
Structuring Operating System Aspects

Yvonne Coady, Gregor Kiczales, Mike Feeley, Norm Hutchinson, and Joon Suan Ong
University of British Columbia

Key elements of operating systems crosscut – their implementation is inherently coupled with several layers of the
system. Prefetching, for example, is a critical architectural performance optimization that amortizes the cost of
going to disk by predicting and retrieving additional data with each explicit disk request. The implementation of
prefetching, however, is tightly coupled with both high-level context of the request source and low-level costs of
additional retrieval. In a traditional OS implementation, small clusters of customized prefetching code appear at
both high and low levels along most execution paths that involve going to disk. This makes prefetching difficult to
reason about and change, and interferes with the clarity of the primary functionality within which prefetching is
embedded.

This article explores the use of AOP [4] to improve OS structure [5] by highlighting an AOP-based implementation
of a subset of prefetching in the FreeBSD v3.3 operating system.

Example: page fault handling and prefetching

A process generates a page fault by accessing an address in virtual memory (VM) that is not resident in physical
memory. Page fault handling begins in the VM layer as a request for a page associated with a VM object. This
request is then translated into a different representation – a block associated with a file – and processed by the file
system (FFS). Finally, the request is passed to the disk system, where it is specified in terms of cylinders, heads and
sectors associated with the physical disk. The division of responsibilities among these layers is centered around the
management of their respective representations of data.

Applications associate an access behaviour, typically normal or sequential, with each VM object. Prefetching uses
this declared behaviour to plan which pages to prefetch, and allocates physical memory pages according to this plan.
Allocating pages involves VM-based synchronization, since the VM object’s page map must be locked during this
operation.

The execution path taken subsequent to the VM layer depends upon the declared behaviour of the VM object and
requires that the file system pay special attention to the previously allocated pages. Normal behaviour involves
checking the plan and de-allocating pages if it is no longer cost-effective to prefetch. Sequential behaviour involves
requesting a larger amount of data through the regular file system read path, while still ensuring the allocated
physical pages are filled.

Prefetching structure and the original code

In the original FreeBSD v3.3 code, the implementation of prefetching is both scattered and tangled. The code is
spread out over approximately 260 lines in 10 clusters in 5 core functions from two subsystems. There are clusters of
code operating on VM abstractions sitting in FFS functions. This implementation makes it very difficult to see the
coordination of prefetching activity, and obfuscates the primary functionality of the page fault handling and file
system read paths.

AspectC

The structured implementation of prefetching presented here uses AspectC [1] – a simple AOP extension to C.
Overall, only a small portion of the code relies on these linguistic extensions. These extensions modularize
crosscutting concerns by allowing fragments of code that would otherwise be spread across several functions to be
co-located and to share context.

AspectC is a subset of AspectJ [2] (see article in this issue), without any support for OOP or explicit modules.
Instead, we use the C convention of using a file to conceptually delimit a module. Aspect code, known as advice,
interacts with primary functionality at function call boundaries and can run before, after or around existing function

calls. The central elements of the language are a means for designating particular function calls, for accessing
parameters of those calls, and for attaching advice to those calls.

Key to structuring the crosscutting implementation of prefetching is the ability to capture dynamic execution context
with the control flow, or cflow, mechanism. Cflow supports the coordination of high-level and low-level
prefetching activity along an execution path by exposing specific high-level context, such as function calls and
parameters, to lower-level advice.

Execution paths to disk

Figure 1 shows three colour-coded paths to disk, two of which have been previously introduced: normal and
sequential page fault handling. The third is the file system read path. Functions in the (simplified) primary
functionality call graph are represented by ellipses labeled with function names.

vm_fault

vm_pager_getpages

vnode_pager_getpages

ffs_getpages

ffs_valid

function

ffs_calc_size

…

…

VM layer

FFS layer

bread

ffs_read

…

vn_read

bio_wait

…

VFS layer

Block layer

…

…

afterafterafter

before

before

before
around

cflow

ufs_bmap

primary functionality within a layer

advice advice attached to an execution path

control flow identified, parameters exposed

…

Three executions paths to disk:
normal behaviour page fault
file system read
sequential behaviour page fault

(to disk)

(to disk)

Figure 1. Execution paths to disk.

Normal behaviour prefetching in AspectC

Figure 2 shows an aspect-oriented implementation of prefetching along the normal behaviour page fault path. To
develop this implementation, we first stripped prefetching out of the primary page fault handling. We then made
several minor refactorings of the primary code structure to expose principled points for the definition of prefetching
advice. In this example, refactoring spawned two new functions, ffs_valid and ffs_calc_size, from ffs_getpages.

This small aspect, normal_prefetching, contains two pointcut declarations, which identify and expose important
control flow information, and four advice declarations, structured according to these pointcuts.

Figure 2. Aspect for normal behaviour prefetching during page fault handling.

Pointcut declarations

A pointcut identifies a collection of function calls and specific arguments to those calls. The first declaration in the
aspect is a pointcut named vm_fault_cflow, with one parameter, map. The details are in the second line of the
declaration: this pointcut refers to all function calls within the control flow of calls to vm_fault, and exposes
vm_fault’s first argument, the page map. This pointcut is used by advice to access the page map for planning and
allocating prefetched pages. The ‘..’ in this parameter list means that although vm_fault has more parameters, they
are not exposed by this pointcut.

Similarly, the second declaration is another pointcut, named ffs_getpages_cflow, which allows advice to access the
entire parameter list of ffs_getpages. This pointcut is used by advice for de-allocating planned pages.

aspect normal_prefetching {

 pointcut vm_fault_cflow(vm_map_t map):
 cflow(calls(int vm_fault(map, ..)));

 pointcut ffs_getpages_cflow(vm_object_t obj, vm_page_t* plist, int len, int fpage):
 cflow(calls(int ffs_getpages(obj, plist, len, fpage)));

 before(vm_map_t map, vm_object_t obj, vm_page_t* plist, int len, int fpage):
 calls(int vnode_pager_getpages(obj, plist, len, fpage))
 && vm_fault_cflow(map)
 {
 if (obj->declared_behaviour == NORMAL) {
 vm_map_lock(map);
 plan_and_alloc_normal(obj, plist, len, fpage);
 vm_map_unlock(map);
 }
 }

 after(vm_object_t obj, vm_page_t* plist, int len, int fpage, int valid):
 calls(valid ffs_valid(..))
 && ffs_getpages_cflow(obj, plist, len, fpage)
 {
 if (valid) dealloc_all_prefetch_pages(obj, plist, len, fpage);
 }

 after(vm_object_t obj, vm_page_t* plist, int len, int fpage, int error, int reqblkno):
 calls(error ufs_bmap(struct vnode*, reqblkno, ..))
 && ffs_getpages_cflow(obj, plist, len, fpage)
 {
 if (error || (reqblkno == -1)) dealloc_all_prefetch_pages(obj, plist, len, fpage);
 }

 after(vm_object_t obj, vm_page_t* plist, int len, int fpage, struct t_args* trans_args):
 calls(int ffs_calc_size(trans_args))
 && ffs_getpages_cflow(obj, plist, len, fpage)
 {
 dealloc_noncontig_prefetch_pages(obj, plist, len, fpage, trans_args);
 }
}

Advice declarations

Advice in this aspect are shown as four colour-coded ellipses associated with normal behaviour page fault handling
in Figure 1. Each is labeled as executing before or after the function directly below it in the call graph. Places
where control flow information is exposed are indicated by small arrows adjacent to specific functions.

The first advice in the aspect is responsible for the high-level planning and allocating of prefetched pages according
to the object's behaviour. The header says to execute the body of this advice before calls to vnode_pager_getpages,
and to give the body access to the map parameter of the surrounding call to vm_fault.

In more detail, the first line of the header says that this advice will run before function calls designated following the
‘:’, and lists five parameters available in the body of the advice. The second line specifies calls to the function
vnode_pager_getpages, and exposes the four arguments to that function. The third line uses the previously declared
pointcut vm_fault_cflow, to provide the value for map associated with the particular fault currently being serviced
(i.e., from a few frames back on the stack). The body of the advice is ordinary C code.

The next three declarations implement the low-level details associated with retrieval. There are three conditions
under which the FFS layer can choose not to prefetch. In each case, the implementation of the decision not to
prefetch results in de-allocation of pages previously allocated for prefetching. Each of these after advice uses
ffs_getpages_cflow to provide access to the necessary parameters and to ensure the advice runs only within the
control flow of an execution path that includes ffs_getpages. This is important because ufs_bmap is part of many
other execution paths in the system.

Implementation Comparison

The key difference between the original code and the AOP code is that when implemented using aspects, the
coordination of VM and FFS prefetching activity becomes clear. We can see, in a single screenful, the interaction of
planning and cancelling prefetching, and allocating and de-allocating pages along a given execution path.

Structuring the code this way – as path-specific customizations – has helped us refactor several other prefetching
aspects, including one for sequential behaviour page fault handling and another for file system reads [3].

Conclusion

In its original implementation, prefetching in FreeBSD v3.3 is tangled – spread throughout the code in an unclear
way. Implemented with AOP, the crosscutting structure of prefetching is clear and tractable to work with. This
structuring hinges on the ability to identify and capture dynamic execution context. This result suggests that proper
use of AOP may enable improving OS modularity beyond what is possible with procedural and OO programming.

References

[1] AspectC. www.cs.ubc.ca/labs/spl/aspects/aspectc.html

[2] AspectJ. www.aspectj.org

[3] Yvonne Coady, Gregor Kiczales, Mike Feeley and Greg Smolyn. Using AspectC to Improve the Modularity of Path-
 Specific Customization in Operating System Code. In Proceedings of Joint ESEC and FSE-9, 2001.

[4] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc Loingtier and John
 Irwin, Aspect-Oriented Programming, In European Conference on Object-Oriented Programming (ECOOP), 1997.

[5] Paniti Netinant, Constantinos Constantinides, Tzilla Elrad, Mohamed Fayad. Supporting Aspectual Decomposition in
 the Design of Operating Systems . Position paper, ECOOP Workshop on Object-Orientation and Operating Systems, 2000

