CanAOP SupportExtensibilityin Client-Sener Architectures?

YvonneCoady Alex Brodsky, DimaBrodsky, JodyPomkoski,
StepharGudmundsonjJoonSuanOng, Gregor Kiczales
University of British Columbia

Abstract

Extensible client-server software requires a clear sepa-
ration of core services from those that are customizable.
This separation is difficult, as these customizabl e features
tend to crosscut the primary functionality of the core ser-
vices. We believe that an aspect-oriented approach to
client-server architectures supports extensibility in a way
that is more flexible than traditional approaches. Our ex-
periment focuses on clients within a distributed file sys-
tem that dynamically negotiate with servers for adaptive
delayed-write and prefetching behaviour.

1 Introduction

Client-sererarchitecturedoil down to getting or putting
informationbetweera clientnodeanda sener node.As-
sociatedwith simply gettingand putting however, areis-
suesof performanceand concurreng. Theseissuesin-
troducecompleity to coreclient-serer servicesecause
theirimplementations crosscuttingAs aresult,they are
notreadilyamenabléo change.

For example, Sun’s Network File System(NFS) has
provideda sufiicientandstablesetof coredistributedfile
systemservicessincethe mid-80s. Even thoughNFSis
oftenconsidered de facto standardit is well known that
it doesnot addresscalabilityissueghatareincreasingly
importantin moderndistributed applications. Although
theseissues,suchas performanceand concurreng con-
trol, are not consideredpart of core functionality, they
ultimately seta practical-limit on the size of NFS-based
distributedfile systems.

Extending client-serer architecturesto respondto
growing demandshowever, addsconsiderableomple-
ity becaus¢hesextensionsnvolveinvasie, crosscutting
changedo whatare now stable,core functions. We be-
lieve that bettersupportfor separatingcrosscuttingcon-
cernggreatlyfacilitatesextensibility in client-sererarchi-
tecturedbecausessentiatoreservicesxanremainstable
while extensionsareindependentlhydeveloped. To inves-
tigatethis further, we have experimentedwith designing
aspectgo structuresomeof thesekinds of concerngn a
simplemodelof NFS.

This paper describesour aspect-orientediesign of

User
level
application

|
KERNEL
VFS

KERNEL

the NFS
Sever File
System

networl
1
Al

Server Computer

NFS
Client

Local
File
System

Local

Client Computer

Figurel: NFSsoftwarearchitecture.

NFS. We shav how to structurethe implementationof
cacheconsisteng andprefetchingusingaspectsandhow
AOP allows us to extend theseservicesin a numberof
significant ways that would otherwiserequire invasive
changeso corefunctionality.

1.1 NFSoverview

NFS providestransparenaccesso remotefiles; applica-
tion codeaccessearemotefile in exactly the sameman-
nerasit accessealocalfile. Thecommoninterfaceused
by bothlocal andremotefile systemss definedby thethe
Virtual File System(VFS) layerin thekernel.

At a high level, NFSis dividedinto two parts: client
andsener. Typically, bothclientandsener modulesare
installedwithin the operatingsystemkernel. Eachcom-
puterin anNFS networkcanactbothasclientandsener,
accessingemotefiles andexportinglocalfiles for remote
accessespectiely.

As shawvn in Figurel, VFS requestgeferringto files
in a remotefile systemaretranslatedoy the NFS client
moduleandcommunicatedo the NFS sener moduleon
the computerholding the relevant file. The client mod-
ule is thusresponsiblégor transferringblocks of files to
andfrom the sener andcachingblockswithin the shared
file buffer cache of the client system.Major performance
enhancingoperationsassociatedvith this cacheare de-
scribedbelow.



1.2 Caching: prefetching, delayed-write
and write-through

The performanceof an applications requestto read or
write is greatlyenhancedf it canusethefile buffer cache
insteadof an expensve disk request. It is importantto
notethatin NFStherearetwo cachesnvolved: thecache
on the client andthe cacheon the sener. Major cache
relatedactiities include prefetching, delayed-write and
write-through operations.

Prefetchingpredicts read accessesand fetchesdisk
blocksinto thebuffer cachein advanceof ary explicit re-
guest. Delayed-writepostponeswriting changedlocks
to disk until it is morecosteffective, or necessaryto do
so. Write-through the alternatie to delayed-writetrans-
fers eachwrite requesimmediatelyto disk. In NFS, the
client cacheusesa delayed-writestratgy to improve per
formance put write-throughis necessargptthesener be-
causeaafailure of thesener couldresultin undetectedbss
of clientdata.

1.3 Consistency and performance

Cacheconsisteng canbeaproblemwhenmultiple clients

areconcurrentlyaccessin@ sharedile. Ona singlema-

chine,thereis a singlecachemaintainedoy the operating
system.With NFS, several clientson differentmachines
may simultaneoushaccesshe sameremotefile, creating
independentlgachedcopiesof portionsof files. This can

leadto consisteng problems,aswrites by one client do

notupdatecacheccopiesat otherclients.

NFSattemptgo minimizeinconsistenciegut doesnot
guarante¢hesamesemanticsslocalfile systemsThisis
becauséorcingthisdistributedsystento behae asacen-
tralized onewould penalizeperformancejn mostcases,
unnecessarily

To improve performancesometimest thecostof con-
sisteny, NFS clients rely on prefetchingand delayed-
write strat@iesto maximizethe useof caches.Requests
to prefetchfrom the sener andwrite blocksto the sener
areasynchronousligandledoy specialdaemon processeés
thatprovide thiskind of ‘behind-the-sceneglient-serer
communication.

1.4 Inflexibility of current structure

Theuseof separatelaemorprocesse® implementasyn-
chronousprefetchingand delayed-writebehaiour ac-
complishes coarsggranularityof separatiorin NFS:

¢ Inthecaseof readingadaemonis notifiedaftereach
readrequestand prefetcheslocks from the sener
into theclientcache.

lauserlevel procesghatperformssystemtasks

¢ In the caseof writing, a daemondelays sending
blocksto the sener until they arefilled.

Work performedby the daemonss not absolutelynec-
essaryfor correctoperation,but it reducesthe chances
of inconsisteng and is requiredfor satisfactoryperfor
mance.

Althoughthis separatiorsupportssomedegreeof inde-
pendentdevelopment,extensibility is limited by the fact
that the interactionbetweencore functionality and dae-
mon processe$s embeddedleepwithin the core func-
tionality of the client, wheredaemoractvity is invoked.
This structureis thus inflexible becausextensibility of
non-coreconcerngequiresinvasive changedo coreNFS
implementation As aresult,it is exceedinglydifficult to
fine-tunetheseincreasinglyimportantconcernsgn NFS-
like distributedapplications.

2 Aspect-Oriented NFS

We are currentlysketchingout aspectgor an NFS-based
client-serer architecturaisingan AspectJ-likeAOP lan-
guage AspectC[3, 1]. Specifically we wantto find out
if candesighaspectdhat effectively isolateissuesasso-
ciatedwith consisteng andperformance- potentiallyal-
lowing usto extendthesamplementationsvithoutrequir
ing invasive changedo corefunctionality.

In thelong term,we areparticularlyinterestedn grow-
ing the client populationto include mary differentap-
proachesfor delayed-writeand prefetchingoperations.
Thatis, we ervision some'smart’ clientsdynamicallyne-
gotiatingwith senersfor adaptve applicationof perfor
manceand consisteng requirements.To datehowever,
we have focusedon high level designissues,presented
here.

2.1 Theexperiment

We focusedon two specificextensionsto explore issues
of consisteng andperformance:

1. Consistency extension: shortenthe interval in
which cachegnaybeinconsistent.

2. Performance extension: aggressiely prefetchfrom
disk into the sener cachewhensequentiabhccesss
detectedntheclient.

Thefollowing sectionslescribesachof theseextensions,
andcontrastgheoriginal implementatiorwith anaspect-
orientedapproackor each.

3 Consistency extension

In orderto ensuresomelevel of cacheconsisteng in NFS,
a timestamp-baseHeuristicis usedto invalidatecached



aspect validation_check{

poi ntcut validation_check_points( file_id fi
calls( int nfs_client_read( fid, ..) )
calls( int nfs_client_cache_check( fid,
call s( void daenmon_prefetch( fid, ..);

(
|

—un

before( file_id fid ): val _check points( fid) {
get _fresh timestanp( fid);
}
}

int nfs_client_wite( fid, ..) ) ||
calls( void daemon_wite( fid, ..)

Figure2: AspectCpseudo-codér client-basedonsisteng extension.

aspect active_invalidation{

after( file_id fid ):
updat e_state_info( fid->state_info );

}

after( file_id fid ):
check_state_and_invalidate( fid->state_info );
}
}

calls( int nfs_server_read( fid, ..

calls( int nfs_server_wite( fid, ..

) A

)DER

Figure3: AspectCpseudo-codéor senerbasedconsisteng extension.

blocks. Eachclient holds a timestampindicatingwhen
their copyof thefile waslastmodifiedatthesener. If the
sener’s lastmodifiedtime is morerecentthanthetimes-
tampheld by a client, the cachedblocksat the client are
invalidatedand mustbe freshly retrieved from the sener
whenthey are next requested. Validation is performed
asan auxiliary requestwheneer the client contactsthe
senerto readanew block.

It is importantto note that there exists an interval of
time betweenone client’s writing to a file and another
client’sinvalidationof cachedlocks.Within thisinterval,
clientcachessanbecomenconsistentlt is notunreason-
ableto assumeahatin someapplications certainclients
would rathertradeperformancdor consisteng. Thatis,
we would like to be ableto extendthis validationcheck-
ing in a way thatwill at leastshorten,if not eliminate,

tachedto a wide rangeof NFS core functionsby iden-
tifying an appropriatepointcutand basingvalidationon
that definition, as outlined in Figure 2. In additionto
client-sidereading,the pointcutin this aspectidentifies
4 additionalclient-sidefunctionsthatwill trigger valida-
tion checking. The beforeadviceattacheghe validation
codeto eachof the functionslistedin the pointcut. This
approachoffers the potentialto supportdevelopmentof
validation stratgies and associatedriggersindependent
from corefunctionality.

3.2 Server-based consistency extension

Anotherway to approactthis extensionis to actively in-
validateappropriateclientcachesvhenrelevantwritesare

this interval. We have exploredtwo differentapproaches recéved at the sener. This would require maintaining

for this consisteng extension,one client-basecand one

stateinformationat the sener. Introducingthis support

sener-basedIn bothcasesye believe anaspect-oriented NOWever, wouldrequireconsiderablerosscuttinghanges

approachsupportsheseextensionsbetterthanthe origi-
nalimplementation.

3.1 Client-based consistency extension

Oneway to makethis kind of extensionis to triggervali-
dationfrom within a wider variety of NFS client activity.
Thatis, to go beyond just attachingvalidationto client-
basedeadrequestandto attachit to clientwriting, client
cachecheckingdaemorwriting anddaemorprefetching.
In the originalimplementationthis would involve insert-
ing validationrequestsnto eachof theseNFSfunctions.
We believe anaspect-orientedpproactbettersupports
extensibility becausehesevalidation checkscan be at-

to core NFS sener functionality Given that this added
compleity would only be usedto customizeservicefor

special-caselientsthatdynamicallynegotiateit, this op-

tion unnecessarilgompromisestability of corefunction-
ality for themajority of clients.

An aspect-orientedapproachcould be structuredto
accomplishthis ‘active invalidation’ without invasive
changeso coreNFSsenerfunctionality. At a high-level,
attachingstateupdateoperationgo readrequestandat-
tachinginvalidation noticesto associatedvrite requests
appeargo bethe naturalstructureof this extension. This
simpleapproachs outlinedin Figure3.

2NFS versions2 and 3 serversare statelessput all this aboutto
changewith thelatestreleaseof NFSversion4.



aspect sequentia _prefetch{
/* client-side advice */
before( file_id fid, block_numbnum):
update_pattern_of _access( fid, bnum);
after( file_id fid, block_num bnum):
if
}

/* server-side advice */

( fid->access_pattern == SEQUENTIAL )
nfs_daenon_prefetch( fid, bnumtl );

after( file_id fid, block_num bnum):
calls ( int nfs_server_read( fid, bnum ..) ) {
aggressive_prefetch_into_server_cache( fid, bnumtl,

calls( int nfs_client_read( fid, bnum

calls( int nfs_client_read( fid, bnum..)

cflow ( calls ( void nfs_daenon_prefetch(..) )) &&

) ) A

) {

bnum+MAX_PREFETCH ) ;

Figure4: AspectCpseudo-codéor sequentiaprefetching.

_ codefor code for

NFS client @ prefetching prefetching
G isscattered islocalized
= " and and

<~ crosscuts attaches

NFS server @ the architecture to a path

&)

(a) Original structure (b) Aspect-oriented structure

Figure5: Prefetchingandprimaryfunctionality

4 Prefetching extension

Figure4 outlinesa possiblémplementatiorof aprefetch-
ing aspectfor sequentiabccess. The client-sideadvice
keepdgrack of accesdehaiour, notingif it is sequential,
andinvoking the daemorto prefetchif it is. Thesener
side after advice aggressiely prefetchesdnto the sener
cacheif therequestto readoriginatedfrom a daemors
prefetchingequesbntheclient.

Figure 5 shavs how we ervision prefetchingto be
structuredaccordingto client-avare path-specificcus-
tomizations.Thiswork is a continuatiorof our work with
prefetchingn thelocalfile systenm{2]. Thekey difference
hereis thatwe needto carrythecflow mechanisnoutside
of local context andthroughto aremotemachine.

5 Evaluation

Basedon this design,we believe an aspect-orientedp-
proachto extensibility allows usto addresseseveral key
issuedetterthanatraditionalapproach:

¢ Pluggablefunctionality - enhancedonsisteng and
performancestratgiescanbe optionallyincludedin
NFSmakefiles.

¢ Independentievelopment- extensionsarenot inva-
sive to corefunctionality.

e Comprehensibility the internal structureof exten-
sionsarelocalizedwithin ashareccontet, aswell as
a completedescriptionof their interactionwith pri-
maryfunctionality.

6

We believe this exploration of an aspect-orientedip-
proachto extensibility in NFS holdspromiseandarenow
proceedingto implementthis design. In particular we
will be interestedin understandinghe impact some of
thesedesigndecisionshave on performance.We recog-
nizethattheseextensionanustnotintroducea significant
performancepenaltyfor clientsthatcontinueto rely only
oncoreNFSservices.

| mplementation consider ations

7 Conclusion

We have shavn how to use AOP to structureextensions
in a way that makesthemeasyto develop andapply in-
dependentlyWe believe thataspectsupportextensibility
betterthan a correspondindraditional approachfor two
reasons(1) the corefunctionalityis stable(2) theexten-
sionsaremodular

References

[1] www.cs.ubc.ca/spider/ycdg/agpedc.html.

[2] Y. Coady G. Kiczales,M. Feelg, N. HutchinsonandJ. S.
Ong. Structuringsystemaspects. Communications of the
ACM, October2001. To appear

[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. Aspect] home page.
http://wwwaspectj.ay.



