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Abstract
Layered architecture in operating systemcodeis oftencom-
promisedby executionpath-specific customizationssuch as
prefetching, pagereplacementandschedulingstrategies.Path-
specificcustomizationsare difficult to modularizein a lay-
ered architecture becausethey involvedynamiccontext pass-
ing and layer violations. Effectivelythey are vertically inte-
gratedslicesthroughthelayers.

An initial experimentusingan aspect-orientedprogramming
languageto refactorprefetchingin theFreeBSDoperatingsys-
temkernelshowssignificant benefits,includingeasy(un)plug-
gability ofprefetchingmodes,independentdevelopmentof pre-
fetching modes,andoverall improvedcomprehensibility.
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1. INTRODUCTION
Almost 35 yearsago, Dijkstra proposeda layeredarchitec-
ture for operatingsystems,primarily for the purposeof hid-
ing complexity and supporting the development process[2].
But in practice,OScodedoesnot have a cleanlayeredstruc-
ture.A studyof OS/360donein theearly70sshowedthatthe
averagenumber of modulesinvolved in a given changerose
from 14.6%in releases2–6,to 31.9%in releases12–16 dueto
“unintentional interaction”amongcomponents[12]. Windows
NT requiresthird partyfile systemdesigners to be intimately
familiar with “patternsof interaction” that exist betweenthe
file system,cachemanagerandvirtual memorymanager [25].
Recently, Engleretal. capturedpopularsentimentwith anob-
servation thatdisparatepartsof operatingsystemkernelcode
arelinkedtogetherin a “fragile andintricatemess”[3].

Onesignificantsourceof modularityproblemsis thatOSker-
nelsinvolve a numberof path-specificcustomizationscritical
to delivering requiredperformanceand functionality. Path-
specificcustomizationsinvolve tailoring a servicebasedon
the context in which it is invoked. For example,prefetching
on pagefaults to a randomlyaccessed file must be different
thanfor a sequentiallyaccessedfile.

Two critical propertiesof path-specific customizationsmake
themdifficult to modularizein alayeredarchitecture:(1) They
dependon dynamiccontext information (e.g. what is being
donewith thedatathatcausedthepagefault). (2) They involve
layering violations (e.g. both high-level information about
predictedaccesspatternsandlow-level informationaboutcon-
tiguity on disk) [23].

The lack of supportfor implementingpath-specificcustom-
izationsin a comprehensiblefashionis a known disadvantage
of layeredarchitectures[5]. Problemsarisebecausepassing
dynamiccontext is inherentlymessy, andleadsto couplingas
higher-level context passesthroughlower-levels.Layeringvi-
olationsalsoleadto couplingin fragmentsof codethatoperate
on abstractionsfrom multiple levels. In essence,path-specific
customizationscut averticalslicethroughthelayers.

Recently, the aspect-orientedprogramming (AOP) [11] com-
munity hasfocusedattentionon the conceptof crosscutting
concerns, which are elementsof a systemthat cut through
theprimarysystemmodularity. They haveproposed linguistic
mechanismsintendedto allow implementationof crosscutting
concernsasfirst classmodulescalledaspects[8, 16,14,1].

The goal of our work is to determineif the mechanismsof
AOPcanbeusedto improvethemodularityof OScode.Specif-
ically, we wantto determinewhetherpath-specificcustomiza-
tionscanbeconsideredtobecrosscuttingconcerns,andwheth-
er they canbemodularizedusingthemechanismsof AOP.

Most AOP language researchis in Java. To enable a range
of experimentsfor operatingsystemswritten in C, we devel-
opeda paperdesignfor AspectC. Conceptually andin syntax,
AspectCis asimplesubsetof AspectJ[8, 10]. As aninitial ex-
periment,weusedAspectCto modularizetheimplementation
of prefetchingwithin pagefault handlingin theFreeBSDOS
kernel.



Our methodology wasto startby refactoringexisting codeus-
ing AspectC,andhand-compilingthecodeto C. We arecom-
fortable with the code we have developed for two reasons.
First, our designfor AspectCis basedon AspectJ,so we are
confidentthat it canbe implemented.Second,handcompila-
tion is straightforward (albeit boring) which makes us confi-
dentthatour refactoredcodeis correct.

We begin with a descriptionof the type of crosscuttingcon-
cernswe are focusingon, path-specific customizations,and
specificallyconsider prefetchingin pagefault handling as a
concreteexample. Section3 shows how we have usedAs-
pectCto modularizetwo path-specific prefetchingcustomiza-
tions. Section4 presentsan analysisof the implementation.
Section5 presentsfuturework anddiscussesopenissues.Sec-
tion 6 reviews relatedapproaches,andSection7 summarizes
our resultsandfuturework.

2. A REPRESENTATIVE EXAMPLE –
PREFETCHING IN FREEBSD

Prefetchingis a critical elementof all operatingsystems.It is
a performanceoptimizationthat aimsto amortizethe costof
fetchingdatafrom the disk by retrieving additionaldatawith
eachdisk request.Prefetchingis basedon combining predic-
tions aboutwhat additionaldatais likely to be neededin the
future with a analysisof what additionaldatawould be most
cost-effective to fetchat any giventime.

Prefetchingis a classicpath-specificoptimization. Dynamic
context informationis requiredbecausethelower levelsof the
pagefaultmechanismneedto know wherethefaultcamefrom
in order to predict future demands.Layering violations are
inherentin thecombining of predictionsandcostanalysis.

This paper focuseson two particularaspectsof prefetching
in the FreeBSD3.3 operatingsystem. Both have to do with
prefetchingduringa pagefault to mappedfiles. Thefirst han-
dlesthecasewherethedeclaredaccesspatternis normal,the
secondis for declaredsequential access.

The next sectiondescribesthe relevant mappedfile function-
ality asit would be with no prefetching.This is followed by
a generaldescriptionof prefetching, anda descriptionof the
two specificprefetchingmodes.

Sections2.1and2.2discusstherequiredprefetchingfunction-
ality independent of any particularcode that implementsit.
Discussionof theoriginal implementationis deferredto Sec-
tion 2.3.

2.1 The virtual memory abstraction
FreeBSDand other Unix operatingsystemsallow the pro-
grammerto mapany file into virtual memory. Sucha mapped
file is called a VM object, and can be accessedas ordinary
virtual memory. Whenafile is mapped,it is notentirelytrans-
feredfrom disk at thattime. Insteadit is brought into memory
asneeded, onepageat a time.

A page fault occurswhen a processreferencesa virtual ad-
dressthat is not in physicalmemory. A pagefault is basically

an exceptionraisedeachtime a non-resident virtual pageis
accessed.Over time, pagesaccessedin the mappedfile are
demand-pagedinto memory.

In the absenceof prefetching,handlinga pagefault is fairly
straightforward. It is well supportedby a layeredarchitecture
in which thevirtual memorysystemis a client of thefile sys-
tem,which is in turn a clientof thedisk system.

A pagefault startsin thevirtual memory(VM) systemasare-
questfor apageassociatedwith aVM object;it movesthrough
to thelocal file system,FFSin our case,andis translatedinto
a block-basedrequestassociatedwith a file; it finally passes
to thedisk systemwhereit is expressedin termsof a cylinder,
head,and sectors. The division of responsibilitiesbetween
thesethreelayersis centeredaround themanagement of their
respective representationsof data. That is, the functionality
within eachlayerprimarily dealswith controllingresourcesin
termsof its own setof abstractions.

2.2 Prefetching
This paperis focusedon two path-specific prefetchingcus-
tomizations,both having to do with virtual memorymapped
files. But it is important to note that prefetchingin the OS
kernel is moreextensive. Essentiallyall executionpathsthat
leadto thediskor thenetwork havesomeform of path-specific
prefetchingassociatedwith them.(Wehavealreadyrefactored
two moreprefetchingaspectsandhave identifiedthreemore
which we intend to implementoncewe have a running As-
pectCcompiler.)

Prefetchinginvolvesfour key activities: prediction,costanal-
ysis,planningandactuallyfetchingthepages.(Notethat this
discussionof prefetchingis intendedto enablethenon-OSex-
pert readerto understandtheresultsof this refactoringexper-
iment, not to serve asa detailedsurvey of prefetchinglitera-
ture.)

At a high-level, context at theorigin of the requestis usedto
predictfuture requests.Thevirtual memorysystem,the local
file system,andtheremotefile systemall usedifferentcriteria
to make this prediction. For example,the file systemmight
determinethatafile is beingaccessedsequentially, andpredict
futurerequestson thatbasis.

Costanalysisinvolves lower level factorssuchasthe costof
disk access,contiguity of dataon disk, andthedestinationof
the data. Theseareusedto determinewhich disk blockscan
beprefetchedin themostcost-effective way.

Planninginvolvescombining predictionandcostanalysisin-
formationto determinewhich datashouldactuallybefetched
from disk, andwhetherthat shouldhappen asa synchronous
partof thecurrentread,or asynchronously.

Fetchingthe datanormally just involvesexecutingthe plans,
but therearecaseswherediskor othersystemstatemaychange
betweenplanningandfetching,which cancauseplansto be
changedor cancelled.

Figure1 providesa simplified overview of the primary func-
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Figure1: The layeredkernel architectureand the structur eof two path-specificoptimizations. Theovals representfunctions
in the primary codefor the virtual memory system,file systemand disk systemlayers. The path-specificoptimizations are
numbered: (1) normal accessmodepagefault and (2) sequentialaccessmodepagefault.

tionality of thekernellayersinvolvedin executionpathsgoing
to disk: the virtual memorysystem,the local andremotefile
systems,andthe disk system.The executionpathsdiscussed
in thepaperareshown asnumberedlines: (1) is for normally
accessedfiles,and(2) is for sequentiallyaccessedfiles.

2.2.1 Prefetching for normal access (path1)
VM objectshave a declaredaccessbehaviour, which canbe
setto random, normalor sequentialusingthemadvisesystem
call.

For VM objectswith normal behavior, prediction follows a
simplelocality heuristicthataddressescloseto thefaultedad-
dress(+/- a specificwindow) aremorelikely to beusednext.
Costanalysislooks at both availablememoryandcontiguity
on disk.

In planning normalmodeprefetchingthecostanalysisfactors
aregiven moreweight than the predictionfactors. Prefetch-
ing is synchronousandpagesthat arenot contiguousarenot
prefetchedevenif they appear within thepredictedwindow.1

As part of planning, physicalpagesareallocatedto hold the
pagesto beprefetched. Becausethis allocationrequireslock-
ing thepagemapassociatedwith theVM object,andbecause
that pagemap is alreadylocked in the VM layer as part of
preparingto fetch the faultedpage,it is advantageousto do
planningwhile executionis still in theVM layer.

Costanalysisinherentlyinvolvesdynamic context passingand
�

Intuitively this is becausetheprediction in normalmodeaccessis not
strongenoughto warrant therisk of additional disk waits.

layer violations,sinceit looks at both VM layer information
(available memory)and disk layer information (contiguity).
Combiningcostanalysiswith predictionis anothersourceof
layerviolations.

By the time the normalmodeexecutionpathreachesthe file
systemlayer, importantsystemstatemay have changedin a
way thatinvalidatestheprefetchingplan.Therearethreecon-
ditions under which the file systemlayer will choosenot to
prefetchplanned pagesfor normal objects: the faultedpage
hasbecomevalid, thefaultedpageis no longeron disk,or the
plannedpagesareno longercontiguous.

Thefile systemlayermustde-allocatememoryfor virtualpages
it decidesnot to fetch. This is anadditionalsourceof context
passingandlayer violations,sincethe file systemlayer must
accesstheVM pagemap.

2.2.2 Prefetching for sequential access (path2)
For VM objectswith sequentialbehavior, predictionsimply
saysthatfutureaccesseswill directlyfollow thecurrentaccess.

In sequentialmodeprefetching,planningallowspredictionin-
formationto dominatecostanalysis– predictedpagesarepre-
fetchedeven if they arenot contiguous on disk. Someof the
prefetchingis doneasynchronously.

This aggressive sequential prefetchingis handled by redirect-
ing controlflow throughffs readinsteadof ffs getpages. This
pathtriggersyetanotherprefetchingmechanismspecificto the
file systemreadservice2, whichasynchronouslyprefetchesac-

�

Wehave implementedthis asa separate aspect, not includedhere.



cordingto a sequentialaccesspattern.

Thepath-specific customizationrequiredin this caseinvolves
thefinal destinationof thereadfrom diskto beassociatedwith
thepagesallocatedto theVM object.A page-alignedtransfer
from thefile buffer cacheto theVM allocatedpagesis notpart
of a typical file systemreadoperation. This ‘page flipping’
avoidsanexpensivecopy operationandis associatedonly with
this particularexecutionpath.

2.3 The original implementation
In theoriginal implementation,codefor prefetchingfor map-
ped files is scattered over approximately265 lines, grouped
into 10 contiguousblocks,in 5 functionsfrom threelayers.In
otherwords,it is poorly modularized.

Dynamiccontext passingmakesthe codetangledasparame-
tersfrom high level functionsarepasseddown throughlower
ones. Layering violations further tanglesthe codein places
whereonesegment of codeusesboth VM and FS layer ab-
stractions.

Theneteffect is that it is extremelydifficult to understandthe
structureand behavior of prefetchingin the original imple-
mentation.Evenjust identifying all theprefetchingcodetakes
a significantamountof work. Understandinghow the code
worksis difficult becauseit is poorly localized,andits relation
to the executionflow of the main codeis hard to follow. In
fact, in our studyof the original implementationa significant
amountof work wasrequiredbeforewe wereableto concep-
tually separatenormalmodeprefetchingfrom sequentialmode
prefetching.3

Basedon our analysis,it appears that the naturalmodular-
ity of prefetchingmodesis that of a single executionpath,
ratherthan of the layersin the system. But theseexecution
pathscrosscutthe layers,asshown in Figure1. This cross-
cutting propertyof the prefetchingmodesappearsto be the
reasonthey aredifficult to modularizeusingtraditionaltech-
niques,and is the basisof our decisionto explore whether
aspect-orientedprogramming can improve the modularity of
this code.

3. ASPECTC IMPLEMENT ATION
The aspect-orientedimplementationof prefetchingpresented
hereusesAspectC– a simpleAOPextensionto C. Theseex-
tensionssupportmodularimplementationof crosscuttingcon-
cernsby allowing fragmentsof codethatwould otherwisebe
spreadacrossseveral functionsto be co-locatedandto share
context.

Our implementationshouldbeconsideredasa refactoringus-
ing AspectC[4]. Overall, only a small portion of our imple-
mentationof prefetchingrelieson theAspectCextensions,the
restis ordinaryC codefrom theoriginal implementation.

�

Our inspiration to exploreanAOPapproach to prefetching is largely
dueto observing an experiencedsystemsprogrammerin our lab de-
vote several daysto tracking down all the sourcesof pageallocation
andde-allocation in thecode.

AspectCisasimplesubsetof AspectJ[8]. Aspectcode,known
asadvice,interactswith primary functionalityat functioncall
boundaries andcanrun before,after or around the call. The
centralelementsof the language are a meansfor designat-
ing particularfunctioncalls,for accessingparametersof those
calls,andfor attachingadviceto thosecalls.Key to structuring
thecrosscuttingimplementationof prefetchingis theability to
capturedynamic executioncontext with the control flow, or
cflow, languageextension.

In this experiment,our primarygoal wasto evaluatewhether
AOPhadthepotentialto improve themodularity of OSkernel
code. To do this asquickly aspossible,we initially deferred
building anAspectCcompiler. Instead,we wrotecodein As-
pectCand hand-compiled it to native C. Sincetheseresults
have proven to bequitepromisingwe arenow working on an
AspectCcompilerthatwill enableusto take thework farther.

Theremainderof thissectionpresentsourAspectCimplemen-
tation of normal and sequentialmodeprefetching. AspectC
itself is presentedon anas-neededbasis.4

3.1 Normal prefetching in AspectC
Figure2 illustratesthestructureof prefetchingfor objectswith
normal accesspatterns. The corresponding aspect-oriented
implementationis shown in Figure 3. The first two decla-
rationshave to do with makingvaluesfrom higher-levels of
the pagefault handlingpathavailable to prefetchingcodein
lower-levels.Thenext four declarationscorresponddirectly to
thesmallcirclesin Figure2.

The first declaration in Figure3 allows advicein theaspect
to accessthe pagemap in which prefetchingpagesmust be
allocated.This mapis thefirst argumentto vm fault. Reading
the declaration,it declaresa pointcut namedvm fault cflow,
with oneparameter, map. A pointcutidentifiesa collectionof
functioncallsandargumentsto thosecalls.Thesecondline of
thisdeclarationprovidesthedetails.Thispointcutrefersto all
functioncallswithin thecontrolflow of callsto vm fault, and
picksout vm fault’s first argument.The ‘..’ in this parameter
list meansthatalthoughtherearemoreparametersin this list,
they arenot pickedout by thispointcut.

The seconddeclaration is another pointcut,this time named
ffs getpagescflow, whichallowsadvicein theaspectto access
theparameterlist of ffs getpagesfor de-allocationof planned
pages.

The third declaration definesbeforeadvice that examines
the object’s declaredbehaviour, planswhat virtual pagesto
prefetch,and allocatesphysicalpagesaccordingly. In plain
English, the headersaysto executethe body of this advice
beforecallsto vnodepager getpages, andto give thebodyac-
cessto themapparameterof thesurrounding call to vm fault.

Readingthe headerin moredetail, the first line saysthat this
advicewill run before functioncallsdesignatedfollowing the

�

For a moredetailed understandingof AspectCconsult [8, 9]. As-
pectCcanbeunderstoodasa subsetof AspectJin which C functions
areanalogousto static methodsin Java,all aspectsaresingletons,there
areonly methodcall join points,andthere is no introduction.
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aspect normal_mapped_file_prefetching {

pointcut vm_fault_cflow( vm_map_t map ):
cflow( calls( int vm_fault( map, .. )));

pointcut ffs_getpages_cflow( vm_object_t object, vm_page_t* pagelist, int* length, int faulted_page ):
cflow( calls( int ffs_getpages( object, pagelist, length, faulted_page )));

/* plan the prefetching and allocate the pages */
before( vm_map_t map, vm_object_t object, vm_page_t* pagelist, int* length, int faulted_page ):

calls( int vnode_pager_getpages( object, pagelist, length, faulted_page )) &&
vm_fault_cflow( map )

{
if ( object->declared_behaviour == NORMAL ) {

vm_map_lock( map );
plan_and_alloc_normal_prefetch_pages( object, pagelist, length, faulted_page );
vm_map_unlock( map );

}
}

/* three cases in which prefetching might be cancelled for normal objects */

after( vm_object_t object, vm_page_t* pagelist, int* length, int faulted_page, int valid ):
calls( valid check_valid(..) ) &&
ffs_getpages_cflow( object, pagelist, length, faulted_page )

{
if ( valid )

dealloc_all_prefetch_pages( object, pagelist, length, faulted_page );
}

after( vm_object_t object, vm_page_t* pagelist, int* length, int faulted_page, int error, int* reqblkno ):
calls( error ufs_bmap( struct vnode*, reqblkno, ..) ) &&
ffs_getpages_cflow( object, pagelist, length, faulted_page )

{
if ( error || (*reqblkno == -1) )

dealloc_all_prefetch_pages( object, pagelist, length, faulted_page );
}

after( vm_object_t object, vm_page_t* pagelist, int* length, int faulted_page, struct trans_args* t_args ):
calls( int calc_range( t_args )) &&
ffs_getpages_cflow( object, pagelist, length, faulted_page )

{
dealloc_noncontig_prefetch_pages( object, pagelist, length, faulted_page, t_args );

}
}

Figure3: AspectCcodefor prefetching pagesfor objectsof normal behaviour.



‘:’, andlistsfiveparametersavailablein thebodyof theadvice.
Thesecond linespecifiescallsto thefunctionvnodepager get-
pages, andpicks up the four argumentsto that function. The
third line usesthepreviouslydeclaredpointcutvm fault cflow,
to providethevaluefor mapthatis associatedwith theparticu-
lar fault currentlybeingserviced(i.e.,from afew framesback
on thestack).

The body is ordinaryC code. The helperfunction plan and-
alloc normal prefetch pagesfurtherdetermineshow many and

whichpagesto allocate,dependingontheavailability of mem-
ory andlayoutof thepageson disk.

The next thr eedeclarations implementthe threeconditions
underwhich theFFSlayercanchoosenot to prefetch.In each
case,theimplementationof thedecisionnot to prefetchresults
in de-allocation.

The first after advicede-allocatesall pagesto beprefetched
if the faultedpageis now valid. This executesafter calls to
check valid, which occurwhenthe normalpagefault path is
checkingto seewhetherthe pagehasbecome valid. When
check valid returnsnon-zero, it is telling the normal paging
codethat the pageis now presentin memory. In this case,
prefetchingadvicecancelsall theprefetching.

The secondafter advicede-allocatesall prefetchingpagesif
the faultedpageis not found on disk. This may happen for
one of two reasons– either an error hasoccurredin which
caseerror is non-zero, or the fault will insteadbe satisfied
by a zero-filled page,in which casethe parameterreqblkno
from ufs bmap is -1. It is importantto note that the useof
ffs getpagescflownot only makesparametersavailableto ad-
vice thatexecutesaftercallsto ufs bmap, but alsoensures that
thisadviceonly executeswithin thiscontrolflow. Thatis,calls
to ufs bmapin otherpathsdo not executethis advice.

The third after advice de-allocatessomeor all prefetching
pagesif thecontiguityof thepageson disk haschangedsince
beingcheckedby plan and alloc normal prefetch pages in the
VM-layer. The helperfunction takesall the parametersfrom
ffs getpagescflowandcalc range, andde-allocatesany pages
thatwereoriginally requestedbut not within the actualrange
thatwill befetched.

3.2 Sequential prefetching in AspectC
Figure4 illustratesthestructureof prefetchingfor objectswith
sequentialaccesspatterns.Thecorrespondingimplementation
is shown in Figure5. The careful readerwill noticea small
amountof codeduplicationwith the previous aspect.In par-
ticular, the vm fault cflow pointcutis in both aspects.This is
deliberatefor clarity. AspectCincludesfeaturesthatwould al-
low usto eliminatethisduplication,andtherebyclearlyreflect
the commonfunctionality of the two aspects.Specifically, a
sharedaspectcanbeusedto definecommon elements.

Similar to normal mode prefetching,the two pointcutsuse
cflow to make valuesfrom higher-levelsof thepagefault han-
dling pathavailableto prefetchingcodein lower-levels. Note
that this beforeadviceoperatesindependently of the before
advicein theaspectfor normalmodeprefetching,eventhough

they bothadvisethesamefunction.

This aspectusesaround adviceto divert theexecutionpathto
ffs readwhenaccessis sequential, or to proceedwith ffs get-
pagesotherwise.Aroundadvicediffers from beforeandafter
advicein that it hascontrol over whetheror not the advised
functioncall proceedsasplanned.

Looking closelyat theparametersto thecall to ffs readin this
advice,the constant MAXBSIZEis usedto dictatethe sizeof
thesynchronousreadrequest.This indicatesthat the amount
of datatobesynchronouslyfetchedwill bethemaximumbuffer
size, regardlessof the layout on disk. Consequently, unlike
normal modeprefetching, prediction in this casedominates
costanalysis.

Theafteradviceexecutesunderthecontrolflow of thepoint-
cuts ffs read cflow and vm fault cflow. That is, it executes
only when control flow hasbeendivertedalong this special
path.

This after advice is responsible for ensuringthat additional
costsarenotincurredwhentransferringthedatafromthebuffer
cacheto theallocatedVM pages. Sincethis is a specialcase
page-alignedtransfer, copying canbeavoidedby simply reas-
signingor ‘flipping’ allocatedVM pageswith theappropriate
file buffer cachepages.

4. ANALYSIS
This sectionanalyzesthe AspectCimplementationin terms
of thebenefitstraditionallyassociatedwith modularprogram-
ming [19, 24]. Whereappropriatewe alsocomparethe new
andoriginal implementations.

4.1 Pluggablefunctionality
In theAspectCimplementation,thecodefor eachprefetching
modeis textually localizedin a single aspect. This enables
plug andplayprefetchingmodes.Wecanplaceeachaspectin
a singlefile, andusestandardmakefile techniquesto include
or excludespecificcombinationsof prefetchingmodes.

We have verified this by compiling andrunning the kernel in
four configurations: no prefetching,normalmodeprefetching
only, sequentialmodeprefetchingonly, andboth prefetching
modes.(Not surprisingly, thingsranmuchmoreslowly with-
out prefetching.)

With the simpleimplementationof AspectCwe arecurrently
using,ourability to doprefetchingaspect(un)plugging is lim-
ited to compile-timeselection. Even so, this is significantly
more plug and play control over sucha deeplycrosscutting
concernthan haspreviously beenpossiblein operatingsys-
tems. As suggestedin [6], it alsoappearsthis control could
be sufficient to supportcertainproduct-line architectures,but
morework is requiredto confirmthis.

In the non-aspectimplementationthe work requiredto put
eachprefetchingmodeon a switch would be extensive – 10
clustersof prefetchingcode from 5 files would have to be
editedto useusecompilerdirectives(#ifdef).
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aspect sequential_mapped_file_prefetching {

pointcut vm_fault_cflow( vm_map_t map ):
cflow( calls( int vm_fault( map, .. )));

pointcut ffs_read_cflow( struct vnode* vp, struct uio* io_info, int size, struct buff** bpp ):
cflow( calls( int ffs_read( vp, io_info, size, bpp )));

/* plan the prefetching and allocate the pages */
before( vm_map_t map, vm_object_t object, vm_page_t* pagelist, int* length, int faulted_page ):

calls( int vnode_pager_getpages( object, pagelist, length, faulted_page )) &&
vm_fault_cflow( map )

{
if ( object->declared_behaviour == SEQUENTIAL ) {

vm_map_lock( map );
plan_and_alloc_sequential_prefetch_pages( object, pagelist, length, faulted_page );
vm_map_unlock( map );

}
}

/* divert to ffs_read */
around( vm_object_t object, vm_page_t* pagelist, int* length, int faulted_page ):

calls( int ffs_getpages( object, pagelist, length, faulted_page ))

{
if ( object->behaviour == SEQUENTIAL ) {

struct vnode* vp = object->handle;
struct uio* io_info = io_prep( pagelist[faulted_page]->pindex, MAXBSIZE, curproc );
int error = ffs_read( vp, io_info, MAXBSIZE, curproc->p_ucred );
return cleanup_after_read( error, object, pagelist, length, faulted_page );

} else
proceed;

}

/* page flip buffer pages */
after( struct uio* io_info, int size, struct buf** bpp ):

calls( int block_read(..) ) &&
vm_fault_cflow(..) &&
ffs_read_cflow( struct vnode*, io_info, size, bpp )

{
flip_buffer_pages_to_allocated_vm_pages( (char *)bpp->b_data, size, io_info );

}
}

Figure5: AspectCcodefor prefetching on behalf of sequentially accessed memory mappedfiles.



4.2 Independent development
Theinterfacebetweentheprefetchingaspectsis clear. Wecan
easilytell whatfunctionsin themainpagefaulthandlingcode
the prefetchingaspectknows about,and what argumentsto
thosefunctionsit sees.

Whenworkingwith theaspect,theinterfaceis apparentfrom a
quick readingof thecode. Whenworking with themaincode,
simpleeditor extensions, suchasdiscussedin [10], canflag
functionsthat arethe targetsof advicewith links backto the
aspect.

The interface is also relatively abstract,representingan ab-
stractionof theinternalstructureof pagefault handlingrather
than true detailsof the pagefault handling code. The inter-
faceis similar in natureto thosepresentedby object-oriented
frameworks[7].

Becausetheinterfaceis clearandabstract,it is possibleto de-
velop the main codeand eachof the aspectsquite indepen-
dently. Of course,as with any abstractinterface, thereare
somekindsof changesthatwill requirechanging theinterface,
andall of thecodethatdependson it.

In theoriginal implementation,thecodefor thesetwo prefetch-
ing modesis so scatteredandtangledthroughthe main page
faulthandlingcodethatthequestionof doingindependentde-
velopment hardly even makessenseto ask. In the bestcase
scenariothedeveloperwould know from prior experienceex-
actly which functionscontainedthis codeandbeableto start
there. But even so thereare roughly 265 lines of prefetch-
ing codedistributedover 5 functionsthatcontaina total 1950
lines. (125 out of 825 lines in the VM layer, 120/250in the
FFSlayer, andthe20/875in thedisk layer.)

4.3 Comprehensibility
Decomposingpagefaulthandling into themainpagefaulthan-
dling functionalityandprefetchingaspectsallowsusto reason
aboutthedifferentpartsandtheir respective interactionsepa-
rately.

Thebehavior of pagefaulthandling with severaldifferentpre-
fetchingmodesis still complex. But theability to reasonabout
it asa combinationof differentmodules materially increases
comprehensibility relative to theoriginal implementation.

4.3.1 Aspect interactionwith rest of code
Theinteractionbetweenprefetchingandrestof codeis declar-
ative. Advice declarationsandpointcutstell us whenadvice
runs,what valuesit sees,andwhat effect it canhave on the
executionof therestof thecode.

For example,we know that the first after advicein Figure3,
runsaftercheckvalid, ignorestheparameters,dependson the
returnvaluebut cannotchangeit, andhasaccessto arguments
to the surrounding call to ffs getpages. We also know that
thebeforeadvicefrom thetwo aspectsoperateindependently,
eventhoughthey advisethesamefunction.

Making the interactiondeclarative meansthat we canreason

aboutit atanabstractlevel. Understandingthatvm fault cflow
makesthefirst argumentto vm fault availableto otheradvice
within theaspectis easierthanunderstanding traditionalcode
that passesdynamiccontext down throughlayersof function
calls.

Declarative aspectinteractionalsogivesus guaranteesabout
valueflow andexecutionthatarenot availablein theoriginal
code,i.e. it is easyto find every pieceof codethathasaccess
to themap,whereasin thetraditionalcontext passingapproach
thatis harderto besureof.

4.3.2 Aspect internalstructure
Becauseeachprefetchingmodeis localized,it is easierto un-
derstandits internalstructure.Within theaspectandit helper
functions,wecanseeinteractionssuchastheplanningandal-
locationof prefetchedpagesandthesubsequentchecking and
de-allocationof thosepages.

This localizationmakes it easierto reasonaboutandchange
theaspect’s internalbehavior. In theoriginalcode,thisis more
complex. For example, in order to seethe coordinationbe-
tweenallocationandde-allocationfor normalmodeprefetch-
ing, wewould have to tracetheexecutionpaththrough5 files,
2 levels of function tableshandledby macros,and4 changes
in variablenames.

5. FUTURE WORK AND DISCUSSION
Ourwork targetstheunderstandingandmodularizationof path-
specificcustomizations. Otherexamplesof this kind of cross-
cuttingweplanto explorein kernelcodeinvolvepagereplace-
mentandscheduling strategies.

Pagereplacementis theprocessof evicting pagesthatarecur-
rentlyresidentin memoryin ordertomakeroomfor new pages.
A pagereplacementstrategy is invoked any time the system
is low on availablememory. In the generalcase,the criteria
for pageeviction is basedon a least-recentlyusedpolicy. Of
course,this is exactly thewrongpolicy to apply in thecaseof
sequentialaccess,wherethe mostrecentlyusedpageis actu-
ally thebestcandidatefor eviction.

As with prefetching,high-level context importantfor pagere-
placementcan be explicitly set using madvise. This allows
eviction to usethe patternof accessas part of the selection
criteria for removal. Low-level context associatedwith writ-
ing pagesout to disk hingeon the ability to clusterwrites in
a way thatwill supportcontiguityfor subsequentreads.Simi-
lar to prefetching, layerviolationsoccurbecausethedecision
of which pagesto evict aretypically madeat a low level but
requireinteractingwith higherlevel abstractions.

Schedulinginvolvessharingthe processorbetweenall active
processes.A schedulingpolicy triesto ensurethatall currently
executingprocessesmake progress. Timeslicing,priority lev-
els, andpoints in the executionwherea processis naturally
blocked waiting for disk I/O, areall usedto determinewhich
processwill gettheprocessor next.

Thepath-specificcustomizationsweareexploringwith regard
to scheduling arerelatedto high-level processstateandlow-



level blocking I/O requests.Layerviolationsin this casestem
from theneedto reconcilecross-layerinformationsuchasac-
cesspatterns,processpriority, and disk requestsin order to
make goodschedulingdecisions.

5.1 Open issues
Essentialopen questions regarding path-specificcustomiza-
tion, AspectCandaspect-orientedprogrammingin general in-
cludeissuesof efficiency, scalability, anddevelopment tools.
In termsof efficiency, improving modularityof OSkernelcode
is nothelpful if it adverselyimpactsperformance.Specifically,
we needto know what overheads AspectCaddsto code in
termsrelative to atangledimplementation.Wearenow imple-
mentingan AspectCcompilerasa simplepre-processor. Ex-
periencewith AspectJ,aswell asour own hand-compilingof
thecodeindicatesthatthiskind of implementationcanevolve
to producetheperformancecharacteristicswe need.

Anotherissue,currentlyunderinvestigationin theAOPcom-
munity in general,is scalability. With respectto our work,
a possiblecriticism is that as we introducemore aspectsto
thekernel,we introducemoreinterfaces,moreinteractionand
morecomplexity. Withoutprincipledapplication,thepossibil-
ity of degradingcomprehensibility exists. Although we need
moreexperienceto commentconcretelyon heuristicsfor cre-
atingandmanaging sophisticated,multi-aspectstructures,we
are optimistic that our future work will provide insight into
this issue.Sinceour techniquemakescodefor two prefetch-
ing modesmorecomprehensible,it would be surprisingif it
madecodefor a large number of aspectsin the kernelmore
complex. But this is somethingwe will have to explore, in
particularwith respectto understanding interactionbetween
aspects.

Tools areanother areaunderinvestigationby several groups
in theAOPcommunity. Theimpactaspect-orientedprogram-
ming will have on the development process,the supportre-
quiredto facilitateits use,andthe metricsusedto determine
degreesof crosscutting,scatteringandtanglingareall issues
thatrequireattention.Oncewehavemoreexperiencewith the
useof AspectCin kernel code,weexpectto develop additional
tool support, includingdebugging support, following thesame
basicpathasAspectJ.

6. RELATED WORK
Work on modularizingpath-specificcustomizationtoucheson
work from systems,separationof concerns,andprogramming
languagecommunities.

6.1 Operating systemstructure
Theadvantagesof a layeredarchitecturehasbeenrecognized
askey sincetheTHE multiprogrammingsystem[2] in thelate
60s. End-to-endarguments[22, 21] provide a setof princi-
plesfor determiningtheplacementof functionswithin layered
designs. Theseprinciplesadvocatean organizationwherea
function or servicebelongsin a layer only if it canbe com-
pletelyimplementedin thatlayerandis neededby all clients.

An aspect-orientedapproach to structurein an operatingsys-
temis compatiblewith, andincrementallyapplicableto, a lay-

eredarchitecture.Separatingtheimplementationof thesecus-
tomizationsfrom theprimaryfunctionalitymaybettersupport
end-to-endargumentsby allowing principledvertical aspects
to capturecustomizationsin a layeredsystem.

TheSynthetixproject[20] usesspecializationtooptimizecom-
monly usedpathsin the system. Specializationusesincre-
mentalpartial evaluation, largely consistingof constant fold-
ing andmacroexpansion, to generatemultiple path-optimized
implementationsfor the sameinterface. Other relatedSyn-
thetix projectsusespecializationfor survivability, end-to-end
quality, andadaptability .

Customizationof a specificexecutionpath is centralto both
our applicationof aspect-orientedprogrammingandspecial-
ization.Ourapproachadvocatestheseparationof path-specific
customizationby the programmerin the original sourcecode
to betterachievecomprehensibility. Specializationaimsto au-
tomaticallyspecializetheoriginal sourcecode.

An issueof greatimportancewithin operatingsystemsis the
untanglingor streamliningof dataflow in order to improve
performance.Scout[15] is an operatingsystemdesigned to
optimizecommunicationby specifyingafastdatapathtomove
priority data(suchasvideostreams)throughthesystemwith
aslittl e overhead aspossible.

Althoughthenatureof this optimizationin Scoutmaylendit-
self to someform of path-specific customization, our intuition
is thatmechanismsto supportdataflow will bedifferentfrom
thosewe have usedfor control flow. The role AspectCcan
play in dataflow is anareaof crosscuttingwe planto explore.

6.2 Separationof concerns
Our work stemsdirectly from the approachto separationof
concerns(SOC)supported by the language extensionsdevel-
opedby theAspectJproject[8]. Specifically, we arecurrently
applying this linguistic support to one kind of crosscutting
concern:path-specificcustomization.

Separationof concerns requiressomecriteria for decomposi-
tion. Parnassuggesteddecompositionshouldbegin with a list
of eitherdifficult designdecisionsor designdecisionsthatare
likely to change, and thosedecisionsshouldbe hidden into
modulesfirst [19]. Stevenset al. later suggestedthat func-
tional binding,or cohesionbasedupontheexecutionof a sin-
gle task,produceslesscomplex interactionbetweenmodules
relative to weaker bindingssuchastemporalexecutionor the
referencingof common data[24].

In our work we are advocatinga modularity whereprimary
functionalitycanbe implementedby a traditionalmeans,and
thecrosscuttingpath-specificcustomizationsareimplemented
asaspects.We believe this separationachieves the qualities
associatedwith goodmodularitybetterthanthescatteredand
tangledimplementationoperatingsystemsarecurrentlyfaced
with.

A numberof generalapproachesto separationof concerns in
complex systemshave emerged in the last few years. Work
on subject-orientedprogramming[17] and hyperspaces [16]



is aimedat composinghierarchiesof concerns andfocuseson
multiple dimensionsof concerns.Compositionfilters [1] sep-
arateobjectsinto internalpartsandinterfacesto which filters
canbeapplied.

Althoughall of theseapproachesinvolveexplicit separationat
the sourcecodelevel in order to increasecomprehensibility,
our work hingesdirectly on theability to specifydynamicex-
ecutioncontext in orderto modularizecrosscuttingconcerns.

6.3 Programming languagesupport
Several programminglanguages provide accessto dynamic
context. Perl[27] andTcl [18] allow accessto thecall stackat
run-time. Explicit support for accessin the form of dynamic
scopingis provided by languages suchas Lisp which allow
variablenamesto be boundaccordingto the stateof the call
stack.

Accessto dynamiccontext for path-specific customizationre-
quiresspecificlinguistic supportfor principledcall stackac-
cess.PerlandTcl donothaveageneralmechanismfor access-
ing specificparametersin a principledway. Dynamicscoping
maybeimportantto support, but at this stagein development
it is not part of AspectC.Furtherexperimentation is required
to know theprosandconsof supporting thisfeaturein systems
code.

6.4 Other work
Implicit context [26] targets the removal of extraneousem-
beddedknowledge(EEK) to improve separationof concerns
andsupportsoftwareevolution andreuse.This approachpro-
videsreflective accessto the call history of the system. An-
other researchproject, Implicit parameters[13], allows a set
of intervening functions to be excluded from the parameter
passingbetweentwo endpoints. A new parametercanthusbe
passeddirectly from a senderto a receiver without changing
thesourcecodefor functionsthatexecutebetweenthem.

Our currentexperience with path-specific customizationhas
moremodestneeds with regard to dynamiccontext than the
completecall history provided by implicit context. The per-
formanceconsiderationsof the kernelmay precludeattempts
to maintainquite this much history, but it may be useful to
write aspectsthatgathersomesubsetof call history informa-
tion beyond whatwe arecurrentlyusing. Implicit parameters
have someof the power of usingcflow to passdynamic con-
text. The differenceis that the sourcemustbe written to ex-
plicitly usethe implicit parametermechanism. This doesnot
support separationconcerns to thedegreewecanachieve with
AspectC.

7. CONCLUSION
Operatingsystemshaveaproblemwith modularity. Partof the
problemis that generallow-level servicesarecommonly tai-
lored to differenthigh-level contexts within which it they are
invoked. We referto this tailoring aspath-specificcustomiza-
tion, and identify dynamic context information and layering
violationsasthepropertiesthatmake it hardto modularize.

In this paper, we show preliminaryresultsof how an aspect-

orientedrefactoringof two path-specificcustomizationsasso-
ciatedwith prefetchingfor mappedfiles improves modular-
ity. Our resultsshow that the AspectCimplementationpre-
sentedheresupportsunpluggability, independentdevelopment
andcomprehensibility betterthanthetangledimplementation.

Our work to datehasfocussedon evaluatingthepotentialfor
AspectCto improve the modularity of OS kernel code. We
arecurrentlyworking to implementAspectCandplan to use
it to explore otherkinds of crosscuttingconcernscommonto
operatingsystemimplementations.
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