
Separating Concerns with Hyper/JTM: An Experience Report�

Albert Lai, Gail C. Murphy and Robert J. Walker
Department of Computer Science
University of British Columbia

201-2366 Main Mall
Vancouver, BC V6T 1Z4 Canada
falai, murphy, walkerg@cs.ubc.ca

May 1, 2000

A Position Paper for the ICSE 2000 Workshop on Multi-
dimensional Separation of Concerns

Abstract

In earlier work, we conducted an exploratory investiga-
tion of concerns in two existing JavaTM packages: jFTPd
and gnu.regexp. Two separate developers marked con-
cerns in the source for each package: these concerns were
then compared and analyzed. In this paper, we describe
the next step of our investigations: the use of the IBM
Hyper/JTM tool to separate and configure the identified con-
cerns. We describe the various kinds of hyperspaces, hy-
permodules, hyperslices, and concern mappings we used
to describe our previously identified concerns. We also
discuss code restructurings we used to enable the captur-
ing and composition of concerns.

1 Introduction

A number of tools are appearing to help software
developers explicitly separate different concerns
in their programs. Two examples of such tools are
AspectJTM,1 [LK98] and Hyper/JTM,2. Each of these tools

�This research was funded by an IBM University Parternship Pro-
gram award and an NSERC research grant.

1http://www.aspectj.org
2http://www.research.ibm.com/hyperspaces

provides general mechanisms for separating concerns.
In AspectJ, a developer specifies crosscuts and crosscut
actions: the crosscuts define points in the program to
which the actions apply. For example, a crosscut defi-
nition might identify all getter methods of a subset of
the classes in the program; an associated crosscut action
might check a database to ensure the most up-to-date
information is returned by the method. In Hyper/J, a
developer chooses the most appropriate decomposition
for a piece of a program and can then combine the pieces
into a coherent system by stating a series of composi-
tion rules [TOHS99]. For example, a developer might
separately describe two concerns of a system, such as
the ability to make certain classes persistent and some
functionality of the system, and then might combine these
two concerns together.

Given the presence of mechanisms to help explicitly
separate concerns, it is now possible to explore more con-
cretely the kinds of concerns that each approach is best
suited to capture. In this paper, we focus on the approach
supported by the Hyper/J tool, applying the tool to sepa-
rate concerns3 we identified previously [LG99] in two ex-
isting JavaTM [GJS96] packages: gnu.regexp,4 and jFTPd.5

We begin with an overview of the range of concerns
we tried to separate with Hyper/J (Section 2) and a brief

3To keep the terminology clear with respect to Hyper/J, we are us-
ing the term concerns to refer to those items described as features in our
earlier work.

4Written by Wes Biggs (Version 1.0.8)
5Written by Brian Nenninger (Version 1.3)

1

Separating Concerns with Hyper/J: An Experience Report

overview of Hyper/J itself (Section 3). Then, we describe
a variety of ways in which we captured the concerns in Hy-
per/J (Section 4). As part of this description, we discuss
code restructurings we performed to enable the capturing
and composition of concerns.

2 Concerns

The concerns we tried to separate with Hyper/J had been
identified by two separate markers using a source code
mark-up tool called the Feature Selection tool [LG99].
The tool parses a defined set of Java files and allows a user
to highlight and tag segments of code as belonging to one
or more user-defined concerns.

The concerns were selected based on a variety of cri-
teria. Some concerns encapsulated standards conforma-
tion, such as pieces of code supporting the FTP protocol in
jFTPd. Other concerns encapsulated a configuration of the
software package: in gnu.regexp, different concerns were
defined for different forms of input, such as character ar-
rays and strings. Most concerns were selected based on the
criterion that they represented portions of the code that a
developer might want to change or remove. For instance,
one concern selected in gnu.regexp captured code related
to the matching of a regular expression over input span-
ning multiple lines.

Table 1 repeats a table presented in our earlier work that
summarizes the range of concerns selected in each pack-
age by each marker.

3 Hyper/J

Hyper/J is a tool developed at IBM T.J. Watson Research
Center to support the “multi-dimensional separation and
integration of concerns in standard Java software” [TO00,
p. 1]. For a full description of Hyper/J, the reader is re-
ferred to the Hyper/J documentation. In this section, we
provide a brief overview of the concepts in Hyper/J to fa-
cilitate the reading of this paper.

The Hyper/J tool permits a set of Java source files to be
decomposed along multiple dimensions of concern simul-
taneously. For example, Java classes may be considered
as classes in the Class dimension while particular methods

in the classes may be considered operations in the Feature
dimension. Each dimension may be partitioned into a set
of concerns. For example, the Feature dimension in jFTPd
can be partitioned into several concerns along the lines of
those identified in Table 1.

The Hyper/J tool also supports the integration of dif-
ferent dimensions of concerns through the description of
composition rules. For example, with jFTPd, a devel-
oper might describe how to integrate concerns of interest
for a particular configuration of the tool, such as support
for connection commands and directory commands, but
might choose not to include a concern that supports list-
ing commands.

When using Hyper/J, a developer provides three inputs:

� a hyperspace file that describes the Java class files
that can be manipulated by Hyper/J,

� a concern mapping file that describes which pieces of
the Java source map to each dimension of concern,
and

� a hypermodule file that describes which dimensions
of concern should be integrated (i.e., which hyper-
slices)6 and how that integration should proceed.

As a simple example, consider the two classes shown
in Figure 1. Class A has a method called print that sim-
ply prints the string “Hello” to standard output. Class B
has a method called print that prints the string “there
world” to standard output. We have been asked to create a
system that prints “Hello there world” to standard output.
Using Hyper/J, we can describe that class A belongs to the
Kernel concern, while class B belongs to the New con-
cern. These two methods can be composed to produce the
desired behaviour.

Figure 2 shows the three input files necessary to Hy-
per/J to perform the desired decomposition and composi-
tion. The hyperspace file describes that we are interested
in manipulating everything in the aTest package. The
concern mapping file describes the mapping of classes to
different concerns. Finally, the hypermodule file defines
that the composed system will include functionality from
both the Kernel and the New concerns, that functional-
ity from each concern should be merged based on names,

6A hyperslice is a declaratively complete slice of the program with
respect to a particular concern.

ICSE 2000 Multi-d SOC Workshop 2 May 1, 2000

Separating Concerns with Hyper/J: An Experience Report

No. Package Marker Concern Description
1 gnu.regexp #1 Version Information Software version tags in code
2 gnu.regexp #1 Input Data Types Various forms of input, e.g., strings
3 gnu.regexp #1 Error Handling
4 gnu.regexp #1 Debugging
5 gnu.regexp #1 String Substitution Replacing strings within matches
6 gnu.regexp #1 * various syntax flags * Concerns were selected for each syntax sup-

ported
7 gnu.regexp #1 REFilterInputStream For a given input stream, replace all regexp

with a specified string
8 gnu.regexp #2 Input Error Handling Handling of errors in input to match against
9 gnu.regexp #2 Pattern Error Handling Handling of errors in regexp pattern

10 gnu.regexp #2 Multiline Match Support Code supporting matches across lines
11 gnu.regexp #2 Newline Handling Code dealing with newlines
12 gnu.regexp #2 Variable Substitution Code supporting variable substitution during

matching
13 gnu.regexp #2 Matching Rules Code controlling matching process
14 gnu.regexp #2 RE Pattern Syntax Code related to multiple regexp syntaxes
15 jFTPd #1 Error Handling
16 jFTPd #1 Debugging
17 jFTPd #1 GUI
18 jFTPd #1 Protocol FTP RFC commands and completion codes
19 jFTPd #1 Networking Underlying network connection code
20 jFTPd #1 File System IO Code dealing with the server filesystem
21 jFTPd #1 Timeout Code related to command timeouts
22 jFTPd #1 Logging Code related to logging server commands
23 jFTPd #2 User Interface
24 jFTPd #2 GUI
25 jFTPd #2 Debugging
26 jFTPd #2 Logging Code related to logging server commands
27 jFTPd #2 Platform Specific Code dealing with specific platforms
28 jFTPd #2 Windows Specific Code dealing with the Wintel platform
29 jFTPd #2 Client Feedback Responses to client program
30 jFTPd #2 Client Interaction Commands from client
31 jFTPd #2 Directory Commands ftp commands related to directories
32 jFTPd #2 List Commands ftp commands related to listing files
33 jFTPd #2 Server File Manipulation ftp commands configuring server
34 jFTPd #2 Connection Commands ftp commands connecting to server

Table 1: Concerns Selected in gnu.regexp and jFTPd

ICSE 2000 Multi-d SOC Workshop 3 May 1, 2000

Separating Concerns with Hyper/J: An Experience Report

package aTest; package aTest;
class A f class B f

void print() f void print() f

System.out.println("Hello"); System.out.println(" there world");
g g

g

static void main(String args[]) f

A a = new A();
a.print();

g

g

Figure 1: Two Example Classes

and that theA class corresponds to theB class in the merge.
When processed by Hyper/J, this system produces the de-
sired output.

4 Describing Concerns in
Hyper/J

Most of the concerns we identified in the jFTPd and
gnu.regexp packages are scattered and tangled through the
code bases. Few concerns comprised entire methods or
classes: instead, most concerns comprised a few lines of
code within a method in one class, a few lines within a
method in another class, a field in yet another class, and so
on. Since existing separation of concern mechanisms, in-
cluding Hyper/J, support separation along existing struc-
tural boundaries in the code base, such as method bound-
aries and fields, encapsulating and separating concerns of-
ten required the restructuringof code before Hyper/J could
be applied.

To consider the range of possibilitiesof expressing con-
cerns with Hyper/J, each author of this paper applied Hy-
per/J separately to one of the two packages. At this point,
we have not yet exhaustively separated out and recom-
posed all concerns that we had identified previously. In
this section, we describe the variety of approaches we used
in applying Hyper/J to capture individual concerns. For
each approach, we discuss the benefits and limitations of
the approach.

4.1 Restructuring to New Methods on the
Same Class

Some methods involve multiple concerns. For exam-
ple, in the gnu.regexp package, one of the routines for
performing a match (RETokenAny.match) checks for
characteristics of the kind of match allowed, such as
whether or not it is an anchored match, and performs
the appropriate processing. This routine consists of an
if--then--else sequence of code: check if the char-
acteristic holds, and then perform the appropriate kind of
match. The jFTPd package contains similar constructs,
most notably in the FTPConnection.doCommand
method, which parses each FTP request entered by the
user and calls the appropriate method to handle the re-
quest. The different characteristics corresponded to dif-
ferent concerns. Using Hyper/J, we wanted to be able to
separate and then mix-and-match in the desired concerns
for a particular configuration of the system.

One way to accomplish the separation of the differ-
ent concerns with Hyper/J is to restructure a method
with tangled concerns into separate methods on the
same class, each providing a different concern. For
RETokenStart.match from gnu.regexp, this in-
volved creating separate (private) methods for matching
across multiple lines (matchMultiLine), matching
when not at the beginning of a line (matchRegNotBol),
and performing an anchored match (matchAnchored).
Each of these methods had the same parameter list as
the original match routine. However, the return type
for each of these methods was altered. Instead of re-

ICSE 2000 Multi-d SOC Workshop 4 May 1, 2000

Separating Concerns with Hyper/J: An Experience Report

Hyperspace File: Concern Mapping File:
hyperspace Test class A : Feature.Kernel

composable class aTest.*; class B : Feature.New

Hypermodule File:
hypermodule Test

hyperslices:
Feature.Kernel;
Feature.New;

relationships:
mergeByName;
equate class Feature.Kernel.A,

Feature.New.B;

Figure 2: Example Hyper/J Input Files

turning an integer array similar to match, each routine
returned an object of a newly introduced private class
called TmpResult. The purpose of TmpResult was
to bundle the result of checking if a particular match
applied and the actual result of performing that match.
The introduction of this new return type was necessary to
determine, when composing the methods, which test had
succeeded, and thus, which value should be returned.

The body of the original match routine was altered
to call a newly introduced (private) privateMatch
routine. This routine was introduced for two reasons.
First, privateMatch shared the same signature as
the newly introduced specific match routines. Sec-
ond, privateMatch comprised the default behaviour
if no specific match routine applied. After calling
privateMatch, the match routine unbundles the re-
sult from the temporary object and returns the provided in-
teger array as the result of the match.

With this restructuring, it is possible to describe to Hy-
per/J which methods participated in which concerns and
how to compose the concerns into a desired match rou-
tine. Specifically, the concern mapping file included lines
as shown in Figure 3. The first line ensures that thematch
and the privateMatch methods are both considered
part of theKernel feature. The next lines separate two of
the newly introduced methods into specific features which
may or may not be chosen to be composed into match.

Composing the concerns in a hypermodule requires a

few steps (see Figure 3). The overall composition rule in
use was mergeByName. Thus, to ensure that the meth-
ods for specific match handling were considered as part
of privateMatch, it was necessary to use an equate
statement. Furthermore, because there was an ordering
to the testing of the match characteristics, it was neces-
sary to use order statements to express the relationship
between the methods. Finally, we needed to introduce
one more (static) method on the RETokenStart class
to handle the return values from the composed method
(summarizeMatch) and we set the summary function
for the composed method to this newly added method. The
summarizeMatch method simply receives an array of
TmpResult objects from the composed methods, goes
through them in order and returns the integer array set in
the first object that recorded a successful test.

The example shown in Figure 3 focuses on one method
in one class. The approach is easily extended to multiple
methods on multiple classes.

Benefits There are four benefits to this approach.

1. The composition rules—a combination of equate,
order and set summary—needed to describe
the merging of the split methods are easy to state and
easy to understand.

2. The restructuring is straightforward to apply: the
bodies of existing methods need to be altered and new

ICSE 2000 Multi-d SOC Workshop 5 May 1, 2000

Separating Concerns with Hyper/J: An Experience Report

Concern Mapping File:

package gnu.regexp : Feature.Kernel
operation gnu.regexp.RETokenStart.matchMultiLine : Feature.MultilineHandling
operation gnu.regexp.RETokenStart.matchAnchored : Feature.MatchingRules
...

Hypermodule File:

hypermodule DemoGnu
...
relationships:
mergeByName;
equate operation Feature.Kernel.privateMatch,

Feature.MultilineHandling.matchMultiLine,
Feature.MatchingRules.matchAnchored;

order action Feature.MultilineHandling.RETokenStart.matchMutiLine
before action Feature.MatchingRules.RETokenStart.matchAnchored;

set summary function for action
DemoGnu.RETokenStart.privateMatch_matchMultiLine_matchAnchored
to action DemoGnu.RETokenStart.summarizeMatch;

end hypermodule;

Figure 3: (Approach #1) Part of Hypermodule Specification for Restructuring Methods in Class

methods need to be added to the existing class. Tool
support can help with these restructurings [Opd92].

3. Only the code in the class with the method being un-
tangled was affected. Thus, there is little impact to
how the system is built.7

4. Because the impact of the restructuring is one class,
it is easy to reason about the change. The developer
need only analyze the one class.

Limitations There are three limitations to this approach.

1. When the order of the composition of the separated
methods matters (as it did in the example above), it
is difficult to capture the ordering constraints. The

7The reader may have noted that the restructuring above requires that
some functionality be composed into privateMatch or the system
may not work correctly.

composition rules we used in Hyper/J make the or-
dering explicit, but the ordering information needs to
be known to developers who are going to write such
Hyper/J specifications.

2. The composition of the separated methods and the
determination of the final result by a summary func-
tion means that the separated methods cannot have
side-effects. Whereas in the original program, a
method would only be executed if the test succeeded,
in the composed program, all methods will be exe-
cuted and the results then checked.

3. The class may be harder to comprehend. The sepa-
rated methods must have the same parameter list as
the original method, even if some of those methods
do not require all of the parameters. It may be harder
to understand the class because more methods have
been introduced whether the reason for separating the
methods is not clear.

ICSE 2000 Multi-d SOC Workshop 6 May 1, 2000

Separating Concerns with Hyper/J: An Experience Report

4.2 Restructuring Each Class to Multiple
Classes

A second way to accomplish the separation of the
different concerns with Hyper/J is to subdivide each
class, and hence each method therein, into concern-
specific classes. For example, in marker #2’s feature
identification for jFTPd, the original package contained
an FTPStatusWindow class composed of Kernel,
Debugging, GUI, and User Interface features, and an
FTPAboutBox class composed of GUI and User Inter-
face features. After decomposition, there were hierarchies
for the GUI and User Interface features that contained
feature-specific analogues to FTPStatusWindow and
FTPAboutBox, while the hierarchies for the Kernel and
Debugging features contained feature-specific analogues
to FTPStatusWindow but not to FTPAboutBox.
If concerns were truly independent, then there could
be completely separate hierarchies of concern-specific
classes implementing each concern without reference to
the other hierarchies. The presence of such independent
hierarchies, i.e., subjects, could reap the potential benefits
of subject-oriented programming [HO93].

While the declarative completeness guaranteed by hy-
perslices together with their ability to select individual
methods and fields from classes may not require the ex-
plicit decomposition of each class into concern-specific
analogues, this restructuring lent a clarity to what com-
prised each hyperslice.

However, since Hyper/J operates on class files, the
concern-specific classes have to be compilable and, hence,
declaratively complete before Hyper/J can manipulate
them. If concerns were independent, this would not be
problematic; when interdependences do occur, declarative
completeness must be manually ensured by adding appro-
priate stub methods to concern-specific classes when they
refer to methods that are only present in other concerns.
Sometimes this is a reasonable and satisfactory course of
action, but when the stub method has no semantics that
follows from those of the concern itself, the conceptual
cohesiveness of the concern (and thus, of the offending
concern-specific class) is flawed.

Furthermore, when a value-returning stub method is to
be used in a concern-specific class, it either has to return a
default value or throw an exception indicating that a stub
method has been invoked (and should not have been). The

latter effect is analogous to the error message produced
by Hyper/J when an abstract method8 automatically intro-
duced for declarative completeness is neither merged nor
overridden by some concrete method.9 The significant dif-
ference is that the presence of an exception throwing stub
can escape notice until run-time and until the appropriate
execution path is traversed, whereas a method automati-
cally introduced by Hyper/J will cause a loading or ver-
ification error if still present in the composed class. The
use of only a select subset of concerns within a program
is questionable when a concern that is being left out of a
compositioncan be the only one providingan implementa-
tion appropriate for replacing these abstract or stub meth-
ods.

Consider the example in Figure 4 from jFTPd. The
handler field was identified as the Kernel feature,
as were the first two statements of the stopServer
method. The third statement was identified as the User
Interface feature. To eliminate the resulting dependence
on handler within the User Interface feature, a new
method, serverOn(), was added to this class that then
delegated to handler. The Kernel-specific class then
received the implementation of serverOn() that per-
formed the delegation, while the User Interface feature re-
ceived a stub method (see Figure 5). This stub method
could either return a default value, such as true, or throw
an exception to indicate that a stub method was actually
invoked. The default value choice is not ideal, however,
since one does not always want the same value to be re-
turned, for example.

Benefits There are two benefits to this approach.

1. It might be easier to manage and version separate
hierarchies semi-independently via the true benefits
of subject-orientedcomposition [OKK+96], which is
effectively a restricted form of the mechanism pro-
vided by Hyper/J [TOHS99, p. 116].

2. The structure of hyperslices, in the absence of analy-
sis tool support, is clearer as no doubt can exist as to
which concern a given piece of code belongs.

8A method possessing no invokable body.
9Merging or overriding an abstract method with a concrete method

means that there is one method body to be executed when the composed
method is invoked—the lack of a body for the abstract method is ignored.

ICSE 2000 Multi-d SOC Workshop 7 May 1, 2000

Separating Concerns with Hyper/J: An Experience Report

public class FTPStatusWindow extends Frame {
FTPHandler handler;

public void stopServer() {
handler.stopService();
disconnectAllUsers();
setOnOffLabel(handler.serverOn());

}

...
}

Figure 4: (Approach #2) An Example of Field Access Tangling Between Concerns

Limitations There are three limitations to this approach.

1. The lack of independence of concerns causes dif-
ficulty in actually constructing separate hierarchies.
For example, stub methods need to be manually in-
serted.

2. The separated classes need to be individually com-
pilable whereas, in using Hyper/J directly to pull out
methods and fields from the original class, the orig-
inal class had to be compilable, a less stringent re-
quirement.

3. Throwing exceptions from stub methods can create
systems that will unexpectedly fail at run-time only
when particular execution paths are traversed. Anal-
ysis tool support could indicate the presence of such
stub methods within the composed classes.

4.3 Restructuring Asymmetric Relation-
ships using Bracket

A third approach to separation of concerns with Hy-
per/J resulted from noticing asymmetric relationships be-
tween concerns. For example, the User Interface con-
cern in jFTPd primarily consists of FTPStatusWindow
and its interactions with FTPHandler. The join points
within FTPHandler are responsible for creating and
sending events to an instance of FTPStatusWindow.
FTPHandler provides the core functionalityof handling
FTP connections while FTPStatusWindow only pro-
vides user interface functionality. Although it was pos-

sible to capture the join points by an equate relation-
ship, an equate inadequately expresses the asymmetry
between the concerns. The bracket relationship seems
more appropriate for expressing this asymmetry.10

Using the bracket relationship, developers can associate
the execution of a target instance method with the execu-
tion of other related instance methods. For instance, a de-
veloper can state that one method should run after another
method. At compile time, each instance method has a no-
tion of a self or this object. Unfortunately, the bracket
relationship does not provide a way for a bracket’ing
method to refer to the bracket’ed object.

For example, consider the method setupDone be-
fore the User Interface concern was separated, as shown
in Figure 6. The setupDone method passes this to
the constructor for FTPStatusWindow. Ideally the
bracket after relationship could be used to insert the call
to FTPStatusWindow’s constructor, but it is not possi-
ble for FTPStatusWindow to refer to the target object
(an instance of FTPHandler) there.

Figure 7 shows the solution to this problem. This so-
lution provides a clean separation of the User Interface
feature from the FTPHandler code. However, it re-
quires the parameter list to setupDone be modified to
include a parameter for the ConnectionHandler ob-
ject so that the bracket’ing method can access the nec-
essary information. This change requires the modifica-

10After restructuring the User Interface concerns, we noticed that the
bracket relationship seemed similar to the advice crosscut in
AspectJ.

ICSE 2000 Multi-d SOC Workshop 8 May 1, 2000

Separating Concerns with Hyper/J: An Experience Report

public class FTPStatusWindow/*Kernel*/ extends Frame {
FTPHandler handler;

boolean serverOn() {
return handler.serverOn();

}

public void stopServer() {
handler.stopService();
disconnectAllUsers();

}

...
}

public class FTPStatusWindow/*UserInterface*/ extends Frame {
boolean serverOn() {
return true;
/* Alternatively: throw new RuntimeException("Stub method called"); */

}

public void stopServer() {
setOnOffLabel(serverOn());

}

...
}

Figure 5: (Approach #2) Untangling Field Access Produces Unsatisfying Results

tion of all call sites for for setupDone. Fortunately,
there was only one such site. Additionally, from the per-
spective of maintaining this code, it may not be immedi-
ately obvious to a developer why setupDone requires
the ConnectionHandler argument.

The code in Figure 7 represents a first attempt to
separate the User Interface concern. During this at-
tempt, no code was added to instantiate UIUsage.
This was a developer error, but it resulted in working
code—apparently “magically”; somehow, the win field
obtained a reference to a particular FTPStatusWindow
instance and retained it between the calls to newWindow
and connectionsChanged. Stated another way,
even though there seemed to be no object instan-

tiation that contained win, both newWindow and
connectionsChanged referenced the same
FTPStatusWindow instance. In retrospect, this
was a surprising result.

Examination of the FTPHandler class generated by
Hyper/J quickly revealed how this was possible: Hyper/J
made FTPHandler a subclass of UIUsage. Thus, the
existing instance of FTPHandler provided the context
for win. In light of this discovery, it now seems pos-
sible for bracket’ing methods to refer to the bracket’ed
object through this. However, it raises the prob-
lem of multiple brackets from different classes on one
class. The bracket’ed class must subclass each of the
bracket’ing classes. This is particularly a problem in

ICSE 2000 Multi-d SOC Workshop 9 May 1, 2000

Separating Concerns with Hyper/J: An Experience Report

public class FTPHandler implements ConnectionHandler {
public void setupDone() {
...
startService();
...
(new FTPStatusWindow(this)).show();

}
...

}

Figure 6: (Approach #3) Reference to this

Java where multiple inheritance is not allowed.

Benefits There are two benefits to this approach.

1. Similar restructuring has been applied in systems us-
ing AspectJ. Developers with previous AspectJ ex-
perience can apply similar decomposition strategies
with Hyper/J.

2. The bracket relationship can take optional argu-
ments $ClassName and $OperationName to
provide some context information for structuring that
is not available in other composition relationships.

Limitations There are two limitations to this approach.

1. The bracket relationship is only suitable for join
points which lie on method boundaries. For example,
if the join point for some concerns is within a condi-
tional statement, bracket can not be used without
some restructuring.

2. To provide context for bracket’ing methods, the
bracket’ed method’s arguments may be modified.
The modifications may seem unnecessary outside of
the context of the bracket relationship. An exam-
ple of this is the method setupDone in Figure 7.

5 Discussion

In addition to those raised above, we found a few more
general issues in our investigations.

A Separable If–Then–Else Construct Long, nested
if--then--else constructs occurred within both
packages in which individual else-if blocks were part
of different concerns. To solve this in a general manner
that worried about side-effects and ordering, each one
of these blocks would have to be moved within its own
method, and these resultant methods would have to be
merged in the same order in which the corresponding
blocks occurred in the original method. Each of these
methods would require all the values of local variables
and parameters in the original method to be encapsulated
in a “state” object that would be passed to each, in turn,
along with a boolean indicating whether a successful
branch had been found yet or if the current test with
its attendant side effects should proceed. The values
within the “state” object would be altered just as the
original local variables and parameters were. Finally, a
boolean would be returned to indicate whether this test
had succeeded or not. Fortunately, this general solution
was not needed in the actual cases found in the packages.

Faking Mid-Method Join Points Hyper/J has no direct
means of merging one concern-specific method into the
midst of another, rather than neatly at its start or end. For
example, consider the method in Figure 8; here the first
and third statements are in the Directory Commands fea-
ture, while the second is in the Debuggingfeature. In order
to provide a “hook” onto which Hyper/J can merge the de-
bugging statement, it is necessary to make a new method,
move either the preceding or following expression, state-
ment, or block to this method, and call the new method
in place of the moved code. In Figure 9, we chose to

ICSE 2000 Multi-d SOC Workshop 10 May 1, 2000

Separating Concerns with Hyper/J: An Experience Report

move the constructor call to Filewithin the new method
FileHook. If it were possible to perform merges with
call sites, we could merge the debugging statement with
this particular constructor call to File and avoid the arti-
ficiality of creating and calling theFileHooks from each
feature, as well as the artificiality of the structure of the
Debugging-specific FileHook.

Overlapping Features In the jFTPd package, it fre-
quently happened that marker #2 assigned a given piece
of source code to multiple concerns. At first glance, this
seemed to indicate that these pieces of code should, thus,
belong to all concerns marking that code; rather than re-
peating a piece of code in each concern and then merg-
ing the pieces to run sequentially, one could be selected
to override the others. It often happened that a piece of
code would be assigned to one feature while a subset of it
was additionally assigned to another; this is problematic
as the code that belonged to the first feature but not to the
second was often necessary for the correct functioning of
the subset belonging to both features, such as code initial-
izing variables. It seemed as though the second concern
was therefore dependent on the first, i.e., the first had to
be present if the second were to be present and the result-
ing system were to be functional. In cases where the de-
pendences were in one direction in one part of the system,
but in the other in a different part of the system, it seemed
that the both concerns had to be present if either one was.
For example, Figure 10 shows a snippet of code the en-
tirety of which was identified with the Client Interaction
feature, and the last else-if block of which was addi-
tionally identified with the List Commands feature. Since
the List Commands portion depends on the correct initial-
ization of thehandled andupline variables, including
this portion of code in a composed system without includ-
ing the initialization portion would not yield a functional
system.

However, it is possible that the situation is more inter-
esting than this: code segments that are shared by multi-
ple concerns, perhaps, should be included in a composi-
tion only when all of those concerns are included in that
composition, and not the rest of the time. This possibility
was not realized until after our investigation, so it is not
clear whether leaving out such shared code would allow
each concern to be independently functional when not all

concerns participating in sharing it are present in a com-
posed system.

6 Summary

In this position paper, we have outlined a variety of
techniques we have tried for encapsulating and compos-
ing concerns in two existing Java packages: jFTPd and
gnu.regexp. Each of these techniques involves different
trade-offs. We plan to continue applying and analyzing
Hyper/J to these packages to develop a better understand-
ing of which techniques are best suited to help separate
concerns in an existing system. We believe this work will
also help develop insights into appropriate design strate-
gies for building new systems with Hyper/J.

References
[GJS96] J. Gosling, B. Joy, and G.L. Steele. The JavaTM Lan-

guage Specification. Addison-Wesley, 1996.

[HO93] W. Harrison and H. Ossher. Subject-oriented pro-
gramming (a critique of pure objects). In Proc. of
OOPSLA, pages 411–428, 1993.

[LG99] A. Lai and Murphy. G.C. The structure of features
in Java code: An exploratory investigation. 1999
OOPSLA Workshop on Multi-dimensional Separa-
tion of Concerns in Object-Oriented Systems, Octo-
ber 1999.

[LK98] C. Lopes and G. Kiczales. Recent developments in
AspectJTM. In ECOOP ’98 Workshop Reader, pages
398–401. Springer-Verlag, 1998.

[OKK+96] H. Ossher, M. Kaplan, A. Katz, W. Harrison, and
V. Kruskal. Specifying subject-oriented compo-
sition. Theory and Practice of Object Systems,
2(3):179–202, 1996.

[Opd92] W.F. Opdyke. Refactoring Object-Oriented Frame-
works. PhD thesis, University of Illinois, Urbana-
Champaign , IL , USA, 1992.

[TO00] Peri Tarr and Harold Ossher. Hyper/J User and In-
stallation Manual. IBM Research, 2000.

[TOHS99] P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton, Jr.
N degrees of separation: Multi-dimensional sepa-
ration of concerns. In Proc. of the 1999 Int’l Conf.
on Soft. Eng., pages 107–119, Los Angeles, USA,
16–22 May 1999.

ICSE 2000 Multi-d SOC Workshop 11 May 1, 2000

Separating Concerns with Hyper/J: An Experience Report

public class FTPd {
public static void main(String args[]) {
...
handler.setupDone(handler);

}
}

public class FTPHandler implements ConnectionHandler {
public void setupDone(ConnectionHandler h) {
...
startService();
...

}
...

}

public class UIUsage {
FTPStatusWindow win = null;

public newWindow(ConnectionHandler h) {
win = new FTPStatusWindow(h);
win.show();

}

public void connectionsChanged() {
if (win != null)
win.connectionsChanged();

}
...

}

Figure 7: (Approach #3) Solution Permitting Reference to this

public boolean doCwdCommand(String line) {
...
String newPath = makeFilePath(newDirPath);
if(DEBUG) System.out.println(newPath);
File f = new File(newPath);
...

}

Figure 8: A Concern-Specific Statement in the Middle of a Method

ICSE 2000 Multi-d SOC Workshop 12 May 1, 2000

Separating Concerns with Hyper/J: An Experience Report

public boolean doCwdCommand/*DirectoryCommands*/(String line) {
...
String newPath = makeFilePath(newDirPath);
File f = FileHook(newPath);
...

}

public File FileHook/*DirectoryCommands*/(String path) {
return new File(path);

}

public File FileHook/*Debugging*/(String path) {
if(DEBUG) System.out.println(path);
return null;

}

Figure 9: The Artificial Solution to Obtain a Mid-Method Join Point

public void doCommand(String line) {
...
boolean handled = false;
// ok, so this isn’t efficient
String upline = line.toUpperCase();

try {
if(upline.startsWith("USER ")) {
handled = doUserCommand(line);

}
else if(upline.startsWith("PASS ")) {
handled = doPassCommand(line);

}
// The next else-if block is in List Commands
else if(upline.equals("LIST") || upline.equals("NLST")) {
handled = doListCommand(line);

}
...

}
...

}

Figure 10: Multiple Concerns Marking a Single Piece of Code

ICSE 2000 Multi-d SOC Workshop 13 May 1, 2000

