
Structur ing System Aspects
Yvonne Coady, Gregor Kiczales, Mike Feeley, Norm Hutchinson, and Joon Suan Ong

University of British Columbia

Key elements of operating systems are crosscutting –
their implementation is necessarily spread across
several core components of the system. Prefetching,
for example, is a critical architectural performance
optimization that amortizes the cost of going to disk by
predicting and retrieving additional data with each
explicit disk request. The implementation of
prefetching, however, is tightly coupled with both high-
level context of the original request and low-level costs
of additional retrieval. As a result, small clusters of
customized prefetching code appear at both high and
low levels along most execution paths that involve
going to disk. This makes prefetching difficult to
reason about and change, and interferes with the clarity
of the primary functionality within which prefetching is
embedded.

Aspect-oriented programming (AOP) provides a means
of tackling some of the well-known modularity
problems operating systems face when implemented
with procedural and OO programming alone. This
paper presents the use of AOP in structuring the
implementation of a subset of prefetching in the
FreeBSD v3.3 operating system.

Page fault handling and prefetching

A process generates a ‘page fault’ by accessing an
address in virtual memory (VM) that is not resident in
physical memory. Page fault handling begins in the
VM layer as a request for a page associated with a VM
object. This request is then translated into different
representation – a block associated with a file – and
processed by the file system. Finally, the request is
passed to the disk system, where it is specified in terms
of cylinders, heads and sectors associated with the
physical disk. The division of responsibilities among
these layers is centered around the management of their
respective representations of data.

FreeBSD v3.3 associates a ‘behaviour’ of access,
typically set to normal or sequential, with each VM
object. Prefetching in the VM layer uses this declared
behaviour to plan which pages to prefetch, and
allocates physical memory according to this plan.
Allocating physical memory involves VM-based
synchronization, as the VM object’s page map must be
locked during this operation.

The execution path taken subsequent to the VM layer
depends upon the declared behaviour of the VM object
and requires that the file system pay special attention to
the pages allocated during the planning phase. Normal
behaviour involves checking the plan and de-allocating
pages if it is no longer cost effective to prefetch.
Sequential behaviour involves requesting a larger
amount of data through the regular file system read
path, while still ensuring the physical pages allocated
during the planning phase are filled.

Prefetching structure and the or iginal code

In the original code, the implementation of prefetching
is scattered and tangled. In this example, it is spread
out over approximately 260 lines in 10 clusters in 5
core functions from two subsystems. There are clusters
of code operating on VM abstractions sitting in FFS
functions. This implementation makes it very difficult
to see the coordination of prefetching activity, and
obfuscates the primary functionality of the page fault
handling and file system read paths.

AspectC

The structured implementation of prefetching presented
here uses AspectC – a simple AOP extension to C.
Overall, only a small portion of the code relies on these
linguistic extensions. These extensions modularize
crosscutting concerns by allowing fragments of code
that would otherwise be spread across several functions
to be co-located and to share context.

AspectC is a simple subset of AspectJ. Aspect code,
known as advice, interacts with primary functionality at
function call boundaries and can run before, after or
around the call. The central elements of the language
are a means for designating particular function calls, for
accessing parameters of those calls, and for attaching
advice to those calls.

Key to structuring the crosscutting implementation of
prefetching is the ability to capture dynamic execution
context with the control flow, or cflow, extension.
Cflow supports the coordination of high-level and low-
level prefetching activity along specified paths of
execution.

Normal mode prefetching in AspectC

Figure 1 shows an aspect-oriented implementation of
prefetching for VM objects with normal declared
access. The call graph on the left illustrates each
element of the aspect code on the right. Elements of
the implementation associated with control flow
correspond to the arrows adjacent to functions, and
each advice declaration is represented by a small circle
on an edge of the call graph.

The first declaration in the aspect in Figure 1 allows
advice in the aspect to access the page map in which
prefetching pages must be allocated. This map is the
first argument to vm_fault.

Reading the declaration, it declares a pointcut named
vm_fault_cflow, with one parameter, map. A pointcut
identifies a collection of function calls and arguments
to those calls. The second line of this declaration
provides the details. This pointcut refers to all function
calls within the control flow of calls to vm_fault, and
picks out vm_fault’s first argument. The ‘ ..’ in this
parameter list means that although there are more
parameters in this list, they are not picked out by this
pointcut.

The second declaration is another pointcut, this time
named ffs_getpages_cflow, which allows advice in the
aspect to access the entire parameter list of
ffs_getpages. This pointcut will be used by the lower
advice that for de-allocation of planned pages.

The third declaration defines before advice that
examines the object's declared behaviour, plans what
virtual pages to prefetch, and allocates physical pages
accordingly. In plain English, the header says to
execute the body of this advice before calls to
vnode_pager_getpages, and to give the body access to
the map parameter of the surrounding call to vm_fault.

Reading the header in more detail, the first line says
that this advice will run before function calls designated
following the ‘ :’ , and lists five parameters available in
the body of the advice. The second line specifies calls
to the function vnode_pager_getpages, and picks up the
four arguments to that function. The third line uses the
previously declared pointcut vm_fault_cflow, to provide
the value for map associated with the particular fault
currently being serviced (i.e., from a few frames back
on the stack). The body of the advice is ordinary C
code.

The next three declarations implement the three
conditions under which the FFS layer can choose not to
prefetch. In each case, the implementation of the
decision not to prefetch results in de-allocation of pages
previously allocated for prefetching.

Each of these after advice uses ffs_getpages_cflow to
provide access to higher-level parameters and to ensure
that the advice to de-allocate runs only within the
control flow of an execution path rooted in
ffs_getpages.

aspect normal_prefetching {

 pointcut vm_fault_cflow(vm_map_t map):
 cflow(calls(int vm_fault(map, ..)));

 pointcut ffs_getpages_cflow(vm_object_t obj, vm_page_t* plist, int len, int fpage):
 cflow(calls(int ffs_getpages(obj, plist, len, fpage)));

 before(vm_map_t map, vm_object_t obj, vm_page_t* plist, int len, int fpage):
 calls(int vnode_pager_getpages(obj, plist, len, fpage))
 && vm_fault_cflow(map)
 {
 if (obj->declared_behaviour == NORMAL) {
 vm_map_lock(map);
 plan_and_alloc_normal(obj, plist, len, fpage);
 vm_map_unlock(map);
 }
 }

 after(vm_object_t obj, vm_page_t* plist, int len, int fpage, int valid):
 calls(valid ffs_valid(..))
 && ffs_getpages_cflow(obj, plist, len, fpage)
 {
 if (valid)
 dealloc_all_prefetch_pages(obj, plist, len, fpage);
 }

 after(vm_object_t obj, vm_page_t* plist, int len, int fpage, int error, int reqblkno):
 calls(error ufs_bmap(struct vnode*, reqblkno, ..))
 && ffs_getpages_cflow(obj, plist, len, fpage)
 {
 if (error || (reqblkno == -1))
 dealloc_all_prefetch_pages(obj, plist, len, fpage);
 }

 after(vm_object_t obj, vm_page_t* plist, int len, int fpage, struct t_args* trans_args):
 calls(int ffs_calc_size(trans_args))
 && ffs_getpages_cflow(obj, plist, len, fpage)
 {
 dealloc_noncontig_prefetch_pages(obj, plist, len, fpage, trans_args);
 }
}

vm_fault

vm_pager_getpages

ffs_getpages

ffs_valid

ufs_bmap

ffs_calc_size

bread

ffs_read

…

…

…

VM layer

FFS layer

lower levels

FFS read request

before

after

plan prefetching and
 allocate pages

check plan and
 possibly de-allocate pages

after

after

vnode_pager_getpages

VM page fault

Figure 1: Normal mode prefetching

flow map
 parameter down

flow obj, plist,
 len, and fpage
 parameters down

Sequential mode prefetching in AspectC

Figure 2 shows the structure of prefetching for objects
with declared sequential access. In this case, the
request is bumped to a maximum buffer size and routed
through ffs_read instead of ffs_getpages. Once the
transfer is complete, appropriate buffer pages are
‘ flipped’ with the pages allocated for prefetching in
order to avoid an expensive copy operation.

This aspect uses around advice to divert the execution
path to ffs_read when access is sequential, or to
proceed with ffs_getpages otherwise. Around advice
differs from before and after advice in that it has
control over whether or not the advised function call
proceeds as planned.

The after advice, which flips the pages, executes only
when control flow has been diverted along this special
path, as specified by the pointcuts vm_fault_cflow and
ffs_read_cflow.

Implementation comparison

To develop the AOP implementation, we first stripped
the prefetching related code from the primary
implementation of page fault handling. We then we
made several minor refactorings of the primary code
structure to expose principled points for the definition
of prefetching advice. In this example, refactoring
spawned two new functions, ffs_valid and ffs_calc_size,
from ffs_getpages.

The key difference between the original code and the
AOP code is that when implemented using aspects, the
coordination of VM and FFS prefetching activity
becomes clear. We can see, in a single screenful, the
interaction of planning and cancelling prefetching, and
allocating and de-allocating or flipping pages along
these execution paths. At the same time, the AOP
implementation also clearly specifies the exact dynamic
execution context for each advice relative to the
primary functionality involved.

These properties are essential for structuring aspects in
systems code, where execution paths are often
differentiated by their respective sets of restrictions and
requirements. In this example, the execution path for
normal mode prefetching is subject to tighter cost
constraints relative to the sequential path, while the
sequential path must instead reconcile the destination of
the disk transfer.

Conclusion

In its original implementation, prefetching is tangled –
spread throughout the code in an unclear way.
Implemented with AOP, the crosscutting structure of
prefetching is clear and tractable to work with. A
semantically accurate structuring of prefetching hinges
on the ability to identify and capture dynamic execution
context. This result holds out promise that after years
of trying to improve OS modularity with procedural
and OO programming, AOP now may help us make
significant progress.

aspect sequential_prefetching {

 pointcut vm_fault_cflow(vm_map_t map):
 cflow(calls(int vm_fault(map, ..)));

 pointcut ffs_read_cflow(struct vnode* vp, struct uio* io_inf, int size, struct buff** bpp):
 cflow(calls(int ffs_read(vp, io_inf, size, bpp)));

 before(vm_map_t map, vm_object_t obj, vm_page_t* plist, int len, int fpage):
 calls(int vnode_pager_getpages(obj, plist, len, fpage))
 && vm_fault_cflow(map)
 {
 if (obj->declared_behaviour == SEQUENTIAL) {
 vm_map_lock(map);
 plan_and_alloc_sequential(obj, plist, len, fpage);
 vm_map_unlock(map);
 }
 }

 around(vm_object_t obj, vm_page_t* plist, int len, int fpage):
 calls(int ffs_getpages(obj, plist, len, fpage))
 {
 if (obj->behaviour == SEQUENTIAL) {
 struct vnode* vp = obj->handle;
 struct uio* io_inf = io_prep(plist[fpage]->pindex, MAXBSIZE, curproc);
 int error = ffs_read(vp, io_inf, MAXBSIZE, curproc->p_ucred);
 return cleanup_after_read(error, obj, plist, len, fpage);
 } else
 proceed;
 }

 after(struct uio* io_info, int size, struct buf** bpp):
 calls(int bread(..))
 && vm_fault_cflow(..)
 && ffs_read_cflow(struct vnode*, io_info, size, bpp)
 {
 flip_buffer_pages_to_allocated_vm_pages((char *)bpp->b_data, size, io_info);
 }
}

vm_fault

vm_pager_getpages

ffs_getpages

ffs_valid

ufs_bmap

ffs_calc_size

bread

ffs_read

…

…

…

VM layer

FFS layer

lower levels

FFS read request

before

plan prefetching and
 allocate pages

page flip
after

vnode_pager_getpages

VM page fault

Figure 2: Sequential mode prefetching

flow io_info,
 size, and bpp
 parameters down

flow map
 parameter down

around

