
CanAOPSupportExtensibilityin Client-ServerArchitectures?

YvonneCoady, Alex Brodsky, DimaBrodsky, JodyPomkoski,
StephanGudmundson,JoonSuanOng,GregorKiczales

University of British Columbia

Abstract

Extensible client-server software requires a clear sepa-
ration of core services from those that are customizable.
This separation is difficult, as these customizable features
tend to crosscut the primary functionality of the core ser-
vices. We believe that an aspect-oriented approach to
client-server architectures supports extensibility in a way
that is more flexible than traditional approaches. Our ex-
periment focuses on clients within a distributed file sys-
tem that dynamically negotiate with servers for adaptive
delayed-write and prefetching behaviour.

1 Introduction

Client-serverarchitecturesboil down to getting or putting
informationbetweena clientnodeanda server node.As-
sociatedwith simply gettingandputtinghowever, areis-
suesof performanceandconcurrency. Theseissuesin-
troducecomplexity to coreclient-server servicesbecause
their implementationis crosscutting.As a result,they are
not readilyamenableto change.

For example, Sun’s Network File System(NFS) has
provideda sufficientandstablesetof coredistributedfile
systemservicessincethe mid-80s. Even thoughNFS is
oftenconsidereda de facto standard,it is well known that
it doesnot addressscalabilityissuesthatareincreasingly
importantin moderndistributedapplications. Although
theseissues,suchasperformanceandconcurrency con-
trol, are not consideredpart of core functionality, they
ultimately seta practical-limit on the sizeof NFS-based
distributedfile systems.

Extending client-server architecturesto respond to
growing demands,however, addsconsiderablecomplex-
ity becausetheseextensionsinvolveinvasive,crosscutting
changesto what arenow stable,core functions. We be-
lieve that bettersupportfor separatingcrosscuttingcon-
cernsgreatlyfacilitatesextensibility in client-serverarchi-
tecturesbecauseessentialcoreservicescanremainstable
while extensionsareindependentlydeveloped.To inves-
tigatethis further, we have experimentedwith designing
aspectsto structuresomeof thesekindsof concernsin a
simplemodelof NFS.

This paper describesour aspect-orienteddesign of

VFSVFS

Server ComputerClient Computer

User
level
application

KERNEL

Local
File
System

NFS
Client

KERNEL

NFS
Sever

Local
File
System

network

the

Figure1: NFSsoftwarearchitecture.

NFS. We show how to structurethe implementationof
cacheconsistency andprefetchingusingaspects,andhow
AOP allows us to extend theseservicesin a numberof
significant ways that would otherwiserequire invasive
changesto corefunctionality.

1.1 NFS overview

NFSprovidestransparentaccessto remotefiles; applica-
tion codeaccessesa remotefile in exactly thesameman-
nerasit accessesa localfile. Thecommoninterfaceused
by bothlocalandremotefile systemsis definedby thethe
Virtual File System(VFS) layerin thekernel.

At a high level, NFS is divided into two parts: client
andserver. Typically, bothclient andserver modulesare
installedwithin the operatingsystemkernel. Eachcom-
puterin anNFSnetworkcanactbothasclientandserver,
accessingremotefilesandexportinglocalfiles for remote
accessrespectively.

As shown in Figure1, VFS requestsreferringto files
in a remotefile systemaretranslatedby the NFS client
moduleandcommunicatedto theNFSserver moduleon
the computerholding the relevant file. The client mod-
ule is thus responsiblefor transferringblocksof files to
andfrom theserver andcachingblockswithin theshared
file buffer cache of theclient system.Major performance
enhancingoperationsassociatedwith this cachearede-
scribedbelow.

1

1.2 Caching: prefetching, delayed-write
and write-through

The performanceof an application’s requestto reador
write is greatlyenhancedif it canusethefile buffer cache
insteadof an expensive disk request. It is importantto
notethatin NFStherearetwo cachesinvolved: thecache
on the client and the cacheon the server. Major cache
relatedactivities include prefetching, delayed-write and
write-through operations.

Prefetchingpredicts read accessesand fetchesdisk
blocksinto thebuffer cachein advanceof any explicit re-
quest. Delayed-writepostponeswriting changedblocks
to disk until it is morecosteffective, or necessary, to do
so. Write-through,thealternative to delayed-write,trans-
ferseachwrite requestimmediatelyto disk. In NFS, the
client cacheusesa delayed-writestrategy to improveper-
formance,but write-throughis necessaryat theserver be-
causeafailureof theservercouldresultin undetectedloss
of clientdata.

1.3 Consistency and performance

Cacheconsistency canbeaproblemwhenmultipleclients
areconcurrentlyaccessinga sharedfile. On a singlema-
chine,thereis a singlecachemaintainedby theoperating
system.With NFS,several clientson differentmachines
maysimultaneouslyaccessthesameremotefile, creating
independentlycachedcopiesof portionsof files. Thiscan
leadto consistency problems,aswrites by oneclient do
notupdatecachedcopiesatotherclients.

NFSattemptsto minimizeinconsistencies,but doesnot
guaranteethesamesemanticsaslocalfile systems.This is
becauseforcingthisdistributedsystemto behaveasacen-
tralizedonewould penalizeperformance,in mostcases,
unnecessarily.

To improveperformance,sometimesat thecostof con-
sistency, NFS clients rely on prefetchingand delayed-
write strategiesto maximizetheuseof caches.Requests
to prefetchfrom theserver andwrite blocksto theserver
areasynchronouslyhandledbyspecialdaemon processes1

thatprovide thiskind of ‘behind-the-scenes’client-server
communication.

1.4 Inflexibility of current structure

Theuseof separatedaemonprocessesto implementasyn-
chronousprefetchingand delayed-writebehaviour ac-
complishesa coarsegranularityof separationin NFS:

� In thecaseof reading,adaemonis notifiedaftereach
readrequestand prefetchesblocks from the server
into theclient cache.

1auser-level processthatperformssystemtasks

� In the caseof writing, a daemondelayssending
blocksto theserver until they arefilled.

Work performedby thedaemonsis not absolutelynec-
essaryfor correctoperation,but it reducesthe chances
of inconsistency and is requiredfor satisfactoryperfor-
mance.

Althoughthisseparationsupportssomedegreeof inde-
pendentdevelopment,extensibility is limited by the fact
that the interactionbetweencore functionality and dae-
mon processesis embeddeddeepwithin the core func-
tionality of the client, wheredaemonactivity is invoked.
This structureis thus inflexible becauseextensibility of
non-coreconcernsrequiresinvasive changesto coreNFS
implementation.As a result,it is exceedinglydifficult to
fine-tunetheseincreasinglyimportantconcernsin NFS-
like distributedapplications.

2 Aspect-Oriented NFS

We arecurrentlysketchingout aspectsfor anNFS-based
client-server architectureusinganAspectJ-likeAOPlan-
guage,AspectC[3, 1]. Specifically, we want to find out
if candesignaspectsthat effectively isolateissuesasso-
ciatedwith consistency andperformance– potentiallyal-
lowingusto extendtheseimplementationswithoutrequir-
ing invasive changesto corefunctionality.

In thelong term,weareparticularlyinterestedin grow-
ing the client populationto include many different ap-
proachesfor delayed-writeand prefetchingoperations.
Thatis, weenvisionsome‘smart’ clientsdynamicallyne-
gotiatingwith servers for adaptive applicationof perfor-
manceand consistency requirements.To datehowever,
we have focusedon high level designissues,presented
here.

2.1 The experiment

We focusedon two specificextensionsto explore issues
of consistency andperformance:

1. Consistency extension: shorten the interval in
whichcachesmaybeinconsistent.

2. Performance extension: aggressively prefetchfrom
disk into the server cachewhensequentialaccessis
detectedon theclient.

Thefollowing sectionsdescribeeachof theseextensions,
andcontraststheoriginal implementationwith anaspect-
orientedapproachfor each.

3 Consistency extension

In ordertoensuresomelevel of cacheconsistency in NFS,
a timestamp-basedheuristicis usedto invalidatecached

2

aspect validation_check{

pointcut validation_check_points(file_id fid):
calls(int nfs_client_read(fid, ..)) || calls(int nfs_client_write(fid, ..)) ||
calls(int nfs_client_cache_check(fid, ..)) || calls(void daemon_write(fid, ..) ||
calls(void daemon_prefetch(fid, ..);

before(file_id fid): val_check_points(fid) {
get_fresh_timestamp(fid);

}
}

Figure2: AspectCpseudo-codefor client-basedconsistency extension.

aspect active_invalidation{

after(file_id fid): calls(int nfs_server_read(fid, ..)) {
update_state_info(fid->state_info);

}

after(file_id fid): calls(int nfs_server_write(fid, ..)) {
check_state_and_invalidate(fid->state_info);

}
}

Figure3: AspectCpseudo-codefor server-basedconsistency extension.

blocks. Eachclient holds a timestampindicatingwhen
theircopyof thefile waslastmodifiedat theserver. If the
server’s lastmodifiedtime is morerecentthanthetimes-
tampheldby a client, thecachedblocksat the client are
invalidatedandmustbefreshly retrievedfrom theserver
when they are next requested.Validation is performed
as an auxiliary requestwhenever the client contactsthe
server to readanew block.

It is importantto note that thereexists an interval of
time betweenone client’s writing to a file and another
client’sinvalidationof cachedblocks.Within thisinterval,
client cachescanbecomeinconsistent.It is not unreason-
able to assumethat in someapplications,certainclients
would rathertradeperformancefor consistency. That is,
we would like to beableto extendthis validationcheck-
ing in a way that will at leastshorten,if not eliminate,
this interval. We have exploredtwo differentapproaches
for this consistency extension,oneclient-basedandone
server-based.In bothcases,webelieveanaspect-oriented
approachsupportstheseextensionsbetterthanthe origi-
nal implementation.

3.1 Client-based consistency extension

Oneway to makethis kind of extensionis to triggervali-
dationfrom within a widervarietyof NFSclient activity.
That is, to go beyond just attachingvalidationto client-
basedreadrequestsandto attachit to clientwriting, client
cachechecking,daemonwriting anddaemonprefetching.
In theoriginal implementation,this would involve insert-
ing validationrequestsinto eachof theseNFSfunctions.

Webelieveanaspect-orientedapproachbettersupports
extensibility becausethesevalidation checkscan be at-

tachedto a wide rangeof NFS core functionsby iden-
tifying an appropriatepointcutandbasingvalidationon
that definition, as outlined in Figure 2. In addition to
client-sidereading,the pointcut in this aspectidentifies
4 additionalclient-sidefunctionsthatwill trigger valida-
tion checking.The beforeadviceattachesthe validation
codeto eachof the functionslisted in the pointcut. This
approachoffers the potentialto supportdevelopmentof
validationstrategiesandassociatedtriggersindependent
from corefunctionality.

3.2 Server-based consistency extension

Anotherway to approachthis extensionis to actively in-
validateappropriateclientcacheswhenrelevantwritesare
received at the server. This would requiremaintaining
stateinformationat theserver2. Introducingthis support
however, wouldrequireconsiderablecrosscuttingchanges
to core NFS server functionality. Given that this added
complexity would only be usedto customizeservicefor
special-caseclientsthatdynamicallynegotiateit, this op-
tion unnecessarilycompromisesstabilityof corefunction-
ality for themajorityof clients.

An aspect-orientedapproachcould be structuredto
accomplish this ‘active invalidation’ without invasive
changesto coreNFSserver functionality. At a high-level,
attachingstateupdateoperationsto readrequestsandat-
tachinginvalidationnoticesto associatedwrite requests
appearsto bethenaturalstructureof this extension.This
simpleapproachis outlinedin Figure3.

2NFS versions2 and 3 serversare stateless,but all this about to
changewith thelatestreleaseof NFSversion4.

3

aspect sequential_prefetch{

/* client-side advice */

before(file_id fid, block_num bnum): calls(int nfs_client_read(fid, bnum, ..)) {
update_pattern_of_access(fid, bnum);

}

after(file_id fid, block_num bnum): calls(int nfs_client_read(fid, bnum,..)) {
if (fid->access_pattern == SEQUENTIAL)
nfs_daemon_prefetch(fid, bnum+1);

}

/* server-side advice */

after(file_id fid, block_num bnum): cflow (calls (void nfs_daemon_prefetch(..))) &&
calls (int nfs_server_read(fid, bnum, ..)) {

aggressive_prefetch_into_server_cache(fid, bnum+1, bnum+MAX_PREFETCH);
}

}

Figure4: AspectCpseudo-codefor sequentialprefetching.

NFS client

to a path

(a) Original structure (b) Aspect−oriented structure

NFS server the architecture

prefetching
code for code for

prefetching
is localizedis scattered

and and
attachescrosscuts

Figure5: Prefetchingandprimaryfunctionality.

4 Prefetching extension

Figure4 outlinesapossibleimplementationof aprefetch-
ing aspectfor sequentialaccess.The client-sideadvice
keepstrackof accessbehaviour, notingif it is sequential,
andinvoking the daemonto prefetchif it is. Theserver-
side after adviceaggressively prefetchesinto the server
cacheif the requestto readoriginatedfrom a daemon’s
prefetchingrequeston theclient.

Figure 5 shows how we envision prefetchingto be
structuredaccordingto client-aware path-specificcus-
tomizations.Thiswork is acontinuationof ourwork with
prefetchingin thelocalfile system[2]. Thekey difference
hereis thatweneedto carrythecflow mechanismoutside
of localcontext andthroughto aremotemachine.

5 Evaluation

Basedon this design,we believe an aspect-orientedap-
proachto extensibility allows usto addressesseveralkey
issuesbetterthana traditionalapproach:

� Pluggablefunctionality - enhancedconsistency and
performancestrategiescanbeoptionallyincludedin
NFSmakefiles.

� Independentdevelopment- extensionsarenot inva-
sive to corefunctionality.

� Comprehensibility- the internalstructureof exten-
sionsarelocalizedwithin asharedcontext, aswell as
a completedescriptionof their interactionwith pri-
maryfunctionality.

6 Implementation considerations

We believe this exploration of an aspect-orientedap-
proachto extensibility in NFSholdspromiseandarenow
proceedingto implementthis design. In particular, we
will be interestedin understandingthe impact someof
thesedesigndecisionshave on performance.We recog-
nizethattheseextensionsmustnot introducea significant
performancepenaltyfor clientsthatcontinueto rely only
oncoreNFSservices.

7 Conclusion

We have shown how to useAOP to structureextensions
in a way that makesthemeasyto develop andapply in-
dependently. Webelievethataspectssupportextensibility
betterthana correspondingtraditionalapproachfor two
reasons:(1) thecorefunctionalityis stable,(2) theexten-
sionsaremodular.

References
[1] www.cs.ubc.ca/spider/ycoady/aspectc.html.

[2] Y. Coady, G. Kiczales,M. Feeley, N. Hutchinson,andJ.S.
Ong. Structuringsystemaspects.Communications of the
ACM, October2001.To appear.

[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. AspectJ home page.
http://www.aspectj.org.

4

