Dynamic Contextual Reflection:
A Mechanism for Software Evolution and Reuse

(Position Paper)

Robert J. Walker and Gail C. Murphy

Department of Computer Science
University of British Columbia
201-2366 Main Mall
Vancouver, BC V6T 174
Canada
{walker, murphy}@cs.ubc.ca

Abstract. Current approaches to programming cause external infor-
mation to be encoded into components. When this information is not of
importance to the implementation of these components, but is an arti-
fact of programming mechanisms, system structure suffers, resulting in
greater difficulties in software evolution and reuse. We are investigating
an approach to lessen the effects of such extraneous embedded knowledge
by reflecting upon dynamic execution information and static structural
information, which comprise the concept of context.

1 The Problem

Experience has shown that abstraction is fundamental to supporting the devel-
opment of complex systems. Abstraction permits certain ideals for the software
life-cycle. Software designers can specify large-scale structure, leaving the details
to be filled-in by implementors. Software implementors can focus their attention
on the details of a restricted subset of a system while maintaining a high-level
view of the rest. Software maintainers can modify a subset of a system without
the need to alter the rest.

In practice, each ideal is rarely achieved, and never without the explicit
intent to support the other stages of the software life-cycle. Designers need to
be concerned with low-level details, because low-level interactions can impinge
upon high-level structure. Implementors need to be concerned with the way
data structures are used and interactions occur, not in isolation, but throughout
a system. Maintenance activities are curtailed to prevent the need to propagate
changes throughout a system; this results in structural degradation.

The abstractions provided by the design and programming languages in use
today are not sufficient to meet the goals of each stage in the software life-
cycle. Current approaches to design and programming cause too much external
information to be encoded into components. When this information is not of

43



OOPSLA’99 Workshop on Reflection and Software Engineering

importance to the implementation of these components, but is an artifact of de-
sign or programming mechanisms, system structure suffers, resulting in greater
difficulties in software evolution and reuse. We refer to knowledge of the exter-
nal world that is not explicitly required for the behaviour of a component as
extraneous embedded knowledge (EEK).

Consider the implementation of an object-oriented class A. This class is con-
sidered to be a structural unit in many respects. Any code not contained within A
should have no knowledge of the details of implementation of the methods of 4;
such external code does contain explicit knowledge of the interface to A. Meth-
ods within A contain explicit knowledge of the interface to A, the interface to
external classes, and the details of implementation of other methods within 4 to
a degree.

There are a number of problems with this situation. The interface to A cannot
change without breaking client code of A. The interface to classes external to A
cannot change without breaking code within A4 (and other classes). Protocols
requiring methods of A to be called in particular sequences are not explicit
within the interface, and so, can be violated accidentally or maliciously.

Furthermore, the behaviour of A is relatively inflexible. If A must serve a
multitude of clients, it must present a uniform appearance to them. This means
that the methods of A are too constrained: they could be generic, presenting
bland, unspecialized services, or they could possess complex sets of parameters
allowing properties to be specialized. An unspecialized service often does not
meet the needs of its clients; an overly-configurable service is prone to incorrect
usage and is harder to change. Both cases arise as a consequence of EEK: a
specific signature or configuration protocol should not generally be of importance
to a client—save that the resulting communication needs to work.

EEK comes in many forms. The simplest of these is dependence on particular
names and signatures of external components. It should be a simple matter to
have a mechanism that could alias messages, replacing one name with another,
or that could reorder parameters.

o >0 o =
B C B

A A

(a) (b)
Fig.1: Method C is replaced with method D, which does not need the parameter

sent from method A, but the data-flow from A still passes to B, which does not
use it. The solid arrows indicate control-flow, the dotted are data-flow.

44



Walter Cazzola, Robert J. Stroud, and Francesco Tisato Editors

As an example of more complex EEK, consider three methods: A, B, and C.
Method A calls B, and B subsequently calls € (see Fig. 1a). In these calls, var-
ious parameters are passed; among these is a piece of information called snip.
Method C requires snip for its execution and A is in the best position to obtain
or calculate snip. Method B does not use snip in any way except to pass it
on to C. At some point, it is decided that C should be replaced within B by a
new method, D. Method D serves the same purpose as C, but does not require
that snip be passed to it (see Fig. 1b). Since we do not want to break all of
B’s clients, we do not change the interface to B—it still requires that snip be
passed in to 1t, a parameter that it has no use for.

The disparity between the external functionality expected by a component,
and the actual external functionality present in a given system containing that
component must be overcome. The need for early binding of names and the
fragility of encapsulation in interface protocols cause EEK to arise. Current de-
sign and programming mechanisms introduce these restrictions; a new approach
is needed to reduce the influence of EEK.

2 The Approach

Coupling between components can be mitigated, making them more reusable and
easier to change, by reducing or eliminating the extraneous embedded knowledge
within them. Such a reduction is possible through extensions to the concepts of
reflection and dispatch.

Reflection is ordinarily defined in terms of monitoring and altering what is
currently occurring within a system—not what has already taken place. Many
attempts have been made to leverage the idea of “context” in interpreting mes-
sages or selecting implementations [13, 15, 10]. These approaches are quite static,
looking only at the current state of the system, or more likely, some small portion
thereof. But the previous state and execution of the system has a lot to say about
what should happen next: whether certain components have been used yet when
they need to have been, or which library should be used in conjunction with
servicing a message from a particular object. Just as in human speech, we can
use statements and concepts from earlier communication to understand current
requests, and we can modify our responses according to whom we are speaking
and under what circumstances. As long as messages do not become ambiguous,
we can be more concise, providing only that information that is really necessary.

More concretely, consider the problem of extraneous parameters again (see
Fig. 1), where component C requires snip from 4, and it happens to be passed
through B because that is where the control-flow goes. Since snip is extraneous
to B, 1t is needed by B only because of language constraints—the logical service
provided by B does not suggest a need for snip. Therefore, snip should bypass B
altogether (see Fig. 2). When the control-flow arrives at C, snip should be “filled-
in” from the context of what has happened previously in the system.

When the message from B arrives at the boundary to C, our mechanism
might look for the most recent object of snip’s type that had previously been




OOPSLA’99 Workshop on Reflection and Software Engineering

-

./

V&

A B

Fig.2: The data-flow from method A bypasses B, which is not interested in it,
thereby eliminating the EEK from B that would have been otherwise present.

passed—and perhaps not received—and fill in the appropriate parameter to C.
Or it might look for the name snip and do the filling in that way. To make this
safer than dynamic scoping, the identity of the component or pathway providing
snip could be checked against. As an alternative, the filling-in could occur at
the boundary to B to operate on outgoing messages there.

To permit arbitrarily late binding of names, such message manipulation oc-
curs at the boundary of a component before the message enters the component,
for incoming messages, or before the message exits the component, for outgo-
ing messages. All the messages passing out of that component can be rerouted
arbitrarily at this boundary; likewise, in-bound messages can be screened and
rerouted here. This means that the code within the component need not be
aware of the true names and interfaces of external components, and the inter-
nal code does not need to know of the deception. Parameters can be reordered,
removed, or added at these boundaries through dynamic contextual reflection.
Furthermore, to increase dynamic flexibility, the selection of a component to
route a message to can also be dependent upon the history of execution of the
system. A single apparent message could be serviced by multiple calls within a
component, or multiple messages could be stored up until enough information
were available to perform a single operation. To perform such message manipula-
tions requires there to be descriptions at the boundary of a component describing
which messages should be intercepted and how they should be manipulated when
intercepted; we call these descriptions boundary maps (see Fig. 3).

To allow dynamic contextual reflection on the call history, a record must
be kept of what has happened in the system thus far. Ideally, one can record
the complete tree of calls as it occurs, replete with the objects sending and
receiving messages and the objects being passed within those messages. Queries
can then be made against this structure, with its mix of temporal and structural
relationships, to garner information to alter new messages as they occur.

It 1s infeasible to record every method call with attendant objects and main-
tain this information over the entirety of the execution of any non-trivial system.
Therefore, optimizations and limitations will need to be introduced to make the
mechanism practical.

Combining contextual querying with the structuring and dispatch mechanism
should permit the necessary flexibility to adapt components and systems to

46



Walter Cazzola, Robert J. Stroud, and Francesco Tisato Editors

| map

A
C

Fig.3: An outgoing message is intercepted at the boundary of component &4 by
a boundary map. The message contents can be manipulated and the message
rerouted to a new recipient (C), all based on the previous history of the system.
The originally intended recipient (B) need not be present in the system at all.

new situations. By moving the bindings of component interactions from within
components to their boundaries, the components should be more easily reusable
and the system more easily evolvable.

3 Related Work

No existing mechanisms address all forms of EEK simultaneously.

Global variables are a standard means of sharing information without passing
parameters. There are several standard objections to the proliferation of global
variables, including name-space collisions and violation of encapsulation [17].
Every component accessing a global variable is strongly dependent on its name
and type, increasing component coupling and the presence of EEK.

Implicit invocation (a.k.a. publish-subscribe, event multicast) [6] is a means
of separating control-flow from explicit knowledge of the names of components.
Implicit invocation can remove some EEK arising from the knowledge of the
names of subscribing classes and methods, but much remains: all components
in an implicit invocation protocol relationship (callback registrar, subscribers,
and event publisher) need to be aware that this particular mechanism is in
place, subscribers and event publishers need to recognize a common interface for
passing events and what those events are, all probable sources of EEK.

Predicate classes [3] are a generalization of multiple dispatch [2] that per-
mit the type of an object to be transiently redefined according to its state (or
according to a user-defined predicate that can be fairly arbitrary). Context rela-
tions [15] provide a language-based mechanism in support of the Strategy pat-
tern [5] by allowing “context objects” to be dynamically attached to instances.
Subjectivity [7, 9] allows different method implementations to be executed for a
message depending on the run-time type of the sender of the message. Such a

47



OOPSLA’99 Workshop on Reflection and Software Engineering

mechanism could provide flexibility in interpretation of names within messages,
but would still require too restrictive an agreement on the meaning of those
names. All three of these mechanisms permit significant dynamic flexibility, and
hence might address the need for eliminating early binding, but they do not
provide any special means for eliminating the forms of EEK not arising from
early binding, such as extraneous parameters.

Subject-oriented composition [14] is a means for composing and integrating
disparate class hierarchies (subjects). Hence, the meanings of particular names
can be rebound in composition specifications, effectively producing late binding.
This will not remove EEK within each subject though.

Dynamic scoping (e.g., in Lisp) allows names to be bound into an exter-
nal, non-lexical scope at run-time. This is notoriously fraught with evolutionary
problems, as there is no guarantee that identical names in different scopes will
be semantically equivalent. Even if they initially are semantically equivalent, an
intervening scope can later be introduced with a non-equivalent variable name.
Quasi-static scoping [11] allows explicit dynamic scoping only, removing the
worst hazards arising from evolution; however, it provides no means for flexible
dispatch of messages. Generic programming [12] is similar in that one essentially
defines required interfaces to dummy classes that are then bound (typically via a
template mechanism) to produce real implementations, but this static operation
does not address dynamic needs, nor produce the data-flow separation required.

Context reflection [13] allows interpretation of messages and knowledge in
terms of an explicitly-set, current context, allowing late binding, but providing
no means for eliminating other problems leading to EEK.

Behaviorally adaptive objects [10] separate objects into two separate, inter-
acting entities: crystals to represent the state of an object, receive messages, and
select behaviour, and contexts to define operations. If more than one context is
appropriate for the response to a message, the crystal must explicitly order the
behaviours it selects and somehow resolve conflicts between them. Contexts are
defined across sets of crystals too, tightly coupling them as a result. Behaviorally
adaptive objects are fraught with EEK—even more than other approaches due
to the tight coupling of crystals.

Composition filters [1] permit messages to be remapped much as boundary
maps do. However, no reflection on system history occurs. Furthermore, while
the filters themselves are reusable, they are used by specifying them explicitly
within classes, resulting in poor separation of concerns, greater EEK, and less
reusable classes.

Traces [8] allow the interpretation of messages to be altered based on a limited
form of dynamic context. An explicit list of “ancestor classes” may be attached
to an object; methods may be interpreted differently depending on whether the
ancestor list of the receiving object matches pre-specified lists. Such ancestor
lists can be thought of as particular paths through the call history tree, but
at a coarser granularity than methods. Thus, traces permit a limited means
of reflecting upon system history. However, since traces provide no means of

48



Walter Cazzola, Robert J. Stroud, and Francesco Tisato Editors

obtaining objects related to the history, it is not possible to apply traces to the
problem of extraneous parameters described earlier.

LambdaMOO [4] and Perl [16] both permit access to the current call stack,
but to no other, prior calls. Neither provides a means for retrieval of passed
parameters.!

4 Progress and Conclusion

We have presented a brief description of the problem of extraneous embed-
ded knowledge—a problem that limits the evolvability and reuse of software
components—and suggested a potential solution that lies in reflecting upon the
dynamic call history of a system. The call history is explicitly recorded as a
tree, and queries can be made against this structure. Messages are intercepted
at component boundaries and remapped on the basis of the call history with its
attendant objects.

We are in the midst of implementing a dynamic contextual reflection mecha-
nism. It operates by instrumenting Java source code to both record call history
information, and to perform message remapping.

References

[1] Mehmet Aksit, Lodewijk Bergmans, and Sinan Vural. An object-oriented
language—database integration model: The composition-filters approach. In
Ole Lehrmann Madsen, editor, Furopean Conference on Object-Oriented Pro-
gramming, volume 615 of Lecture Notes in Computer Science, pages 372-395.
Springer-Verlag, 1992. (ECOOP ’92; Utrecht, The Netherlands; 29 June-3 July).

[2] Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik,
and Frank Zdybel. Commonl.oops: Merging Lisp and object-oriented program-
ming. In Norman Meyrowitz, editor, Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages 17-29. ACM
Press, 1986. (OOPSLA ’86; Portland, USA; 29 September—2 October). Published
as ACM SIGPLAN Notices 21(11), November 1986.

[3] Craig Chambers. Predicate classes. In O. M. Nierstrasz, editor, ECOOP '98—
Object-Oriented Programming, volume 707 of Lecture Notes in Computer Science,
pages 268-296. Springer-Verlag, 1993. (1993 European Conference on Object-
Oriented Programming; Kaiserslautern, Germany; 26-30 July).

[4] Pavel Curtis. LambdaMOO Programmer’s Manual, March 1997. Version 1.8.0p6.
ftp://ftp.Jambda.moo.mud.org/pub/MOO/ProgrammersManual.ps.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Flements of Reusable Object-Oriented Software. Addison-Wesley, Reading,
USA, October 1994.

[6] David Garlan and David Notkin. Formalizing design spaces: Implicit invocation
mechanisms. In Sgren Prehn and W. J. (Hans) Toetenel, editors, VDM ’91: Formal
Software Development Methods, Volume 1: Conference Contributions, volume 551
of Lecture Notes in Computer Science, pages 31-44. Springer-Verlag, 1991. (4th

! Except, in Perl, when the caller function is called within the DB package.

49



OOPSLA’99 Workshop on Reflection and Software Engineering

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

International Symposium of VDM FEurope; Noordwijkerhout, The Netherlands;
21-25 October).

William Harrison and Harold Ossher. Subject-oriented programming: A critique
of pure objects. In Proceedings of the Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages 411-428. ACM Press, 1993.
(OOPSLA ’93; Washington, USA; 26 September—1 October). Published as ACM
SIGPLAN Notices 28(10), 1 October 1993.

Gregor Kiczales. Traces (a cut at the “make isn’t generic” problem). In Shojiro
Nishio and Akinori Yonezawa, editors, Object Technologies for Advanced Software,
volume 742 of Lecture Notes in Computer Science, pages 27-43. Springer-Verlag,
1993. (First JSSST International Symposium on Object Technologies for Ad-
vanced Software; ISOTAS ’93; Kanazawa, Japan; 4-6 November).

Bent Bruun Kristensen. Subjective method interpretation in object-oriented mod-
eling. In Proceedings of the 5th International Conference on Object-Oriented In-
formation Systems. Springer-Verlag, 1998. (OOIS ’98; Paris, France; 9-11 Septem-
ber).

Stefan M. Lang and Peter C. Lockemann. Behaviorally adaptive objects. Theory
and Practice of Object Systems, 4(3):169-182, 1998.

Shinn-Der Lee and Daniel P. Friedman. Quasi-static scoping: Sharing variable
bindings across multiple lexical scopes. In Conference Record of the Twentieth
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 479-492. ACM Press, 1993. (POPL ’93; Charleston, USA; 10-13 January).
David R. Musser. Introspective sorting and selection algorithms. Software—
Practice and Ezperience, 27(8):983-993, August 1997.

Hideyuki Nakashima. Context reflection. In Akinori Yonezawa and Brian C.
Smith, editors, Proceedings of the International Workshop on New Models for
Software Architecture ’92: “Reflection and Meta-level Architecture”, pages 172—
177, 1992. (IMSA Workshop '92; Tokyo, Japan; 4-7 November).

Harold Ossher, Matthew Kaplan, Alexander Katz, William Harrison, and Vincent
Kruskal. Specifying subject-oriented composition. Theory and Practice of Object
Systems, 2(3):179-202, 1996.

Linda M. Seiter, Jens Palsberg, and Karl J. Lieberherr. Evolution of object
behavior using context relations. IEEFE Transactions on Software Engineering,
24(1):79-92, January 1998.

Larry Wall, Tom Christiansen, and Randal L. Schwartz. Programming Perl.
O’Reilly & Associates, Inc., Cambridge, UK, second edition, 1996.

W. Wulf and M. Shaw. Global variable considered harmful. SIGPLAN Notices,
8(2):28-34, 1973.




