exhaustive. We have not considered an exhaustive
set of mechanisms for separating concerns nor all the ways in
which the mechanisms selected can be applied. Despite these
limitations, we believe the results of our study provide a start
for elaborating the process of separating concerns in an ex-
isting system and the structural design space available when
performing such a separation.

For each of the two situations of concern encoding, we
selected representative examples from the gnu.regexp and
jFTPd systems. We then applied each of the three mecha-
nisms to separate the concerns. In this section, we describe
the results of applying the mechanisms to the examples and

3A hyperslice is a declaratively complete slice of the program with re-
spect to a particular concern.

4See www.aspectj.org for more information.

int[] match(...) {
// Multiline matching
if (newline && (mymatch.offset > 0)

&& (input.charAt(index - 1) == ’\n’))
return next(input,index,eflags,mymatch);

// Not BOL match
if ((eflags & RE.REG_NOTBOL) > 0)

return null;
...

Figure 1: Original RETokenStart.match Method

provide a comparison of the results based on the effect of the
separation on the structure of both the base and the separated
code. We defer a synthesis of the results until Section 5.

Concerns Tangled in a Method
This portion of the study considered methods involving mul-
tiple concerns. Specifically, we looked at the case where con-
cerns are encoded as different branches of a, possibly nested,
if--then--else construct. This kind of concern encoding
occurred in both of the sample systems. For example, in the
gnu.regexp package, a method responsible for part of the reg-
ular expression matching process, RETokenStart.match,
checks for characteristics of the kind of match allowed, such
as whether or not matches may be across lines, and then per-
forms the appropriate kind of match depending upon which
conditional test succeeds. Figure 1 depicts a portion of this
method. The jFTPd package contains similar constructs. For
instance, the FTPConnection.doCommand method, which
parses and processes FTP requests entered by a user, employs
a similar conditional structure.

For the purposes of this study, we focused on separating con-
cerns in the RETokenStart.match method. This method
included three concerns: the multiline concern for handling
matches across multiple lines, the “not beginning-of-line”
(NotBOL) concern for ensuring particular matches occur at
the start of a line, and the anchored concern for supporting
matches of substrings. We wanted to be able to configure the
system to support different combinations of matching func-
tionality.

LSOC
Applying our lightweight separation of concerns approach
resulted in the creation of three classes: one for each con-
cern. Each of the classes introduced contained two static
methods: matchTest and matchResult. The matchTest
method encapsulates the conditional test from the original
if--then--else structure to determine whether or not the
concern applies. If it does apply, the matchResult method
can be called to return the result of performing the match.

Given these classes, we modified the match method to use
the classes encapsulating the concerns. For example, the por-
tion of match dealing with the multiline concern was modi-
fied as follows.

int[] match(...) {
...
if (Multiline.matchTest(...))

return Multiline.matchResult(this, ...);

3

class RETokenStart

int[] match (...)

class Multiline

class NotBOL
class Anchored Match

= Modified

= New

= Knows About

int [] match (...)

TmpResult privateMatch (...)

TmpResult matchOtherwise (...)

TmpResult matchMultiline (...)

TmpResult matchRegNotBol (...)

TmpResult matchAnchored (...)

TmpResult summarizeMatch (...)

class RETokenStart

class TmpResult

Concern Mapping
File

Hypermodule
File

class RETokenStart

int[] match (...)

aspect Multiline

aspect NotBOL

aspect Anchored

(a) Lightweight SOC

(b) Hyper/J

(c) AspectJ

= Base Structure

Figure 2: Method Restructurings

This restructuring permits the removal of the multiline con-
cern with a tool such as grep. All lines including the lexi-
cal token Multiline simply need to be removed from the
class.5

Figure 2a summarizes the restructuring performed to apply
the lightweight separation of concerns approach. The figure
shows which methods and classes were modified and added.
The figure also depicts which pieces of the structure “know-
about” other pieces of the structure. One piece of struc-
ture “knows-about” another if it names the other structural
item. For instance, the Multiline class “knows-about” the
RETokenStart class: an RETokenStart object is passed
as a parameter to matchResult to provide access to neces-
sary matching support. For simplicity, we have shown the
“knows-about” relation only between pieces of structure that
have been changed or added to separate concerns.

Hyper/J
With Hyper/J, the RETokenStart.match method was re-
structured into a number of new methods on the same class
(Figure 2b). Three of the new methods—matchMultiLine,
matchRegNotBol and matchAnchored—each encapsulate
a concern. Another method, privateMatch encapsulates
the default behaviour if no specific match routine applies.
Relevant code from match was moved to these methods.

Each of these four methods has the same parameter list as the
original match routine, but a different return type. Instead
of returning an integer array similar to match, each routine
returns an object of a newly introduced private class called
TmpResult. The purpose of TmpResult is to bundle to-
gether the result of checking if a particular match applies with
the actual result of performing that match.

The body of the modified RETokenStart.match method
simply calls privateMatch, and then unbundles and returns
the result embedded in the received TmpResult object.

With this restructuring, it is possible using Hyper/J to com-
pose concern-specific functionality into privateMatch.

5Particular formatting conventionsmust be followed for this approach to
be successfully applied [13].

Figure 3 outlines portions of the relevant Hyper/J files. The
first line of the concern file states that by default all classes
and methods are considered as part of the base—the Kernel—
functionality of the system. Creating a system with only
the Kernel functionalityprovides default matching behaviour
only. The next two lines relate specific methods with specific
concerns, which may or may not be chosen to be composed
into match when a version of the system is configured.

As shown in Figure 3, composing concerns requires a few
steps. First, to include a particular matching-related concern,
we need to describe how the concern code should interact
with the privateMatch method. In the example, we use
an overall composition rule of mergeByName and then use
equate statements to describe the correspondence between
privateMatch and specific concern-related methods. Fig-
ure 3 shows the multiline and anchored match concerns be-
ing composed into the system. Furthermore, we need to ex-
press the ordering relationship between the concern-related
methods by using order statements. Finally, we must de-
scribe how to compose the results of the merged methods. To
accomplish this step, we introduce one more (static) method
into the RETokenStart class, summarizeMatch, which re-
ceives an array of TmpResult objects from the composed
methods. The method goes through the TmpResult objects
in order and returns the integer array value from the first ob-
ject with a test that succeeded.

AspectJ
Our AspectJ implementation involved the creation of an as-
pect for each concern (Figure 2c).

Each aspect included one around statement on the
RETokenStart.match method. The code associated
with one of these around statements is executed when an
instance of RETokenStart is asked to execute the match
routine. The code performs the conditional test associated
with the matching concern to determine if the concern
applies. If it does, code moved from the match method to
perform the concern processing is executed, and the result
returned. If the concern does not apply, the code continues
with the normal method invocation of the match method.

4

Concern Mapping File:

package gnu.regexp : Feature.Kernel
operation gnu.regexp.RETokenStart.matchMultiLine : Feature.MultilineHandling
operation gnu.regexp.RETokenStart.matchAnchored : Feature.MatchingRules
...

Hypermodule File:

...
mergeByName;
equate operation Feature.Kernel.privateMatch, Feature.MultilineHandling.matchMultiLine,

Feature.MatchingRules.matchAnchored;
order action Feature.MultilineHandling.RETokenStart.matchMultiLine

before action Feature.MatchingRules.RETokenStart.matchAnchored;
set summary function for action DemoGnu.RETokenStart.privateMatch_matchMultiLine_matchAnchored

to action DemoGnu.RETokenStart.summarizeMatch;
...

Figure 3: A Partial Hypermodule Specification for Separating Concerns in a Method

This continuation of the invocation will either cause another
around associated with match to be run, such as the
around for another match-related concern, or the original
match routine itself.

The body of the original RETokenStart.match method
was modified to perform only default matching functionality.

For the behaviour to correspond to the original system, we
must be careful to apply the concerns in the appropriate order.

As shown below, we used the dominates keyword of As-
pectJ to indicate that one aspect, the MultiLineAspect is
applied before the NotBOLAspect.

public aspect MultiLineAspect
dominates NotBOLAspect
of eachobject(instanceof(RETokenStart))

Comparison
We compare the effect of the mechanisms on both the base
and the separated code structure. In Figure 2, the base struc-
ture for each case is outlined in a dotted box: all other struc-
tural items shown are considered part of the separated struc-
ture.

Effect on Base Structure The structures resulting from our
use of LSOC and Hyper/J reduce the cohesion of the
RETokenStart class. From the viewpoint of a maintainer
of the code, there is no apparent reason for the three concern
classes introduced in the LSOC case. Similarly, a maintainer
may find it difficult to understand why there are dead meth-
ods in the base structure using the Hyper/J approach: no calls
appear in the base code to the concern-related and summariz-
ing methods. In contrast, the AspectJ restructuring results in
a clean base structure: there are no added pieces to the base
structure, dead or alive.

Effect on Separated Code Structure Only the Hyper/J and
AspectJ approaches separate code. Of these two, AspectJ
provides a more complete separation: Figure 2c shows how

the aspects are separated from the base structure and how
“knows-about” is a relation from the separated- to the base-
structure. In contrast, our application of Hyper/J resulted
in the methods associated with separated concerns being lo-
cated as part of the base structure. One advantage of this code
locality is that it may be easier for developers maintaining the
code to reason about how concerns fit into the system. In the
AspectJ case, the aspects cannot be reasoned about in isola-
tion of the RETokenStart class. One structural disadvan-
tage of the AspectJ approach is that the specification of the
ordering constraints amongst aspects couples the separated
concerns. Coupling the aspects may make it more difficult
to extend the system with new aspects.

Concerns Tangled Across Classes
This portion of the study considered concerns encoded as
parts of methods and fields in different classes. For example,
in the gnu.regexp package, a concern representing the kind of
regular expression syntax to use is spread across two classes:
RE and RESyntax. In jFTPd, the GUI concern, which encap-
sulates the display of the FTP server status, is split across the
StatusWindow, AboutBox and Handler classes.6

For the purposes of the study, we focused on separating the
GUI concern from the jFTPd system. In separating this con-
cern, we wanted to support three different scenarios: running
the system without the GUI functionality, running the system
with the GUI, or incorporating into the system some other
form of reporting status information. The original system al-
lowed GUI functionality to be turned on or off using a run-
time switch. We wanted to support the inclusion or exclu-
sion of GUI functionality at system configuration-time. (We
return to the issue of run-time versus configuration-time in-
clusion of a concern in Section 6.)

A perusal of the analyzed StatusWindow, AboutBox, and
Handler classes indicated over 65% of the lines of code of
the first class, all of the code comprising the second class,
and approximately 1% of code in the last class was related

6We have dropped the FTP prefix used for jFTPd classes for simplicity.

5

Handler StatusWindow

AboutBox

(a)

Handler StatusWindow

AboutBox

(b)

StatusWindowGUI

Figure 4: Class Interactions in GUI Concern

to the GUI concern. Furthermore, as shown in Figure 4a, the
StatusWindow and AboutBox classes were isolated from
the rest of the system by the Handler class This knowledge
helped guide our application of each mechanism.

Our overall strategy to separate the concern was to split
the StatusWindow class into two classes: a modified
StatusWindow class which interacts with Handler but
which does not display status information,7 and a new
StatusWindowGUI class which does display status informa-
tion (Figure 4b). If a status information display was desired,
the StatusWindow class would be configured to use the new
StatusWindowGUI class. This strategy also involves mod-
ifying Handler to remove the existing code associated with
the GUI concern. The AboutBox class is not affected since
it included code only related to the GUI concern and because
it is referenced only via the StatusWindow class.

For each mechanism, the major challenge involved the han-
dling of joinpoints in arbitrary parts of methods.8 Given space
limitations, we focus our descriptions on the overall struc-
tures resulting from the use of each mechanism and on our
approaches to handling mid-method join points.

LSOC
Figure 5a summarizes the structure resulting from our appli-
cation of the LSOC approach. This structure differs from our
desired structure in two ways. First, the StatusWindowGUI
class references the Handler class because some GUI
events, such as particular button pushes, require handling by
the Handler class. Second, StatusWindowGUI references
StatusWindow to gain access to information to be displayed
in the GUI and to dispatch events that occur in the GUI.

For the most part, splitting the StatusWindow class into
two was straightforward. For each method in the class, we
grouped code related to the GUI concern and moved it into
methods on the StatusWindowGUI class. Code was moved
to a method of the same name when the entire method re-
lated to the GUI concern or when the code was entirely at
the start or at the end of the method. In any other case, code
from the original class was moved to a new method on the

7We retain the name of the original class even though the GUI concern
is removed for clarity in comparison.

8A join point is a location in the source code, or a point in the execution
of a system, at which code or behaviour described in a separated concern
may be integrated with the non-separated source or execution. This term is
used in slightly different ways in different publications related to separation
of concern mechanisms.

new class. In place of the moved code in StatusWindow,
we then inserted calls to methods on a StatusWindowGUI
object named win.

For example, a set of GUI-related statements at the beginning
of the StatusWindow.startServer method was moved
to a StatusWindowGUI.initStartServer method. A
new method had to be introduced because the startServer
method also included GUI code at the end of the method
that had to be moved. We replaced the moved code in
StatusWindow with the call, win.initStartServer().
This call can be thought of as an explicit join point to the GUI
concern as it explicitly names the concern.

Hyper/J
With Hyper/J, we decided to separate the concerns in this
example by using concern-specific hierarchies. Taking this
approach involved creating concern-specific versions of the
classes of interest. Our intent was to be able to create inde-
pendent hierarchies in the style of subject-oriented program-
ming [5] that could then be composed. Independent concern-
specific hierarchies may make it easier to build and manage
different pieces of a system.

Figure 5b depicts the two hierarchies created. The Ker-
nel hierarchy included versions of the Handler and
StatusWindow classes. Two other pieces of structure
were added to the Kernel hierarchy: the IHandler and
the IStatusWindow interfaces, each of which describes
the functionality available in its associated class. These
interfaces provide a means of referring to functionality from
classes in the GUI hierarchy. The GUI hierarchy included
concern-specific analogues of the two classes in the Kernel
hierarchy, Handler GUI and StatusWindow GUI, as well
as the AboutBox class.

The classes in the Kernel hierarchy were modified to remove
any GUI-related references or code. GUI concern code that
resided at the start or in the middle of a method was replaced
by a call to a new empty method introduced on the class. GUI
concern code that resided at the end of a method was removed
because we intended to cause a similarly named method from
the GUI hierarchy to run after the Kernel hierarchy method.
All GUI-related code was moved to similarly named meth-
ods on the versions of the classes in the GUI hierarchy. This
movement of code and introduction of new methods enables
the classes and methods to be implicit join points between the
two hierarchies: the join point may or may not be used.

The two hierarchies can be merged by name. In the hyper-
modules file, we simply equate the class analogues from each
concern. Then, for instance, when a reference is made to a
particular method in the Handler, Hyper/J will ensure that
the analogous method in Handler GUI is also executed.

AspectJ
When separating the concern from the StatusWindow class
using AspectJ, we had to make a choice about whether to
move all of the GUI-related code to aspects or whether to
move it to a combination of classes and aspects. We chose
the combination approach because we thought capturing the

6

class StatusWindow

5 Methods Changed

show (...)

StatusWindowGUI

Handler

AboutBoxinitStartServer (...)

class StatusWindow

disconnectSelectedUsers (...)

show (...)

5 Methods Changed
StatusWindowGUI

Handler

GUI (aspect)

AboutBox

(a) Lightweight SOC

(b) Hyper/J

(c) AspectJ

Interface
IStatusWindow

Interface
IHandler

class StatusWindow class Handler

Kernel Hierarchy

3 Methods Changed

class StatusWindow_GUI class Handler_GUI

class AboutBox

GUI Hierarchy

3 Methods Added
4 Methods
Removed

8 Methods Changed

2 Methods Added

Figure 5: Class Restructurings

code as objects would be more explicit than embedding the
code in aspects. Thus, as Figure 5c shows, we introduced
both the GUI aspect and a new class, StatusWindowGUI.

This StatusWindowGUI class differs from the similarly
named class introduced for the other two mechanisms in two
ways. First, we chose to place some of the code from the
start and end of methods in the aspect rather than creating
new methods for this code in StatusWindowGUI. Second,
the StatusWindowGUI class does not contain any references
to either StatusWindow or Handler. Instead, these refer-
ences are maintained in the aspect; the aspect is thus respon-
sible for stitching the necessary pieces together.

The GUI aspect uses both introduce and advice state-
ments to integrate concern code into the system. Seven of
the ten advice statements are before or after advice
statements. In the other three cases, new methods had to
be introduced into the Handler class to provide join points
in the middle of methods. For example, we had to add
methods such as notInteractive in the middle of the
startService method to overcome the lack of a run-time
switch to indicate whether or not the system was running in
interactive mode. The definition of the notInteractive
method on the class handled the non-interactive case. The as-
pect overrides this method to handle the interactive case.

Comparison
As before, we compare the effect of the mechanisms on both
the base and the separated code structure. Figure 5 indicates
what we considered base and separated code in each case.

Effect on Base Structure For each of the approaches, the co-
hesion of each of the classes in the base structure was im-

proved by separating the GUI-related code. One disadvan-
tage of the Hyper/J and AspectJ approaches is that “odd”
methods—methods with no apparent purpose—had to be in-
troduced into some classes in order to support join points in
the middle of methods. Comparing AspectJ to Hyper/J, the
AspectJ restructuring required fewer “odd” methods because
of the ability to have both before and after advice asso-
ciated with methods.9 From the viewpoint of the base struc-
ture, one advantage of the LSOC approach is that the join
points are explicit in code and can be placed in the middle of
a method, removing the need to add methods to provide join
points.

Effect on Separated Code Structure The LSOC approach
provides only limited separation. A new kind of status re-
porting could be introduced into the system by replacing the
StatusWindowGUI class. However, unless the class were
completely replaced, some new mechanism, such as the Ab-
stractFactory pattern [3], would need to be added to the sys-
tem in order to support the instantiation of a different class.

Both Hyper/J and AspectJ separate the GUI code more thor-
oughly from the base code. The use of separate hierarchies
in Hyper/J makes it possible to consider the separated GUI
code in the context of some structure. This structure may
make it easier to understand the code. However, changes
in the Kernel hierarchy may have to be reflected in the GUI
hierarchy, potentially complicating maintenance activities.
Since in the AspectJ case, we separated most of the code into
classes rather than aspects, the end result may also be more
straightforward to understand. Maintenance may be easier

9Hyper/J provides a similar bracketing operation but we chose not to use
it in this example.

7

in the AspectJ case because the aspect, which contains the
code connecting the base and separated structures, is short
and straightforward.

5 STUDY RESULTS
The detailed descriptions in the previous section show that
separation of concern mechanisms can be applied in several
different ways, resulting in a variety of software structures.
Not surprisingly, none of the structures produced are obvi-
ously “right”, nor are any of the mechanisms obviously “per-
fect”. In this section, we take a step back and consider the ma-
jor lessons we learned from our study experiences in three ar-
eas: designing appropriate target structures, preparing a sys-
tem to separate concerns, and restructuring the code.

Our discussion of each of these topics assumes that a devel-
oper has decided that separating concerns is an appropriate
action.

Designing Appropriate Target Structures
Given a set of concerns to separate, particularly for an ex-
isting system, how can a developer design appropriate target
structures for the base and separated code? Although it is too
early to provide specific rules to guide this process, from our
experiences, there are two questions we believe a developer
should consider.

� How is the codebase to be managed and work to be dis-
tributed?

� What kinds of changes are expected in the base and con-
cern code?

The management of the codebase and the distributionof work
in an organization affects the kind and form of separation
needed between the base and concern code. For example, if
separate concerns are to be developed independently by dif-
ferent teams, it may be advantageous to take an approach sim-
ilar to that of applying Hyper/J to jFTPd where we created
separate class hierarchies for the base and the concern. Each
team can then be responsible for a separate hierarchy. On the
other hand, if only one team is involved with a codebase, it
may be advantageous to represent the concern code as either
“dead” code within the base structure, as we did when apply-
ing Hyper/J to gnu.regexp, or as aspects that have detailed
knowledge about the base structure, as in the case of applying
AspectJ to jFTPd. More separation, as in the separate class
hierarchy approach, may make it easier to version and evolve
base and concern code separately. Less separation, as in the
“dead” code approach, may make it easier to reason about the
base and concern code together.

In our experience, separation of concern mechanisms do
not magically remove the need during software design to
choose structures that accommodate anticipated changes.
The selected concerns themselves likely relate to anticipated
changes. However, it is not enough to simply identify the
concerns, we must also choose structures to represent those
concerns. Concerns might be represented using existing
structural constructs, such as object-oriented classes, or as
structural constructs unique to a particular mechanism, such
as aspects.

Although we cannot provide any specifics about how to rep-
resent concerns, some general guidelines have emerged from
our experiences. One guideline is to use the “knows-about”
relationship as a means of ensuring that concern code is sep-
arate from the base code. For example, in general, it is not an
advantage to have base code refer to separated code as arose
when we applied the LSOC approach to the gnu.regexp pack-
age. This guideline also arose in another study in which As-
pectJ was used to build a web-based system [6].

A second guideline is to use the “knows-about” relationship
to determine the degree of coupling between separated code
representing different concerns. For instance, when we ap-
plied AspectJ to the gnu.regexp package, some of the as-
pects had to “know-about” each other to express ordering
constraints. Such knowledge may require changes to exist-
ing aspects when a new aspect is added to the system or may
become extraneous if an aspect is removed from the code-
base. Longitudinal studies of codebases using separation of
concern techniques are needed to validate and expand these
guidelines.

Preparing for Separating Concerns
A concern may be easier to separate, and a better overall
structure for the code may result, if advance work to prepare
the software system is undertaken. Given our experiences,
we suggest the following two steps be taken.

First, analyze and, as possible, refactor the codebase to en-
capsulate concerns in entire methods and classes. This refac-
toring must balance the advantages of encapsulating a con-
cern within the regular object-oriented structure of the pro-
gram with qualities of the codebase, such as its readabil-
ity and maintainability. For instance, capturing the mul-
tiline matching concern in gnu.regexp as a class as we
did when applying the LSOC mechanism was probably
not an overall advantage because it decreased the cohe-
sion of the RETokenStart class. In contrast, splitting the
StatusWindow class when applying the LSOC mechanism
to jFTPd was an overall benefit because it increased the co-
hesion of classes in the system.

Second, for concerns tangled in methods after the refac-
toring, analyze the methods and try to group together as
many statements as possible associated with each concern.
Grouping the statements may require analysis to understand
which statements may be reordered. Try to move groups of
statements related to concerns to the beginning and ends of
methods since most mechanisms support such points as join
points. The intent of this analysis and code rearrangement is
to minimize the need for mid-method join points. Such join
points should be avoided since, for several mechanisms, re-
quire the introductionof “odd” methods, which exist solely to
provide access to the desired join points. These “odd” meth-
ods can also affect code quality. As separation of concern
mechanisms evolve, they may introduce a means of identify-
ing mid-method join points, for instance as call sites, remov-
ing the need to add new methods to provide mid-method join
points.

8

Restructuring the Code
After the code has been prepared to separate a concern, the
actual separation must still be performed. In our study, we
performed all code restructurings manually. Although man-
ual restructuring is obviously possible, it is time-consuming
and error-prone. Automated support would ease the difficulty
of restructuring the codebase and separating a concern. Au-
tomated support could help in several ways:

� to move fields from one class to another or to a new
piece of structure, such as an aspect,

� to move methods from one class to another or to a new
piece of structure, such as an aspect,

� to form new methods on the same class from a grouped
set of statements, and

� to modify inheritance and interface associations.

These restructurings are all simple and can be supported by
tools (e.g., [10]). However, a constraint that restructurings
be meaning-preserving enforced by much of the work on au-
tomated restructuring needs to be relaxed for these tools to
be helpful when restructuring to separate concerns. For in-
stance, when restructuring parts of the jFTPd codebase into
two separate hierarchies, it was not possible for the meaning
of the system to be preserved: we were trying to remove func-
tionality from the system! Moreover, for some mechanisms,
restructuring tools need to be specialized to be able to move
code into new pieces of structure, such as aspects.

Given that we found similarities between how concerns were
encoded between the two packages we studied, such as the
use of if--then--else constructs, it is also likely that re-
structuring patterns could be developed for particular con-
cern encoding forms.

6 DISCUSSION
As we described earlier, our study format had many limita-
tions. In this section, we consider various issues impacting
the validity of our study.

Concerns Considered
Our study considered only a small number of concerns. We
identified code related to these concerns largely based on a
reading of the source code of the two packages. We believe
this approach was reasonable to support the lessons reported
because we focused on the structure of the encoding of the
concerns in the code rather than on the semantics of the code.
Similar concern structure has been reported elsewhere [2].
As a result, it is not crucial that the concerns considered,
such as the matching concerns in gnu.regexp, would truly
be of interest to separate. Furthermore, since we focused
on fairly fine-grained structure—conditional statements and
small numbers of classes—it was not as critical that we en-
sure we had identified all code related to a concern.

Application of Mechanisms
For each of the two cases, we applied each separation of con-
cern mechanism in only one way. For each application, we
have argued why we think our use of the mechanism was rea-
sonable. However, we do not claim that our application of
any of the mechanisms was optimal. For instance, our ap-
plication of the Hyper/J tool to the jFTPd package involved

the refactoring of code into separate hierarchies. This refac-
toring was not necessary to apply the tool. One advantage
claimed for Hyper/J is its ability to remodularize code with-
out changing it by associating methods and classes with par-
ticular dimensions and recombining those dimensions in dif-
ferent ways [12]. We could have applied Hyper/J in more of
this fashion to jFTPd. However, such remodularizations, are
dependent upon the appropriate join points being available in
the code. As can be seen from our use of all the mechanisms,
appropriate join points were not generally available. We had
to restructure code to provide suitable points for composition.
As a result, although our particular uses of the mechanisms
can be criticized, and our detailed criticisms of the resulting
structures should be considered within that context, we be-
lieve the overall lessons we reported have value.

Another possible criticism of our study format is that we did
not globally redesign the two systems prior to trying to sep-
arate concerns. For example, we did not analyze the existing
object-oriented structure and redesign it according to state-
of-the-art design principles and guidelines, such as design
patterns [3]. We did not undertake a global redesign for two
reasons. First, for a system of any size for which a devel-
oper may want to separate a concern, it is not generally pos-
sible within time and cost limitations to perform a redesign.
Second, our experiences marking the concerns in the code
indicated that the designs of each system were reasonable:
classes were chosen to hide design decisions and the classes
encapsulated important data.

Run-time Feature Selection
Originally, the GUI functionality in jFTPd could be selected
at run-time. In separating this functionality, we restruc-
tured and separated the code to support the configuration-
time, rather than run-time, selection of the functionality. This
change was reasonable because a developer may wish to cre-
ate variants of the system in which particular functionality,
such as the GUI, is not included in the system, but rather is
purchased as an add-on unit. Furthermore, users may desire
variants of the system that do not include such functionality
in the executable so as to reduce the memory and CPU re-
quirements of applications.

Overlapping Concerns
In each of the two sample systems, we considered indepen-
dent concerns. In gnu.regexp, the three concerns were all
related to matching but these concerns did not interact with
each other. In jFTPd, we considered only the GUI concern.
These are simple cases. Other concerns we marked in the two
systems often overlapped: one piece of code was assigned to
two or more concerns. The presence of overlapping concerns
raises many questions for a developer attempting to restruc-
ture the codebase and separate the concerns. Should multiple
copies of the code be executed if all concerns are composed
into a system? Does the overlapping indicate a relationship
between concerns, such that one concern must be included if
another concern is included? Should the code only be exe-
cuted if all concerns are composed into the system? Further
study is needed to investigate these questions.

9

7 RELATED WORK
Since mechanisms for separation of concerns in the style con-
sidered in this paper are in their infancy, there have been few
studies on the use and affect of the mechanisms on a system’s
code.

Walker, Baniassad, and Murphy have reported on the results
of conducting two exploratory experiments about the impact
of aspect-oriented programming [15]. Kersten and Murphy
have reported on the experience of building a web-based sys-
tem with aspect-oriented programming [6]. These studies
touch on the structural impact of aspect-oriented program-
ming. The experiments provided some preliminary evidence
that separating concerns more distinctly from the base code
may provide benefits. The web system case study reported
on the advantages of limiting the “knows-about” relation be-
tween the aspects and base code to be from the aspects to the
base code.

Lippert and Lopes have reported their experiences using As-
pectJ to simplify and unify parts of the exception handling
structure in an existing system [9]. They focused on reengi-
neering the exception handling where suitable join points
were already available for the aspects. Carver and Gris-
wold have described their experiences identifying concerns
in the GNU sort program [2]. Carver has also reported on
experiences applying Hyper/J to separate the identified con-
cerns [1]. This body of work describes some of the diffi-
culties isolating concerns and possible extensions to Hyper/J
that would make separation easier.

This paper differs from these earlier efforts in considering
more than one mechanism for separating a concern, and in
focusing on the restructuring process needed to separate con-
cerns in an existing system.

8 SUMMARY
In this paper, we have reported on a study in which various
separation of concern mechanisms for object-oriented sys-
tems were applied to two common scenarios: separating con-
cerns tangled within a method, and separating concerns tan-
gled between classes. This exploratory study demonstrates
the wide range of software structures that can result from ap-
plying these mechanisms. In addition to analyzing the trade-
offs between these different structures, we have provided a
set of initial guidelines to help others choose an appropriate
target structure, prepare their codebase for separating con-
cerns, and perform the necessary restructurings. This anal-
ysis and set of guidelines can help software engineering re-
searchers develop tools and techniques to aid the application
of the technology,es and early adopters apply the technology.

ACKNOWLEDGEMENTS
We would like to thank Harold Ossher and Peri Tarr for
their help with our applications of the Hyper/J tool, and Gre-
gor Kiczales for comments on a draft of this paper. This
work was supported in part by an NSERC research grant,
an NSERC post-graduate fellowship, and an IBM University
Partnership Program award.

REFERENCES

[1] L. Carver. A practical hyperspace application: Lessons
from the option-processing task. Position Paper for
Multi-Dimensional Separation of Concerns Workshop,
ICSE, 2000.

[2] L. Carver and W. Griswold. Sorting out concerns. Po-
sition Paper for Multi-Dimensional Separation of Con-
cerns Workshop, OOPSLA, 1999.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns. Addison-Wesley, 1995.

[4] N. Griffeth and Y.-J. Lin. Extending telecommunica-
tions systems: The feature-interaction problem. Com-
puter, 26(8):14–18, 1993.

[5] W. Harrison and H. Ossher. Subject-oriented program-
ming: A critique of pure objects. In Proc. of OOPSLA,
pages 411–428, 1993.

[6] M. Kersten and G. Murphy. Atlas: A case study
in building a web-based learning environment using
aspect-oriented programming. In Proc. of OOPSLA,
pages 340–352, 1999.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In Proc. of ECOOP’97, pages 220–242,
1997.

[8] A. Lai and G. Murphy. The structure of features in java
code: An exploratory investigation. Position Paper for
Multi-Dimensional Separation of Concerns Workshop,
OOPSLA, 1999.

[9] M. Lippert and C. Lopes. A study on exception detec-
tion and handling using aspect-oriented programming.
In Proc. of ICSE, pages 418–427, 2000.

[10] W. Opdyke. Refactoring Object-oriented frameworks.
PhD thesis, University of Illinois, 1992.

[11] H. Ossher and P. Tarr. Hyper/J: Multi-dimensional sep-
aration of concerns for Java. In Proc. of ICSE, pages
734–737, 2000.

[12] H. Ossher and P. Tarr. On the need for on-demand re-
modularization. Position Paper for Aspects and Dimen-
sions of Concern Workshop, ECOOP, 2000.

[13] M. Robillard and G. Murphy. An exploration of a
lightweight means of concern separation. Position Pa-
per for Aspects and Dimensions of Concern Workshop,
ECOOP, 2000.

[14] P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N de-
grees of separation: multi-dimensional separation of
concerns. In Proc. of ICSE, pages 107–119, 1999.

[15] R. Walker, E. Baniassad, and G. Murphy. An initial as-
sessment of aspect-oriented programming. In Proc. of
ICSE, pages 120–130, 1999.

10

