
Coping with Evolution: Aspects vs Aspirin?

Alex Brodsky
�

Dima Brodsky Ida Chan Yvonne Coady

Stephan Gudmundson† Jody Pomkoski Joon Suan Ong

Department of Computer Science
University of British Columbia

Abstract

Attempts to evolve a code base in an effective and comprehensible manner can give almost anyone a headache. For
example, consider version 2 vs version 3 of FreeBSD’s implementation of the Network File System (NFS) [5]. The
v2 code base is approximately 10,000 lines, to which the integration of v3 adds over 100 small, scattered clusters of
code. Although this code is differentiated from v2 by appropriate compiler-directives and system-wide identifiers, its
crosscutting nature adds complexity to the original code, and introduces implicit coupling that poses further challenges
for future evolution. This observation is consistent with Lehman and Belady’s study showing structural deterioration
over successive releases of OS/360 [4].
We are currently trying to determine the material impact aspect-oriented modularity has on the evolution of NFS code.
Towards this end, we are studying implementations of versions 2 and 3, along with the specifications of 4 (not yet
available in implementation). To date, we have designed an aspect that structures v3 client functionality relative to a
v2 implementation for FreeBSD, and are working on OS neutral v4 features that we expect to be highly portable to
both FreeBSD and Linux NFS implementations. This short paper presents some of our preliminary work, including
(1) an example aspect-oriented implementation of a v4 related feature, replication, developed for a model of NFS, (2)
a comparison of this implementation with an interposition approach, and (3) a characterization of how to build highly
portable aspect-oriented implementations.

1 Introduction

Can an aspect-oriented modularity make evolution less of
a headache? We are currently investigating this question
in the context of successive versions of the long-lived Net-
work File System (NFS) [5]. Our work to date has focused
on steps in the evolutionary ladder corresponding to NFS
versions 3 and 4.

So far, our study has yielded mixed results. For exam-
ple the integration of v3 into FreeBSD’s NFS v2, a code
base that is approximately 10,000 lines, adds over 100
scattered clusters of code. We have been able to structure
these v3 changes as a single aspect in AspectC [1], with
compiler directives capturing changes to data structures –
but our current design requires refinement. Although we
believe this to be a significant improvement over the orig-
inal implementation, our intuition is that this single aspect
will be better represented as a composition of smaller as-
pects, improving the clarity of individual features of the
v3 implementation. Additionally, as overviewed in Sec-
tion 6, we believe we may be able to make this aspect
composition more portable between operating systems by

�

Supported by NSERC PGSB
†Supported by NSERC PGSA

careful refactoring.
This short paper focuses on a preliminary but represen-

tative example of evolution associated with an individual
v4 feature, and extrapolates from our experience so far.
As the Java prototype of NFSv4 [6] has not yet been re-
leased, we implemented our own Java model of NFSv3,
JNFS [3], and evolved it. The feature we focus on is our
own client-specific policy for fault tolerance built on top
of v4’s support for replication. The characteristics we ex-
trapolate are those associated with aspects that we expect
to be highly portable between operating systems.

We begin by providing a high level overview of NFS in
Section 2, and follow this with an overview of fault toler-
ance in Section 3. Our replication aspect is described in
Section 4 and compared with a layered approach in Sec-
tion 5. Section 6 presents a brief characterization of what
we feel is necessary to build highly portable aspects and
Section 7 concludes with future work.

2 NFSv2: under the hood

The NFSv2 protocol is a simple and stateless protocol.
A client uses file-handles to access files and directories
on the remote server. Requests are typically configured to

1

have an upper bound of eight kilobytes, so high-level re-
quests exceeding this maximum are broken into several
lower-level requests. Due to the statelessness of NFS,
there is no notion of remote file open or close operations
in the protocol itself. Thus, to access a file a client needs
only to have a valid file-handle.

NFS clients must first mount the specified remote file
system before accessing files on an NFS server. During
the mount request the server returns a file-handle for the
root of the exported file system, fhroot. A file-handle is a
32 byte identifier in NFSv2 that uniquely identifies the file
or directory on that server.

To access a file, the client must first perform a lookup
operation for each component on the path. To access
x/y/z1 the client sends the server the root file-handle
fhroot and x; it receives a file-handle for x, fhx. Next it
sends fhx and y, and receives fhy. One more lookup is
performed with fhy and z. Once the client obtains fhz it
can perform the standard set of file operations on file z.

The NFS server must honour the file-handles it has is-
sued. To reduce the overhead of performing a local open
and close on every operation, the server caches recently
used file-handles. When a file-handle is evicted from the
cache the associated file is closed. The server forgets
about file-handles if they have not been accessed for an
extended period of time; the amount of time is usually on
the order of minutes. If a client queries the server with an
unknown file-handle the server returns an error.

2.1 NFSv4

NFSv4 is currently being designed to: (1) improve ac-
cess and performance on the Internet, (2) strengthen secu-
rity with negotiation built into the protocol, (3) increase
cross-platform interoperability, and (4) facilitate protocol
extensions. Although the replication aspect presented in
this paper is related to the first goal on this list, improved
access, the long-term goal of our work is most akin to the
last item on this list – extensibility. That is, we hope to
establish the material impact that aspect-oriented imple-
mentations of concerns (1) through (3) have on the ability
to realize (4).

3 Fault Tolerance

Our approach to fault tolerance uses replicas to mirror all
file system writes to a set of servers, instead of just a sin-
gle server as is the default in NFSv2/v3. Though we do
not have a true NFSv4 implementation to build upon, our
understanding is that v4 potentially provides support for
this brand of fault tolerance by giving clients the ability to
obtain a list of servers storing a given file.

1We use Unix path syntax. The path delimiters are / and the path
components are x, y, and z; x and y are directories and z is a file.

Ideally, we would like to make the client impervious to
server crashes. Therefore, we further introduce a mech-
anism that automatically switches to an alternate server
should the primary server go down. This switch-over is
transparent to the client.

Essentially, to implement this client-specific policy for
fault-tolerance, we need to make changes to all functions
that read and write from/to the server. This applies to
both data and metadata operations. All reads must in-
clude the functionality to switch-over in case of failure,
and all writes must include this switch-over in addition to
the ability to relay the writes to replica servers.

It is important to note that in our model, the client is
responsible for replicating the data. If servers crash and
come back, it is quite probable that the state between the
servers will differ. We do not yet attempt to maintain con-
sistency between the servers.

4 The Replication Aspect

The details of this implementation are described in terms
of our current prototype JNFS client, with customizations
introduced using AspectJ [2]. In our JNFS model, the
client supports a standard, OS neutral, NFS interface.

The first part of our replication aspect, shown in Fig-
ure 1, introduces data structures and common functional-
ity required to support replication. The two helper meth-
ods are used by advice in the aspect. The first helper
method, remap server establishes a live replica if the pri-
mary server fails while the system is running. The second
helper method, set servers, is used during set-up to es-
tablish which servers are designated as replicas.

AspectJ pointcuts provide an abstraction for specifying
points in an executing program when advice is to run, and
parameters available to that advice. We need replication
code to affect the flow of events when an nfsiod daemon,
a thread running on behalf of an NFS client, is processing
a request.

The first of these pointcut declarations,
nfsiod op cflow, identifies all points in the exe-
cuting program that are in the control flow (or cflow)
of functions whose signatures match the expression
void nfsiod *(request req). Given the naming
conventions in our code, this captures execution points
when nfsiod functions are on the runtime stack. This
pointcut is shared by both the read and write operations
in the aspect.

Additionally, we specify that these functions take a sin-
gle parameter of type request, which will be bound to req
in the advice body. We use the request object to extract
file handle information.

2

aspect Replication {

public Vector fd_entry.fhs;

public boolean nfsiod.dead[];
Vector nfsiod.replicas;
int nfsiod.primary = 0;

boolean nfsiod.remap_server(fd_entry f) {
// select replica and set nfsiod.primary index to it.

}

public void nfsiod.set_servers(Vector servers) {
// set the vector of servers provided as replicas

}

pointcut nfsiod_op_cflow(request req):
cflow(calls(void nfsiod_*(req)));

Figure 1: Replication aspect

pointcut reads(nfsiod n, JNFS_arg args, request req):
nfsiod_op_cflow(req) && (read_*(n, args));

pointcut read_getattrs(nfsiod n, JNFS_getattr_arg args):
within(n) && calls(public * JNFS_getattr(args));

pointcut read_reads(nfsiod n, JNFS_read_arg args):
within(n) && calls(public * JNFS_read(args));

Figure 2: Read pointcuts

4.1 Reading

The first part of the aspect code associated solely with
reading simply establishes the points in the executing
code where advice will apply, shown in the three point-
cut declarations in Figure 2.

The reads pointcut uses nfsiod op cflow in conjunc-
tion with the other two pointcuts to capture points in the
program when reading operations are performed on behalf
of nfsiod methods. Metadata reads are captured by the
pointcut read getattrs, and data reads are captured by
the pointcut read reads.

The around advice that uses the reads pointcut, shown
in Figure 3, attaches to all the places where reading activ-
ity takes place, and handles the remote exception raised
by a failed server by remapping.

In the body of this advice, we use the keyword proceed
both within the try clause and the catch clause of the
remote exception handling. Proceed continues with the
execution of the primary function to which the advice is
attached. We use the try to catch the exception raised by
a failed server, at which point we use the remap server

method introduced earlier. The catch allows the intended
read operation to continue on the newly designated pri-
mary server.

In the event that remapping fails, the aspect uses a local
function to dispatch the error handling according to the
signature of the primary function involved. This dispatch-
ing specializes the return type of the advice, defined here
to be Object.

4.2 Writing

Structure-wise, the code in our replication aspect associ-
ated with write is similar to the read. It first establishes
the points in the executing program where the advice ap-
plies, shown by the pointcut writes in Figure 4. Just
as in the reads pointcut, writes uses nfsiod op cflow
in a conjunction with a list of other more specific write-
related pointcuts, the complete declarations of which are
not shown here.

The around advice for writes, shown in Figure 5, is
more complicated than in the case of reads. It has to han-

3

around(nfsiod n, JNFS_arg args, request req) returns Object:
reads(n, args, req) {

// map to proper primary server

try { // attempt invocation
return proceed(n, args, req);

} catch (RemoteException r) {
// if n.remap_server, then proceed
// else build and return an error.

}
}

Figure 3: Read advice

pointcut writes(nfsiod n, JNFS_arg args, request r):
nfsiod_op_cflow(r) && (write_*(n, args));

pointcut write_mnt(nfsiod n, JNFS_mnt_arg args):
within(n) && calls(public * JNFS.JNFS_mnt(args));

pointcut write_setattrs(nfsiod n, JNFS_setattr_arg args):
within(n) && calls(public * JNFS.JNFS_setattr(args));

...

pointcut write_lookups(nfsiod n, JNFS_lookup_arg args):
within(n) && calls(public * JNFS.JNFS_lookup(args));

Figure 4: Write pointcuts

dle remapping, shown by the first try/catch in the body,
in the same way as the around advice on reads does. It
also must handle propagation of the write requests to the
replicas involved. A helper function dispatches the ex-
plicit write request to a given replica according to the sig-
nature of the primary function involved.

5 The Interposition Alternative

In addition to providing this functionality as an aspect, we
also explored a layered approach. Layering is a common
way to extend system interfaces. The approach involves
interposing the layer between the interface and the appli-
cation. All calls from the application are intercepted by
the layer and eventually forwarded to the interface after
some mutation of the arguments. The values returned by
the interface may be further mutated before being returned
to the caller. Usually, the layer utilizes additional state to
perform the modifications.

For our purposes the fault tolerance mechanism must
perform two distinct but related tasks: the replication of
all mutator operations (operations that have side effects)
and the transparent remapping of servers and file-handles

upon failure of a primary server. Using the interposition
approach we achieved these requirements in the following
manner.

The JNFSReplicator class implements the same in-
terface (JNFS) as the JNFSServer; the client is passed
a replicator object instead of a server object. Each re-
mote invocation is intercepted by the replicator object,
the request is modified and finally forwarded to the pri-
mary server. Additionally, mutator requests, like writes
and file creation, are forwarded to the replicas as well.
If a primary server fails in the course of a request, a
RemoteException is caught by the replicator, the repli-
cator selects a server from the set of replicas to act as
the primary and dynamically remaps the file-handles. The
file-handles exchanged between the client and the primary
server need to be mapped to the file-handles of the new
primary server as well as the replicas.

The replicator layer accomplishes the first function
(replication) by maintaining a vector of replicas and a map
that translates a primary handle (file-handles returned by
the primary server) to a vector of replica handles (file-
handles returned by the replica servers). On an invocation
of a mutator request, the request is first forwarded to the

4

around(nfsiod n, JNFS_arg args, request req) returns Object:
writes(n, args, req) {

// map to proper primary server

try {
rs = (JNFS_res) proceed(n, args, req);

} catch (RemoteException r) {
// try to remap servers and restart invocation
// otherwise build and return an error.

}

for(i = 0; i < size; i++) {
// map arguments’ handles to proper replica

try {
res = delegate_to(server, ..., (JNFS_arg)args);
// if operation fails, replica is out of synch
// so mark it as dead
// if result returns a new file handle, add it to the map

} catch (RemoteException r) {
// if replica dies, mark it as dead, and don’t use it.

}
}
return(rs);

}

Figure 5: Write advice

primary server. Upon the successful completion of the re-
quest the primary file-handles embedded in the request are
mapped to the replica file-handles and the request is then
forwarded to the corresponding replica. If the request gen-
erates a new file-handle, like a mount or a create request, a
new mapping is created. The second function (transparent
remapping) makes use of the same data structure.

The replicator layer intercepts all RemoteException
exceptions thus providing transparent fault handling.
When an invocation to the primary server fails, the server
is marked as dead and one of the replicas is chosen in its
stead. Since all file-handles issued by the defunct server
must be honoured, an additional mapping must occur. Be-
fore the request is forwarded to the primary server, the
file-handles embedded in the request must be mapped to
the file-handles of the current primary server; the same
map that is used for replication suffices. Unfortunately,
the map is both necessary and expensive.

If transparent fault handling is to be achieved, any file-
handle issued by a primary server must be honoured re-
gardless of the state of the server that issued it. Hence, a
map must be maintained that translates file-handles from
a previously working primary server to the file-handles of
the current primary server. Given the number of different
files that can be requested by a typical client, the amount
of state necessary to implement such a mapping can be
quite large. The fact that the interposing layer must mir-

ror all the file-handles held by the client implies that such
layers have a large memory overhead.

Additionally, the layer relies not only on the interfaces
of the server, but also on the structure of the arguments
being passed to the server. This is an endemic problem
because such layers must inevitably mutate the contents
of the messages before forwarding them to the servers.
Any changes to the interface or the internal structure of
objects requires modifications to the interposed layer as
well.

5.1 Approach Comparison

The amount of additional state varies greatly between the
two approaches. In both cases, all valid file-handles must
be honoured by the fault handling and replication layer.
Without a mechanism to inform the layer about discarded
handles, the layer must continue to store handles and file-
handle maps for every file-handle issued. To say that the
corresponding state is large would be an understatement.
Hence, the interposition method is extremely space ineffi-
cient.

The aspect-oriented approach uses the existing file state
to store the replication maps required for fault handling
and replication. When the file descriptor and the file-
handle are discarded, the corresponding replica map is
discarded simultaneously. The amount of additional state

5

is proportional to the number of replicas and the number
of currently open files; the number of files open at any
time is orders of magnitude less than the total number of
files.

6 Building Highly Portable Aspects

Layers are portable – should we expect the same from as-
pects? Aspects that target functionality adhering to a strict
interface, like NFS, can capture structure in such a way
that applies well to all operating systems that support the
interface. In order to build highly portable aspects, we be-
lieve it is important to: (1) target the right interface, (2)
establish appropriate aspect/component boundaries, and
(3) think ahead in terms of composition.

6.1 Targeting the right interface

Below the NFS client interface, the implementations of
NFSv2/v3 in FreeBSD and Linux are very different. The
OS neutral quality of our replication aspect is that its
pointcut interface is essentially built above the only com-
mon denominator between these implementations. Al-
though we have not yet specialized this general implemen-
tation for either OS, we do not anticipate making signifi-
cant structural changes when doing so.

6.2 Establishing appropriate boundaries

The replication aspect is not a complete implementation
of fault tolerance. As mentioned in Section 3, making a
resurrected server consistent is an important piece of as-
sociated functionality not implemented by the aspect. We
envision this to be an component of our brand of fault
tolerance, integrated with the rest of the system through
the replication aspect. Differentiating this kind of as-
pect/component functionality has not always proven to be
trivial in our experience.

6.3 Thinking ahead in terms of composition

Evolution can involve (1) sets of extensions to exist-
ing features, and (2) new features. Structuring a set of
changes to extend a major feature, F, as a single aspect
(as we did initially for v3) may fail to individualize im-
portant elements of this implementation. We believe this
subtle differentiation between a single large aspect and a
closely-knit composition of small aspects to be of particu-
lar importance with respect to portability – where feature
F is subject to subtle variations between OS implementa-
tions.

7 Future Work and Conclusions

Though we believe an aspect-oriented modularity can fa-
cilitate evolutionary changes relative to a traditional ap-
proach – our results are not yet conclusive. We do not
expect significant performance degradation with an AOP
approach, but to date we have only focussed on proof-of-
concept within a minimal model. Establishing the impact
aspect compositions have on the overall conceptual com-
plexity of the system is also a high priority.

Beyond v4 features, other important evolutionary
changes that we believe may benefit from an aspect-
oriented modularity include: client-side peer-to-peer co-
oporative caching, in which clients acquire additional
cache resources by negotiating with other clients; and
client-side encryption and forwarding, where clients in
a local LAN are considered secure, but the link to the
server is not, thus idle clients are used to encrypt and for-
ward data to the server. The need to support this kind of
high-level diversity is increasingly important as today’s
LAN environments breed more client-specific constraints.
The question of whether support will come in the form of
structured crosscutting – versus something with a child-
proof cap – remains to be seen.

References
[1] AspectC. www.cs.ubc.ca/labs/spl/aspects/aspectc.html.

[2] AspectJ. www.aspectj.org.

[3] Alex Brodsky, Dima Brodsky, Ida Chan, Yvonne Coady,
Jody Pomkoski, and Gregor Kiczales. Aspect-oriented in-
cremental customization of middleware services. Technical
Report TR-2001-06, University of British Columbia, 2001.

[4] L.L. Lehman and L.A. Belady. Program evolution. APIC
Studies in Data Processing, (27), 1985.

[5] A. Osadzinski. The network file system (NFS). Computer
Standards & Interfaces, North Holland, 8:45–48, 1988.

[6] Brian Pawlowski, Spencer Shepler, Carl Beame, Brent
Callaghan, Michael Eisler, David Noveck, David Robinson,
and Robert Thurlow. The nfs version 4 protocol. In Interna-
tional SANE 2000 (System Administration and Networking)
Conference, May 2000.

6

