

Page 1 of 5

Where are Programmers Faced with Concerns?

Elisa L.A. Baniassad and Gail C. Murphy
Department of Computer Science

University of British Columbia
2366 Main Mall

Vancouver BC Canada V6T 1Z4
{bani, murphy}@cs.ubc.ca

Christa Schwanninger and Michael Kircher
Siemens AG, ZT SE 2

Otto-Hahn-Ring 6, 81739,
Munich, Germany

{christa.schwanninger,
michael.kircher}@mchp.siemens.de

Abstract
This paper describes the results of a small exploratory
study performed to elucidate crosscutting concerns in
existing codebases. Our hypothesis was that that the code
directly associated with program change tasks would be
representative of crosscutting concerns. To our surprise,
we found that it was more often obstacles in the code
encountered while making a change that indicated
concerns.

1. Introduction
Several new mechanisms have been developed recently to
improve the support for separating crosscutting concerns
in code, including AspectJ[1][10], Hyper/J[2][8], and
composition filters[3]. In the literature, many potential
kinds of concerns suitable for separation have been
suggested, including synchronization policies [11],
exception handling [9], security [4], and features [8]. To
date, a few case studies [1][9] and some experiments[12]
have been conducted to investigate the impact of
separating concerns. However, little is know about the
kinds of concerns practicing software developers would
find beneficial to separate to aid common development
tasks. Improving our understanding of the concerns of
interest to developers may help direct the development of
tool support to aid the separation of concerns.

To address this issue, we have conducted a small
exploratory study to determine the kinds of concerns
programmers would find useful to separate in existing
codebases. This study involved developers in both an
academic and an industry setting.

The hypothesis of our study was that the portions of code
related to a program change task would correspond to a
crosscutting concern, and thus that tracking program
change tasks would help identify concerns in a codebase.

The study involved eight participants who were either
currently, or had recently been, involved in changing an

existing codebase. Each participant was interviewed three
times. In each interview, a participant was asked a series of
questions about the nature of their change task, and their
approach to the task.

Analysis of the data collected during the study indicated that
our hypothesis did hold: we could identify crosscutting
concerns from program change tasks. However, we did not
identify the concerns in the way we had anticipated. Instead
of crosscutting concerns being directly associated with the
change at hand, such concerns more often arose from
obstacles associated with performing the change.
Participants related that everything was going fine with the
change task until they ran into an obstacle, such as a piece
of the change which affected memory allocation, or
synchronization, or some sort of unidentifiable functionality
in the system. All of the participants found it difficult to
deal with obstacle code because it required them to address
an embedded crosscutting concern.

2. Description of the Study

Background of the participants
Because this was an exploratory study, we chose
participants from a broad range of backgrounds: some had
years of programming experience in an industrial setting,
others were graduate students with a range of programming
experience. The study involved eight participants in total:
four engineers from Siemens AG and four graduate students
at the University of British Columbia.

Only two of the participants were familiar with the concept
of separation of concerns and the newly developed
mechanisms available to support separation. One of these
two participants was actively applying aspect-oriented
programming [6] ideas in the change task examined. Two of
the other participants had never heard of the separation of
concerns concept until the study

To participate in the study, we required that a participant be
working on, or recently have worked on, a program change
task on source code they themselves had not written.

Page 2 of 5

Before commencing the study, participants were asked to
provide the interviewer with a copy of the code they were
working on to serve as a reference.

General Format
We organized the study as a series of interviews: each
participant was interviewed (by the same interviewer)
three separate times, with each interview lasting up to an
hour.

General guidelines for interviews were prepared in
advance. These guidelines were meant to focus the
interview, but the specific questions that were asked
depended upon the flow of conversation. The participants
were not informed of the contents of the interview
guidelines in advance. During each interview, we wanted
to determine four different pieces of information:
• the program change task of the participant,
• the approach of the participant to the task,
• how the participant figured out what pieces of code

needed to change, and
• whether the participant thought the change was

difficult to make and if so, why it was difficult.

To help focus the discussion, participants were asked to
identify which portions of code had, and were, being
changed. To keep track of these locations, we annotated
the interviewer’s copy of the source files.

All the interviews were audio taped and later transcribed.

How the questions were posed
The purpose of the study was to look for crosscutting
concerns in existing codebases. Rather than ask the
participants directly what concerns they wished to see
separated, we asked them questions about the change task
on which they were working, and attempted to glean
concerns from their responses.

There were three reasons for taking this approach. First,
most of the participants had never thought about
separation of concerns. When we attempted to pose
questions that directly asked about concerns, the
participants were unable to understand the context for, or
meaning of, our questions. Second, there was a danger
that the participants who did have some knowledge of
separation of concerns would jump to responding about
popular crosscutting concerns like tracing, debugging, or
distribution. Such a quick response might have hidden
more task-related concerns. Third, when programmers
are heavily involved in the details associated with a task,
it takes time to ease them into coarser-grained thinking
about their problem. Asking participants questions that
they could readily answer from their own experience, and

then analyzing their responses facilitated the gathering of
data.

At the beginning of an interview, participants tended to talk
about their change task in a detailed way. For example, one
participant provided in-depth information about specific
data structures used in the application. By the end of an
interview, participants typically started to think and talk
about their task at a more conceptual level.

This shift in the level of detail enabled participants to
consider higher-level questions, such as names they might
use to describe the kinds of code they were examining, or
methods they had used to find the relevant portions of
source for their task. The more conceptual level of thinking
about the task enabled the interviewer to ask participants to
think, between interviews, about the following question: “If
you could have any view of the code, what view would have
helped you perform this task?”. This question was intended
to help identify the portions of code the participant would
like to see separately. Since this question is vague, the
interviewer provided suggestions for answers. An example
answer might have been “all the code pertaining to the
database system” or “all the code related to printing”.

Method of Qualitative Analysis
To analyze the data, we examined the transcripts of the
interview sessions and the annotated the source code.

Our examination involved three passes of the transcripts.
First, we looked over the transcribed interviews to try to
understand the range of responses we received. Second, we
categorized the responses of the participants in terms of how
they described the change they were attacking, and what
they encountered while working on the change. Finally, we
examined the responses for commonalties.

We also examined portions of the annotated source code,
attempting to spot commonalities in terms of syntax,
semantics, or function. The interviewer examined the
participants’ codebases to try to determine whether the
changes being made could be characterized as belonging to
a particular concern.

3. Qualitative Analysis
Participants commonly described their change task from two
perspectives: a structural perspective, and an emergent
obstacle-based perspective. Almost every participant at
some point in an interview used the phrase: “everything was
going fine until…” they reached an obstacle.

Straightforward Structural Perspective
Each participant began by providing detailed descriptions of
the problem domain of the application and of the change.

Page 3 of 5

They described the field in which they were working, how
their application fit into that field, and how their change
fit into the application.

Participants’ initial descriptions of the change task itself
were in terms of easily identifiable structure in the code.
Specifically, most participants described the changes in
terms of a particular data structure or a particular module
in the code. For instance “I was changing the components
of a data structure” or “I was changing the methods
related to the user interface”.

Describing the change in this way was straightforward.
The fact that it was easy to describe the change from this
perspective was not due to a good encapsulation of the
code; often the code was spread across the codebase.
Rather, programmers found it easy to identify the code
because they could understand the code’s purpose and its
context within the structure of the application. They were
able to point out portions of the code that corresponded to
their straightforward changes.

In only one case did a participant describe code pertaining
to a crosscutting concern in the source as the target of the
change. This participant was currently working in the
area of aspect-oriented programming.

Non-straightforward Obstacle Perspective
After participants had described the general concepts of
the change upon which they were working, and after they
had pointed out the locations in the code which had to
change, we asked them to consider if these were the only
portions of code that had to change to complete the task.
Invariably, they said “no”. It was at this point that the
participants revealed a set of obstacles they had
encountered while making the change.

Figure 1 provides an abstract representation of the
programmers’ experiences. As long as the change was
within a structural context the programmers could
understand and conceptualize the change. The white inner
vertical rectangles in Figure 1 represent the code
associated with structure that needed to change.

However, as the change was being made, the programmers
tended to encounter obstacles (shown in black). These
obstacles comprised portions of code which were relevant to
the task but that also affected an underlying concern. For
example, one participant wanted to change the way user
interface information was passed around in a distributed
system. As would be expected, this change involved testing
the user interface code after the change. However, in
addition, it also involved testing that the distribution in the
program was still working after the change. The distribution
code, in this case, was the obstacle because the programmer
had to try to understand and test the entire underlying
concern (shown in light grey in Figure 1) that led to the
presence of that portion of code in order to make the change.
Because that underlying concern code was neither well
modularized nor well documented, it was difficult to
conceptualize and reason about.

Table 1 shows the program change tasks for each
participant, along with the obstacles encountered.

Table 1: Participants’ task descriptions
Participant Straightforward

Structural view
Non-straightforward
Obstacle View

1 Moving particular
computation to an
aspect-like
module.

• Synchronization
• Performance

2 Changing table
representation

• Memory Allocation

3 Changing matrix
calculation

• Memory Allocation

4 Tailoring a
matching
algorithm for a
specific purpose

• Computation
assumptions built
into data structures.

• Undecipherable
obstacle portions

5 Changing
packaging of user
interface
mechanism

• Distribution
• Tracing

6 Changing the
mathematical
model applied

• Security issues
• Communication

protocols
• Hardware platform

dependencies.
7 Changing printing

look and feel
• User Interface

consistency
• Resource speed

8 Adding
cancellation
notification to an
existing system

• Multithreading
• Behavioural

consistency

When faced with an obstacle, the programmers chose one of
the following three strategies:

1. Alter the relevant “obstacle” code to enable the
change task.

2. Understand, but not change, the underlying concern
associated with the obstacle sufficiently to make
the change work within it.

??? synchronization memory allocation

Figure 1. Obstacles reveal concerns

Code Obstacle Concern Change

Page 4 of 5

3. Completely alter the change task itself to account
for the obstacle without understanding the
obstacle.

Participants two, three and four chose option three. They
significantly rethought their approach to the change so as
to avoid dealing with, or understanding the obstacle code.
In these cases, the participants decided that they could not
adequately understand or address the obstacle. For
instance, Participant four ran into memory allocation
problems after making what should have been a simple
change to a table representation. Rather than attempting
to understand how the change affected the memory
allocation for the application, a work-around was devised
to trick the memory allocation portions of the source into
thinking a change had not been made.

Participants one, five, six and eight chose option two.
They worked hard to understand the affect of their code
on the crosscutting concern that presented an obstacle to
their change, and worked within the conventions of the
concern. Participant eight had to perform considerable
testing to ensure the obstacle had been dealt with
appropriately.

Participant seven was the only one to change the relevant
portions of the crosscutting concern to suit the change.
This approach was facilitated by the fact that the changes
were at the user interface level, and thus it was easier to
test the effect of the changes.

For all participants, overcoming an obstacle involved
significant effort to understand the relevant portions of the
crosscutting concern associated with the obstacle. When
asked, the participants described that even if they were
given a view of the crosscutting concern, it would still
require significant reasoning on their part to understand
how their change impacted and relied upon the concern.
This observation seems to indicate the need for a
ramification-based or context-sensitive view of the
crosscutting concern with relation to a particular portion
of code. Such a view would allow programmers to ask
the question “if I change this location in the code, how
will that crosscutting concern be affected?”.

To provide some evidence of our conclusions, we present
the cases of two of the eight participants in more detail.

Participant One. The change task of Participant one
involved moving source code related to a certain
crosscutting computation into an aspect-like module.
When we first began our discussions, the participant was
able to clearly state the kind of code that was the target of
the change, and was also able to point out the locations of
such code in the source. In the participant’s original
description, the change seemed simple to conceptualize: a

certain kind of code was being moved. This description
exemplifies what we have termed a straightforward
structural perspective of the problem.

We then probed further and asked if the change was as
straightforward as it sounded. It was at this point that the
obstacle perspective was revealed. In fact, the change was
riddled with complexity. Participant one had to keep in
mind that once code had moved to its new location, it had to
be realigned with the synchronization policy for the entire
application. In addition, the participant had to take into
account the performance impact of the change. It was not
until after the participant began changing the code that the
extent of the impact became evident.

Participant one’s interest in the synchronization crosscutting
concern did not extend across the entire system. Instead, the
participant’s desire was simply to understand the
ramifications of the crosscutting concern on the moved
code, and vice-versa. The participant was thus interested in
a local context-sensitive view of the crosscutting concern.

Participant Seven. Participant seven wanted to make a
simple change to the printed output of his tool. He wanted
the entire content of scrollable windows to print, rather than
simply what was showing on the current screen. The
participant was able to easily show the interviewer the
places in the source that needed to be touched to make this
change. The participant was able to describe the change
simply, in terms of the relevant modules in the source.

We then started the second phase of our questioning. What
problems have you encountered while trying to make this
change? The participant noted that one of the requirements
set out by the client was that the printed documents and the
user interface should be identical in look-and-feel. This
constraint meant the participant was also forced to examine
all the code related to the screen version of the user
interface. This activity had not been in the participant’s
initial assessment of the scope of the task.

Of course, since only certain portions of the screen GUI
code were relevant, the participant first had to determine
how to make minimal changes without destroying the design
of the system with a series of “hacks”. This points again to
the need for context-sensitive view of the crosscutting
concern.

4. Summary
This position paper reports on a small, exploratory study
conducted to examine which concerns a programmer might
find useful to separate to help support program development
tasks. The study focused on tracking program change tasks
to identify concerns in existing source codebases.

Page 5 of 5

Our study shows that code pertaining directly to the
program change tasks does not always indicate a
crosscutting concern. However, the obstacles encountered
by programmers when trying to make a change do often
indicate crosscutting concerns.

We also found that when programmers encounter
crosscutting obstacles in their code, they need to
understand both how their localized change affects the
crosscutting concern, and how the crosscutting concern
affects the change they are trying to make. In general,
the programmers did not think it would be necessary to
see entire crosscutting concerns separately from the rest
of the source, but rather they might find it helpful to be
able to see the portions of the concern affected by the
change.

Our small study shows that the kind of separated views of
source code useful to developers depends upon the tasks
that they are performing. In particular, when performing
maintenance tasks, developers may benefit from local,
context-sensitive views of a crosscutting concern.

Acknowledgements
This work was funded in part by a grant from the National
Science and Engineering Research Council of Canada
(NSERC), and by Siemens AG Corporation

We thank all participants who provided their time and
experiences for our study.

References
[1] AspectJ web site: www.aspectj.org
[2] Hyper/J web site:

www.research.ibm.com/hyperspace/
HyperJ/HyperJ.htm

[3] M. Askit, L. Bergmans and S. Vural. An Object-
Oriented Language-Database Integration Model:
The Composition-Filters Approach, Proceedings
ECOOP’92, LNCS 615, Springer, June 1992, pp.

372-395. File:
ftp://ftp.cs.utwente.nl/pub/doc/TRESE/LanguageDbase.
ps.Z

[4] R. E. Filman, Injecting Ilities. Workshop on Aspect-
Oriented Programming, ICSE-20, Kyoto, Japan, April
1998

[5] M. Kersten and G. Murphy, Atlas: A Case Study in
Building a Web-based Learning Environment using
Aspect-Oriented Programming. In Proceedings of
OOPSLA’99. Denver, CO, USA. November 1999,
ACM Press, pp. 340-352, 1999.

[6] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect Oriented
Programming. In Proceedings of ECOOP’97, LCNS
1241, pp. 220-242, Springer, 1997.

[7] H. Ossher, M. Kaplan, A. Katz, W. Harrison, and V.
Kruskal. Specifying subject-oriented composition.
TAPOS, 2(3), pp. 179-202, 1996.

[8] Peri Tarr, Harold Ossher, William Harrison and Stanley
M. Sutton. N degrees of separation: Multi-dimensional
separation of concerns. In Proceedings of the 21st
International Conference on Software Engineering, pp.
107-119, May 1999.

[9] M. Lippert and C. V. Lopes. A Study on Exception
Detection and Handling Using Aspect-Oriented
Programming. Technical Report P9910229, Xerox
PARC, Number CSL-99-1, December 1999.

[10] Christina Vedeira Lopes and Gregor Kiczales. Recent
Developments in AspectJ. Aspect-Oriented
Programming Workshop, ECOOP’98. In Object-
Oriented Technology: ECOOP’98 Workshop Reader, S.
Demeyer, J. Bosch (eds), LNCS 1543, pp.398-401,
Springer, 1998.

[11] C. V. Lopes and K. J. Lieberherr. Abstracting Process-
To-Function Relations in Concurrent Object-Oriented
Applications. In Proceedings of ECOOP’94, Springer-
Verlag, pp. 81-99, 1994

[12] R. Walker, E. Baniassad and G. Murphy. An Initial
Assessment of Aspect-Oriented Programming. In
Proceedings of the 21st International Conference on
Software Engineering, pp. 120-130, May 1999.

