Implicit Context: Easing Software Evolution and Reuse

Robert J. Walker
Department of Computer Science
University of British Columbia
201-2366 Main Mall
Vancouver, BC V6T 174, Canada

walker@cs.ubc.ca

ABSTRACT

Softwaresystemshouldconsistof simple,conceptuallycleansoft-
warecomponenténteractingalongnarrav, well-definedpaths.All
too often, this is not reality: complex componentsnd up inter-
actingfor reasonainrelatedo the functionality they provide. We
referto knowledgewithin acomponenthatis notconceptuallyre-
quiredfor theindividual behaiour of that componentasextrane-
ous embeddedknownledge (EEK). EEK creepsinto a systemin
mary forms,includingdependencesponparticularnamesandthe
passingof extraneougparametersThis paperproposeghe useof
implicit context asa meangor reducingeEK in systemsby com-
bining amechanisnto reflectuponwhathashappenedh asystem,
throughquerieson the call history, with a mechanisnfor altering
calls to and from a component. We demonstratehe benefitsof
implicit context by describingits useto reduceEEK in the Java™
Swinglibrary.

Categoriesand Subject Descriptors

D.1 [Software]: ProgrammingTechniquesD.2.3 [Software En-
gineering]: Coding Tools and TechniquesD.2.7 [Software En-
gineering]: Distribution, MaintenanceandEnhancementD.2.11
[Software Engineering]: Software Architectures—nformation
hiding;, D.2.13[Software Engineering]: Reusableoftware.

General Terms
Algorithms,Languages.

Keywords

Structure flexibility, extraneousembeddedknowledge, EEK, im-
plicit contet, call history, contextual dispatch.

1. INTRODUCTION

When we begin building a software system,we typically strive
to designsoftware componentghat are simple and conceptually
clean.Whenwe finish building a versionof the systema different
storyhastypically unfolded.An original vision of independenand
cohesie componentsghatinteractalongnarrov pathsis too often

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.
SIGSOFT 2000 (FSE-8) 11/00 San Diego, CA, USA

© 2000 ACM ISBN 1-58113-205-0/00/0011...$5.00

69

Gail C. Murphy
Department of Computer Science
University of British Columbia
201-2366 Main Mall
Vancouver, BC V6T 174, Canada

murphy@cs.ubc.ca

replacedwith a reality in which thereexists a larger than desired
setof interactionsbetweercomponents.

Olviously, componentsnust communicateto provide system
behaiour. Communicationleadsto interactionbetweencompo-
nents. The problemresidesin the factthata componenendsup
interactingwith othercomponentgor reasonsot directly related
to providing its behaiour. For example,whena classparticipates
in the AbstractFactory designpattern[4] asa client, it mustbe
aware of this participation;the abstractfactory classmustbe ex-
plicitly namedeven thoughonly the productclassesnanagedy
thefactoryareof interestto theclient. Suchexplicitly namednter-
actionsmalke softwarebrittle. Wereferto knowledgeof theexternal
world within a componenthatis not conceptuallyrequiredfor the
individual behaiour of that componentas extraneousembedded
knowledg (EEK). In Section2, we expanduponour descriptionof
EEK andgive somesimpleexamples.

To remove EEK from componentsye proposeusingimplicit
contect—knowledgeof the componentshat exist in a systemand
of the messagethathave beenpreviously communicatedetween
them—to interpretand to alter messages. When a messages
passedr receved, additionaldetails(suchas parametersganbe
filled-in by reflectingupon what has previously occurredwithin
thesystemthecall history. Furthermorea messageanbealtered
dependingon to whereit is being sentor from whereit is being
receved;thatis, messagesanbeinterceptedeforeor afterbeing
sentandbe replacedby othermessagedependingon the context
in which they occur We call this contextual dispatd. In Section3,
we expanduponthis descriptionof implicit context andshav how
it maybe appliedto remove the EEK from the simpleexamplesof
Section2. We thendescribejn Sectior4, a semi-automategroof-
of-concepmechanisnior usingimplicit context thatwe have used,
anddiscussissuesthat arisein providing fully automatedsupport
for theapproach.

To demonstratéhe approachyve presenthe applicationof our
proof-of-concepimplementatiorof implicit context to partof the
1,304-classlava™ Swing graphicaluserinterfacelibrary in Sec-
tion 5. We shav how the useof implicit context helpedto malke
componentsn Swingsimplerandlessbrittle. We wereableto ap-
ply implicit context incrementally evolving partsof Swingto use
implicit context while running side-by-sidewith unchanged¢com-
ponents.

In Section6, we discussssueshatarisein usingimplicit con-
text. Section7 comparesimplicit contet to other relatedap-
proaches. Finally, we summarizeour agumentsand findingsin
Section8.

lWe usethe term componento refer to a structuralunit, suchas
a method,class,or module,whenwe do not careto differentiate
betweerthese.

The contritutions madeby this paperare: (1) to illustratethe
problemof extraneousembeddedknowledge,and(2) to introduce
implicit contet, aconcepwhoseusecanreduceEEK, therebyeas-
ing softwareevolutionandreuse.

2. EXTRANEOUS EMBEDDED
KNOWLEDGE

Extraneousmbeddedknowledge creepsinto a componentasthe
components elaboratecandimplemented Sometimegshe depen-
denceswe build in cancomebackto hauntuslaterwhenwe need
to changeour systemor reusepiecesof it. Wefocusonafew of the
morecommonformsof EEK heré.

The simplestform of EEK consistsof the dependences client
componentorms on particularnamesand signaturesof external
components.If ary of the external namesor signatureschange,
our clientcomponenwill break. Whatshouldbe importantto the
client is not which componentwill be providing desiredexternal
functionality but ratherwhatfunctionalityis neededFor example,
say we had a client that referredto the Vect or class;at some
pointVect or isrenameddynani cAr r ay, therebybreakingour
client. Our client caredaboutthe Vect or functionality, not the
name;therefore the specificnamewasEEK within theclient.

More complex EEK arises,for example,when a classpartic-
ipatesin the Abstract Factory designpattern[4] asa Cl i ent .
Cl i ent mustexplicitly nametheAbst r act Fact or y classand
altertheway in which it would otherwisecreateaninstanceof an
Abstract Product class.Ratherthancontainingstatementof
theform (usingJava syntax):

Abstract Product product
new Abstract Product () ;

d i ent mustusethemoreconvolutedform:

Abstract Product product
factory. makeAbstract Product () ;

wheref act ory is of type Abst r act Fact or y andcontainsan
instanceof Concr et eFact or y, asubclas®f Abst r act Fac-

t ory, thathasbeenpassedo theC i ent atsomepoint. There-
fore, G i ent containsexplicit knowvledge of its participationin
theAbstractFactorydesigrpattern:it bothnamegheAbst r act -

Fact ory classandinvokesa factory methodtherein. The pres-
enceof thisknowvledgewithin O i ent forcestheAbstractFactory
designpatternto beusedwhenaerCl i ent isto bereusedSince
Cl i ent would be just aseffective at providing its intendedpur
posewereit possibleto usethe first form of the statementbove,
the knowledgeof the AbstractFactory designpatterninvolved in
the useof thesecondorm is EEK within Cl i ent .

A more subtle version of EEK arisesbetweencomponents.
Consider drawing toy robots representecby a Robot class.
Robot possessesdr awmethodthatdelegateso aseriesof other
methoddor draving thedifferentpartsof therobot: thetorso,head,
left arm,andsoforth. Eachof thesemethodsjn turn, delegatesto
yet othermethodsfor draving smallerbits of the robot, primitive
objects(suchasrectangles)or both. In implementingthesemeth-
ods,werealizethatwe needa carvason whichto draw primitives.
Becausehe robot may needto be dravn on differentcarvasses,
a carvas object mustbe passedo the Robot class;therefore,a
parameteis addedto the dr aw methodto acceptsuchan object.

2EEK is a generallyapplicableconcepthowever, we limit its dis-
cussiorto object-orientatedoftwarewithin thispapemueto aneed
to groundthe discussioranddueto spacdimitations.

70

Sincewe needto have this carvasat the pointswhereit is required
to draw primitives, a parameteiis addedto all the methodsthat
draw partsof the robotandeachmethoddutifully passeghe can-
vason. Only themethodshatdraw primitivesactuallydo anything
with the carvas;the otherssimply passit to the methodsto which
eachdelegates. Knowledge of the carvas canthus be seento be
EEK from the perspectie of thesemethods:it is heedednot for
the conceptuaintegrity of eachof thesemethodsbut only because
acarvasobjectneeddo be explicitly usedto drav primitives,and
this objectmusttravel from the clientsof Robot , throughthe hi-
erarchyof delegations,down to the primitive draving calls being
made.

Categorizationof knowledgeasEEK canonly occurrelativeto a
particularcomponentFor example,the factthatknowledgeof the
AbstractFactory designpatternis EEK within Cl i ent doesnot
imply thatit is EEK within alarger, parentcomponentontaining
C i ent . This parentmayindeedbe very concernedvith thefact
thatthe AbstractFactorydesignpatternis beingusedin favour of
someother meansof flexibility. If this were the case,it would
not make senseo talk of reusingthe parentwithout the Abstract
Factorydesignpatternand, sincethe patternwould be anintegral
partof the parent,it would not be EEK there. Likewise, primitive
draving methodseedto referto a carvasfor their operationto be
meaningful. Therefore,a carvas objectis not EEK within sucha
primitive draving method.

3. IMPLICIT CONTEXT

Implicit context is the context provided by the executionof a sys-
tem: atary givenmomentduringanexecution theimplicit context
consistof thestructureof thesystemandthehistoryof interactions
within the system.We caninterpretmessagesifferently depend-
ing ontheimplicit context in which they arebeingcommunicated.

As an analogy considerthatin humancorversationwe do not
spell out every conceptwe wish to communicateat every instant
the understandingf thoseconceptds required. We expectmuch
informationto be understoodrom or alteredby context. Suchuse
of contet takestwo forms: omission wherewordsor detailsare
left out to befilled-in from earlierdetailswithin a conversationor
generalknonledge,andalteration, wherethe wordsthat are spo-
ken or the way that they are interpreteddependsupon the indi-
viduals who are speaking. “It spunwildly” could refer to aride
at the countyfair, or to one’s impressionof a room while experi-
encingextremenauseathe detailsabout“it” have beenomitted,
to be understoodrom what haspreviously beendiscussed Lik e-
wise, one’s responsdo the question,"What is politics?” mightbe
quitedifferentdependingonwhois asking;the explanationgivena
youngchild is likely to besignificantlydifferentfrom thatgivenan
adult. Meaningfuluseof context canrequirethatthe participants
in a corversationsharea commonworld view when referencing
knowledge outsidethe confinesof the conversation. Statingthat
someoné‘actedthe role of Cyrano” would be meaninglessf the
listenerknew nothingof Cyranode Bergerag.

Similarly, the history of messagewithin a systemcan be
viewed as a corversationbetweencomponentsand so, we can
leveragethe conceptsof omission, alteration, and world view.
Ratherthan forcing componentdo repeatedlygive the samede-
tails in messageswe wish to allow themto sendmessagesvith
omitteddetails,their meaninggo beunderstoodrom implicit con-
text. At the sametime, we wantto performalterationof messages

30ur analogyis intendedto be motivational. In humanconversa-
tion, we alsoperformoperationsuchascheckingthatwe have un-
derstoodwvhatis beingdiscussedWe arenot attemptingto provide
suchoperationyia implicit context.

dependingon wherethey arereceved or to whom they are sent.
And finally, componentsieedto sharea commonworld view, or
apparentlyshareone,soimplicit contet canbe correctlyused.

With theseconceptsn hand,we proceedo discussa program-
matic modelfor usingimplicit context, anddemonstratéts utility
onthesimpleexamplesfrom Section2. We postponea description
of approache® implementinga mechanisnto useimplicit context
until Sectiord andadiscussiorof how existingapproacheaddress
EEK until Section?.

3.1 The Model

In orderthatthe messagewhich aresentandreceved be modifi-
ableaccordingto theimplicit contet, we needto be ableto inter-
cept messagesteflect upon the implicit contet, and alter those
messagesccordingly. Our model for utilizing implicit context
separateshe interception,alteration,andredispatchof messages,
called contextual dispatch,from the reflectionupon the call his-
tory. Ideally, contextual dispatchprovidesthemechanisnfor ratio-
nalizing disparateworld views betweenintercommunicatingom-
ponents,interpretingmessagesvith omitted details, and altering
messagesontetually. The call history and somestructuralin-
formation provide the knowvledge with which to drive contextual
dispatch.

In the model,we canconsiderthereto exist a boundaryaround
every componentlnsidethe boundarytheworld view of thecom-
ponentholds sway; outsidethe boundaryis eitherthe true global
picture,or the world view of a larger, nestingcomponent.Trans-
lation betweerthe externalandinternalworld views occursat the
boundarywithin what aretermedboundarymaps Therearetwo
kinds of boundarymaps: out-mapsandin-maps Out-mapsrans-
late from theinternalworld view to the externalworld view, while
in-mapstranslatein the oppositedirection. Eachboundarymap
is responsiblefor the interceptionof a particularkind of message
from onesideof theboundaryandits contextual dispatchgenerally
to the othersideof the boundary We saythatwe attach or applya
boundarymapto a boundarywhenthe boundarymapis explicitly
associateavith thatboundary

In Figure 1, we seea componentC with a boundaryshavn
aroundit; C, throughvarious methodcalls, namesfour external
componentsS1-S4, within its world view. The external world
view is different; it containsfour components;T1-T4. Thereis
only onecomponenthatmatchedetweertheseworld views: S2
andT2 arethesame.Theworld view representetly the S compo-
nentscould be the systemin which C wasoriginally implemented
andthe T componentould be a systemin which C wasreused.
In orderthat C operatecorrectly we definethree out-mapsfor it
(shavn asgrey circles)thatinterceptmessageboundfor the non-
existentS1, S3, andS4. Messagedoundfor S1 andS4 areal-
waysreroutedo T1. Messageboundfor S3 arereroutedo either
T3 or T4 onthebasisof the call history; it could be thattheleast
recentlyusedoneis alwaysused,or it might dependon someini-
tialization choicethatoccurredpreviously. In-mapsbehae analo-
gously

Boundary mapsmaintain the facade of an unchanginginter-
face,therebypermittinga simple meansof backwardscompatibil-
ity. Out-mapshelp anindividual componenpossessn unchang-
ing view of the systemin whichit runs,while in-mapshelpa sys-
tem possessn unchangingview of individual componentsvithin
it evenwhenthey arereplacedr modified.

4 Justaswe presenpur discussiorof EEK from anobject-oriented
view, we presenbur discussiorof implicit context from anobject-
orientedview. However, implicit context couldbeusedin ary situ-
ationwhereinformationflows acrossarecognizabldoundary

71

Figure 1: Using out-mapsto redirectcallsfrom C.

3.2 Removing EEK: Simple Examples

Dependencesn namesf externalcomponentsiretrivial to repair
Boundarymapscapturemessageboundfor the purportedcompo-
nents,andreplacethemwith messageto the actualcomponents.
Thus,in our example,messageboundfor Vect or arereplaced
with messageboundto Dynani cArr ay. The EEK imposedby
requiringclient componentso knon what othercomponentsxist
in therealsystemhasbeenremaoved from theclients.

Recallthe AbstractFactorydesignpatternexampleof Section2.
To permitd i ent to literally containthe statement:

Abstract Product product
new Abst ract Product ();

while actuallyutilizing anabstractactory we mustcapturethecall
to Abst r act Product in anout-mapattachedo the boundary
of d i ent . In this out-map,we query call history to determine
the lastinstanceof Abst r act Fact ory, which we will referto
as“f act ory’ thatwaspassedo d i ent . The messagearry-
ing f act or y wasignoredthroughanin-mapalsoattachedo the
boundaryof C i ent . We thenreroutethe call to Abst r act -
Product to go to factory. makeAbstract Product in-
stead,and return the resultingobjectto Cl i ent . Note that, as
aresultof theboundarymapsCl i ent doesnotrequireary actual
constructorAbst r act Pr oduct to exist to receve this message,
sincethe messagés interceptedbeforeit getstheré. C i ent and
its boundaryare both part of someparentcomponentpy moving
statementso the boundarythey remainpartof the parent,but not
partof d i ent. The EEK in our systemhasnow beenreduced:
theClientnolongerhasary knowledgeof the AbstractFactoryde-
signpatternonly theparenthasthis knowledgeandthisis notEEK
asdescribedn Section2.

Our robotexampleis alsostraightforvard to dealwith via im-
plicit context. Again, we attachan in-map to the boundaryof
Robot thatfilters out the carvasobjectthatgetspassedo it. We
attachan out-mapto the boundarythat, for eachprimitive draving
call, first looks up the previously passectarvasandeitheraddsit
asa parameteto the drawing call, or rerouteshe drawing call to
the carvasitself. All referencego the carvashave beenremoved
from Robot ; referenceso thecarvasremainin theboundarymaps
to Robot , but, asdescribedbefore(seeSection?2), it is not EEK
there.

5In ourimplementatiordescribedn Sectiord, thereferencesnade
by this codeto the constructorfor Abst r act Pr oduct arere-
placedprior to compilationwith a call to f act ory. makeAb-
stract Product , andtherefore the transformedC i ent does
notrequirethatthe constructorexist.

4. IMPLEMENT ATION

We have implementech mechanisnfor recordingcall history and
ameandor performingcontetual dispatchin Java. This proof-of-
conceptimplementationwas built for the purposeof determining
whetherthe conceptenvisagedin implicit context wereworthy of
further study;asa result,the implementatiorattemptgo provide a
literal representationf the modelpresentedn Section3. Not sur
prisingly, mismatchegxist betweerthe generamodelandwhatis
possiblewithin Jara, so somedetailscannot be perfectlyrealized;
we have notedwherewe have madetradeofs.

We begin with a descriptionof the implementedmeansof
recordingand querying call history, then explain how boundary
mapshave beendefinedandapplied,andendwith a brief discus-
sionof how we areaddressingutomatedool support.

4.1 Call History

In orderto reflectuponthe history of calls madewithin a system,
we needboth a meango recordthe calls madewithin thatsystem,
anda meansto accesghis record. The kinds of queriesusedto
accesshecall historylargely determingheform of theinformation
thatmustberecorded.

Our proof-of-conceptimplementationof call history for Java
storegmethodcallsandmethodreturnswithin athreadedreestruc-
ture. Eachnodewithin thetreerepresents call to amethodwithin
the program,includingthereceving object,objectsandprimitives
passedn the parametersan object representinghe classbeing
called,and an objectrepresentinghe methodbeingcalled. Each
of thesenodesis an objectof theclassCal | . Every Cal | node
hasa link to anassociatedCal | Ret ur n objectin which there-
turn value of thatcall is stored. The threadwithin thetreerecords
the causalorderof methodcalls,ignoring the presencef separate
threads Thistreeis encapsulatedithin a classcalledCont ext ©

A numberof methodsvereimplementedn Cont ext for per
forming queriesonthecall history; Figure2 containsalist of these.
Thisis notanexhaustve list of all possiblequeries.

To storecallsandcall returnsin the tree,we definedtwo snip-
petsof codeto instrumentthe methodsin a system,onethatwas
to be executedat the startof eachmethodandonethatwasto be
executedattheendof eachmethod.Thesourcecodefor theclasses
wasthensoinstrumentedy automatedool support.

4.2 Contextual Dispatch

Boundarymapsarethe heartof contectual dispatch,but they re-
quire boundariedo which to apply For our proof-of-conceptwe
considerecbnly naturalandeasilynamedboundariegprovided by
Java, thosearound methodsand fields. There are two facetsto
boundarymaps:specificationof the messagethatthey shouldin-
terceptandtheredispatchingodethatshouldbeexecutedvhenthe
correspondingnessageareintercepted. The modelcallsfor mes-
sagego beinterceptecandmodified,but in Java, thereis nomeans
to dothisonactualmessageghereforewe staticallymodify meth-
odsto achiere thesameeffectonall methodcallsandoutgoingfield
accesses.

We can seethesetwo facetsby examining a boundarymap
applicableto the AbstractFactory examplefrom Section2. The

5Note that the Cont ext classis treatedspecially: invoking its
methodsstoresnothingto the call history andit is intendedto be
accessednly within boundarymaps.
"Classesrealsonaturaland easilynamedin Java, but boundaries
aroundthem were approximatedfor nov by applying the same
boundarymapsto every methodandfield therein.

e getCall Return(Call)
e precedes(Call, Call)
e hasBeenCal | ed(d ass, Method, bject)
e findLastCall To(C ass, Method)
e findLastCall ToFron(d ass, Met hod,
hj ect, hject)
e findLastCall ToAnySubcl ass(Call, d ass,
Met hod)
e findLast Call ToAnySubcl assFron(d ass,

Met hod, Obj ect)
i ndLast Cal | ToPassi ngSubcl assOf (O ass,

Met hod, d ass)
ndLast | nst ance PassedTo(Cl ass, C ass)

°
—h

o f

Figure2: The query methodsdefinedon the Cont ext class.

following out-mapcould have beenappliedto the boundaryof
Cli ent toallow it toreferto Abst r act Product directly:

map abstract Fact oryMap {
out AbstractProduct () {
Abstract Factory factory =
Cont ext . fi ndLast | nst anceCf PassedTo
(Abstract Factory. cl ass,
Cient.class);
return factory. makeAbstract Product ();
}

}
apply abstractFactoryMap to dient;

In this example, an out-mapthat interceptsmessageso a con-

structor of Abst ract Product is appliedto the boundaryof

Cl i ent. An identifier abst ract Fact or yMap in the exam-

ple, permitsmultiple in- and out-mapsto be given a singlename,
making it easierto apply a set of mapsto a component. The

one out-mapin abst r act Fact or yMap replacesmessageso

the Abst ract Pr oduct constructowith the indicatedblock of

redispatchingcode. This block makes a call to Cont ext to lo-

catewhichever instanceof Abst r act Fact or y waslast passed
to d i ent . A factorymethodis theninvoked on the locatedob-

ject.

To applytheboundarymapsto componenboundariesywe man-
ually addedtherelevantredispatchingodeinto the classesiamed
in appl y statements.Attachinganin-mapto a methodbound-
ary simply requiredthat its redispatchingcodeblock be inserted
(i.e.,cut-and-pastedhto thatmethodprior to ary statements the
original method,including statement$o storeinto call history In-
mappinga methodthatdid not exist within a classinvolvedadding
a methodof the indicatednameand signaturewith the specified
bodyto theclass.We did not permitfield accesse® bein-mapped
becauseghereis no meansof capturingaccesseto thefields of a
classin Jaa®

Out-mappinga call or field accessinvolved adding a new
methodto the classto whoseboundarythe mappingwasapplied;
thenew methodcontainedheredispatchingodeblock of the out-
map. Then,all call sitesaffectedby the mapweremodifiedto call
thenew out-mapmethod.Doing this manuallyrequireda searcto

8All theclientclassesvho accessfield couldhave hadequivalent
out-mapsattachedo their boundariesbut we wantedto maintain
the concepiof independentompilationof classes.

ensureghateachresultingmatchwasin thecorrectscope followed
by a replacemenby the nameof the call to the out-mapmethod.
An additionalparameters requiredby the out-mapmethodto hold
the objectto which the original messagevasto besent.

Althoughwe did not encountethe needin our examplestudy
the modelaccountsor the applicationof multiple mapsto a given
boundary Theseareappliedsequentiallyin the orderspecifiedby
theengineerandeachaddednapmodifiesthecodeaddedby those
beforeit.

4.3 Automated Tool Support

To date,we have appliedimplicit context with minimal automated
support. Making the conceptof implicit context workable obvi-

ously requirestool supportfor both contextual dispatchand for

recordingandqueryingcall history Currently we are developing
automatedool supportfor utilizing implicit context in Java pro-

grams.

As describedearlier applying in-maps and out-mapsis a
straightforvardprocessinvolving theadditionof nev methodsand
modificationof existing methodsin classeswith associatednaps.
Using this approachcomponentgclassesyanbe processedndi-
vidually. Building atool to performthis processequiressupport
for processindoundarymapspecificationandmanipulatinglava
sourcecod€. We areusingJaaCC° from Metamatao parselaa
sourceandboundarymapcode.We aremanipulatingthe resulting
tokensto achieve aneffectidenticalto themanualnsertionprocess
describedabore.

5. EXAMPLE:
THE JAVA SWING LIBRARY

As anexampleof whereEEK arisesandhow implicit context can
addres€£EK, we describeapartof theJava Swinglibrary. Swingis
agraphicaluserinterface(GUI) toolkit thatis intendedto provide
consistengin GUIl appearancacrosglatformsandto makeit easy
to build sophisticatedvidgets. Swingis distributedaspartof Sun
Microsystemss JDK 1.2.

A majorfeatureof Swingis its pluggablelook-and-fee(PLAF)
architecturd3]. Thisarchitecturallowsthedisplayandinteractve
characteristicéthe “look-and-feel”) of a GUI to be altereddynam-
ically; for example,a userinterfacein the Motif look-and-feelcan
be alteredat run-timeto a Windows look-and-feelandbackagain.

5.1 EEK inJButton

In Swing,eachGUI widgetobjectcontainsaseparat®bject,called
aUl deleyate whichis responsibldor thelook-and-feebf thewid-
getfor aparticularPLAF. For example theJBut t on classwhich
implementsa button widget, hasan associatealassBut t onUl ,
which providesits look-and-feel;But t onUl hasa separatesub-
classfor eachdifferentlook-and-feel. WhenJBut t on recevesa
messageo paintitself, it forwardsthe messageo its currentlyin-
stalledUl delegate,saya Mot i f But t onUl object,which dravs
the button properlyaccordingto its currentstate. Whenthe look-
and-feelof awidgetis to bechangedthecurrentUl delggateobject
for thatwidgetmustbeuninstalledthenew Ul delegateclassmust
belocatedandinstantiatedandthenew Ul delegateobjectmustbe
installedon thewidget.

A button is a conceptuallysimple thing, yet the JBut t on
classdefinesor inherits a total of 183 public methodswithin the
j avax. swi ng packageplus144public method$rom within the

9This manipulationcould alsobe performedon classfiles.
©ht t p: // www. met amat a. com JavaCC/

73

j ava. awt packageWe considemuchof thisto beEEK fromthe
perspectie of the JBut t on class.For instance knowledgeabout
the PLAF architectures EEK from the perspectie of JBut t on
becausé shouldbepossibleto reusebuttonwidgetsin theabsence
of the PLAF architecture.

To identify how JBut t on (andultimately, therestof the wid-
get classesn Swing) could be evolved to remove details of the
PLAF architecturewithout breakingSwing, we first needto exam-
ine thedetailsbehindthe operationof the PLAF architecture.

5.2 How PLAF Works

Figure3 shavs a simplified objectinteractiondiagramfor the pro-
cesf locating,instantiatingandinstallinganew Ul delegateinto
aJBut t on object. Therearefive classesnvolvedin this process
asidefrom JBut t on.

e Basi cButtonUl isaspecializeduttonUI delegate. This
classinherits from But t onUl , which provides a generic
baseclassfor buttonUI delegates.

e Basi cButtonLi stener is an event handler that re-
spondgo events,suchasbutton pressesin a PLAF-specific
manner It is explicitly installedonto a given buttonwidget
by abuttonUI delegate.

e LookAndFeel isabaseclassfor thevariousPLAFs. Each
subclasof LookAndFeel specifieshe setof Ul delegate
classeghatareappropriateor its look-and-feel.Eachclass
hasanassociatedtring—aui C ass| D—thatdescribests
purpose.For example,theMot i f LookAndFeel specifies
that Mot i f Butt onUl corresponddgo the " But t onUl "
purposeandthatMot i f Radi oBut t onUl correspondso
the" Radi oBut t onUl " purpose.

e Ul Def aul t sisusedby LookAndFeel andits subclasses
to storethemappingdromtheui Cl assl D'sfor aPLAFto
theactualUl delggateclasses.

e Ul Manager is anabstractlasswith variousstaticmethods
for registeringtheUl Def aul t s informationfor thecurrent
PLAF.

Theinteractiondetweerthesdive classeso supporthechang-
ing of thelook-and-feelarecomple. Figure3 depictsmostof the
over 20 messagegwolved. Theinteractionsrepresentedescribe
whathappensight after the look-and-feehasbeenchangedvia a
methodcall to the Ul Manager class. At that point, the applica-
tion mustexplicitly call a utility methodto run aroundandinvoke
eachwidgetsupdat eU method(1). For JBut t on, thisresults
in arequesi2) to Ul Manager to obtaina Ul deleyateobjectthat
is appropriateo the nev PLAF. Ul Manager locatesthe current
PLAF (3, 4) andpassedt (5) with thewidgetaskingto be updated
to Ul Def aul t s. Ul Def aul t s asksthe passedvidgetits pur-
pose(6); JBut t on responds But t onUl ' Ul Def aul t s uses
its storedinformation(7) to find outtheappropriate But t onUl "
Ul delegateclassfor thecurrentPLAF. It thenuseslava’sreflection
interfaceto instantiatethe Ul delegate(8) andreturnsthe delegate
to Ul Manager , which passedt to JBut t on.

JBut t on thenbegins the processof installing the button Ul
delegateobject(9). JBut t on firstcallsaninternalmethodo unin-
stall the currentUl delggateobject(notshavn in thediagram)and
thencallsi nst al | Ul (10)onthebuttonUl delegateobject,pass-
ing itself asthe amgument. The button Ul delegateinstallsvarious
default propertiesonto the button (15-17),someof which arede-
terminedby Ul Manager (11)andotherswhicharedeterminedy

set Opaque
set Margi n
putdientProperty
addMbuselLi st ener
addMouseMot i onLi st ener
addPr oper t yChangeli st ener
addChangeli st ener
- ’ u getdientProperty

updat e

(10) installu Basi c-

(9) setuU But t on-
ul

JButton

(2) getu (14) <init>

(6) |getUl O assl D

Basi c-
But t on-
Li stener

Ul Defaults [(8)
createUl

e

getU C ass

(12) install Col or sAndFont

(13) install Border

(5) [get Ul

(11) /get | nset s

Ul Manager LookAndFeel

(3) getDefaults
(4) getLAFState

Figure 3: Object interaction graph for the procesf installing
a“Basic” PLAF Ul delegateinto a JBut t on.

LookAndFeel (12, 13). At the sametime, the button Ul dele-
gateobjectcreatesa PLAF-specificbutton event handler(14) and
installsit onthebuttonobject(18—22).

5.3 Applying Implicit Contextto JButt on

In part, JBut t on containsEEK becausdt hasto worry about
the PLAF architectureduringthe Ul delegateinstallationprocess.
JBut t on shouldnot needto ask Ul Manager for an appropri-
ateUl deleggateinstanceandit shouldnot needto know aboutits
ui C assl D.

JBut t on containsor inheritsfive methodswith the sole pur-
poseof supportingthis process:get Ul Cl assl D, updat eUl ,
get U ,set U (ButtonU) ,andset U (Conponent Ul) .If
thesemethodswverenot present,JBut t on would be conceptually
cleaney permittingit to be modifiedwith lessrisk of breakingthe
system,andpermittingit to be reusedwithout having to reusethe
ability to changelook-and-feels. In addition, it is EEK for Ba-
si cButt onUl to worry aboutinstalling a PLAF-specificevent
handleronJBut t on.

We hadthreespecificgoalsin mindin applyingimplicit context
toJBut t on:

1. remove the needto explicitly install PLAF-specificUl del-
egatesand event handlersonto JBut t on, therebyremov-
ing all detailsof the uninstallation/installatioprocessrom
JBut t on,

. have the PLAF of JBut t on remaindynamically change-
able,and

. meetgoalsl and?2 in suchaway thattherestof Swingcon-
tinuesto operateusingthe original PLAF architecture.

Therewerethreestepsnvolvedin applyingimplicit context: re-
move the detailsof the PLAF architecturérom JBut t on, deter
mine boundarymapsto supportthe goals,andapply the boundary
maps(asdescribedn Section4).

74

5.3.1 Remwingthe PLAF Architecturefrom
JButton

To meet our first goal of remaring the PLAF uninstalla-
tion/installation protocol from JButt on we removed the five
methods providing this functionality from the class: get -
U d assl D, updateUl, getU, setU (ButtonU), and
set Ul (Component Ul') . To maintainthe sameexternally visi-
ble interfaceto JBut t on, in-mapswere appliedto its boundary
thatcapturednessaget eachof thesemethodsandignoredthem.
JBut t on wasthenfree of the EEK arisingfrom the PLAF unin-
stallation/installatiorprocess Sincethis broke the PLAF architec-
ture andthus Swing, we neededo useimplicit context in placeof
the EEK.

5.3.2 DeterminingAppropriate BoundaryMaps

To repairthe damageto Swing producedby removing the PLAF
architecturefrom JBut t on, we neededo apply boundarymaps
to several classboundaries(Theresultingarchitecturds shavn in
Figure5.)

Thein-mapattachedo JBut t on’sget U methodperformsa
setof call history queries. Thesedeterminewhetherary Ul dele-
gatewith the" But t onUl " purposehasbeenactivatedsincethe
lasttime the buttonwaspainted,indicatingthatthe Ul delegatefor
JBut t on needgo bechangedPseudocodor thein-mapappears
in Figure4.

To replacethe needto explicitly install PLAF-specificevent
handlerson JBut t on instances,we introduceda generic De-
faul t But t onLi st ener eventhandlerclass. This classcon-
sistedof empty methodsfor handlingevents. An in-mapwas at-
tachedto the boundaryof the get Li st ener methodof De-
faul t Butt onLi st ener that determineghe currentUl dele-
gate,andhencetheappropriatd®’LAF-specificeventhandlerclass;
eventsarethenreroutedto an instanceof this class. The needto
explicitly install PLAF-specificevent handlerson JBut t on and
the EEK thisintroducedarenow gone.

A variety of othersimplein-mapsandout-mapswverealsoused
to completethe integration of implicit contet. In all, JBut -
t on required5 in-mapsand3 out-mapsPef aul t But t onLi s-
t ener required11 in-maps(for all the different event handler
methods)Ul Manager andUl Def aul t s eachrequiredonein-
map,Basi cBut t onUl required8 in-mapsand5 out-mapsand
eachPLAF-specificUl delggateclass(i.e.,Met al But t onUl and
Mot i f Butt onUl) required4 in-mapsand5 out-maps.

Statementgo perform querieson the call history were used
five timesfor JBut t on within theget Ul in-map,twice for De-
faul t But t onLi st ener within the get Li st ener in-map,
threetimesfor Basi cBut t onUl within threein-mapé,1 andonce
for eachPLAF-specificbutton Ul delegate class. All boundary
mapsexcept the in-mapsfor get Ul and get Li st ener were
short: six lines of codeor less.Thein-mapsfor get Ul andget -
Li st ener are25 lines of codeeach;mostof this coderesulted
from handlingtheinitialization casewherethe buttonhasnot been
paintedyet.

5.3.3 Resultof Applyingimplicit Context

We testedthe resultsof our changesby building a simple appli-
cationwhosePLAF was changeddynamically The behaiour of
theimplicit contet-basedarchitecturevhenthe PLAF is changed

1 0only oneof theseusesis significant;the othersarethereto male
surethatanerroroccursif theold architectures beingusedfrom a
JButt on.

@)
)

@)
(4)

Setpai nt Cal | tobethemostrecentcall to paintthis
JBut t on.

SetassocCal | tobethemostrecentcallto associate
a Ul delgyateclasswith a PLAF.

Setui d ass tonul I .

If pai nt Cal | isnotnul | andis morerecentthan
assocCal |, justreturnthe currentlycachedJl del-
egateobject.

Retrieve the Ul delggateclasspassedn theassoc-
Cal | .

Setui d ass totheUl deleggates purpose.
SetassocCal | to bethenext mostrecentcall to as-
sociatea Ul delegateclasswith a PLAF.

(8) Ifui G assisnot"ButtonUl ; goto(4).

(9) Instantiatehe Ul deleggateclassandcachethe object.
(10) Returnthecachedbiject.

Q)

(6)
@)

Figure 4: Pseudocoddor the get Ul in-map.

is depictedin Figure5. No arcsremainfrom JBut t on to Ba-
si cBut t onUl orviceversaandnoarcsremainfrom JBut t on
to Ul Manager or vice versasthisindicatesthe removal of thein-
stallationprocessrom JBut t on andtheremoval of theinstalla-
tion of aBasi cBut t onLi st ener onJButt on.

Applying implicit contet to Swing had three effects on the
Swinglibrary:

1. the sourcecodefor JBut t on is how conceptuallysimpler
and containslessEEK: the codefocuseson implementing
thefunctionality of a button;

2. JBut t on shouldbeeasietto reusewithoutneedingo reuse
the PLAF architectureand

3. JBut t on shouldbe easierto maintainandevolve now that
it is free of theconcernof the PLAF architecture.

6. DISCUSSION

Despitethe advantageofferedby applyingimplicit context, given
the early stageof this work, mary openissuegemain.

6.1 Effect on Comprehensibility

Implicit context may malke it moredifficult to reasoraboutthe op-
erationof a system.We discussgwo possiblecriticismshere.

Onecriticism is thatcomprehensibilitys decreasedy the sep-
arationof small piecesof codeinto mapswhich affect component
code. This criticism alsoappliesto othertechniqueghat support
separatiorof concerng(e.g.,[10, 8]). More experiencemustbe
gatheredapplyingtheseapproacheso assesshe impact. An ini-
tial assessmermtf aspect-orientegrogrammind15] foundthatthe
numberof file switchesduring certain programmingtaskswhen
usingaspect-orientegrogrammingverecomparabléo or slightly
lessthan when using conventional object-orientecorogramming;
this wasinterpretedasindicatingthatary confusioncreatedcby the
division wascompensatefbr by the greaterclarity of the divided
pieces.It would bewrongto ascribetoo greata confidencen these
weakresults,but, to date, it is the only empirical evidenceavail-
able.

Another criticism is that boundarymapscould becomecom-
plex anddifficult to understandFor Swing,we believe ourimplicit

75

(6) findLastCall ToFrom
(7) getCallReturn

(3) findLastCall
(4) precedes

(2) getu

'
3 (5) createul

Basi c-
But t on-
ul

JButton

(10) set Opaque
(11) setMargin

(8) getListener

Defaul t-
But t on-
Li st ener

Basi c-
But t on-
Li stener

(1) any event

(9) <init>

12 t | t .
(12) getinsets (13) install Col or sAndFont

14) install Border

Ul Manager LookAndFeel

Figure5: The behaviour of the implicit context-basedarchitec-
ture whenthe PLAF is changed. The shadedcirclesrepresent
the in-maps attachedto the boundaries of JBut t on and De-
faul t ButtonLi stener.

context versionis easierto reasonaboutbecausét separatesand
simplifiesa particularcomple featurefrom the regular operation
of JBut t on. Although several boundarymapsmustbe investi-

gatedto understandhe feature,eachmapis relatively small; the

largestis about25 lines. While the majority of in- and out-maps
weretrivial, the pseudocodgiven in Figure4 for theget Ul in-

mapis not trivial. Someof the compl«ity in this mapis dueto

other existing intricaciesof the PLAF architecture. Were we to

morethoroughlyapply implicit context to this example,the maps
would likely becomesimpler However, oneof the advantagesf

theimplicit context approachs thatwe areableto applyit either
to anew systemor incrementallyto anexisting system.

In our limited experience,once an understandinghas been
gainedof thefeaturein a systemto be modified,suchasthe PLAF
architecturedeterminingivhich mapsareneededandwriting those
mapsis not an oneroustask. Somemapsare more comple than
others.In thesecasesthe developermustreasorthroughthe sys-
temto determinehow to accesghe information of interestin the
pastexecutionof the system. The difficulty of this taskwill vary
dependingon the compleity of the systemandon the compleity
of the EEK thatis beingremoved. Furtherexperienceis needed
to develop a bettersenseof the compleity or simplicity brought
aboutby the useof implicit context.

6.2 Effect on Development

Theuseof implicit context allows usto remove EEK from systems.
Implicit context doesnot merely move EEK aroundin a system
sincea determinationof whatis EEK is relative to a component.
As describedn Section2, whenEEK movesout of a component
to the componens boundary the codeplacedin the boundaryis

generallynot EEK to the highekrlevel, nestingcomponent.As an
example, considerthe implicit context versionof our Swing ex-
ample. Eventhoughthein-mapfor JBut t on still interactswith
Basi cButt onUl aspartof theinstallationof the PLAF, maoving
this interactionto the boundarymapseparateshe PLAF architec-
turefrom thecodefor JBut t on itself, therebymakingit possible
to reuseJBut t on without the PLAF architecture. The separa-
tion would ideally male it easierto understancand modify both
JBut t on andthe PLAF architecturen isolationalthoughmore
experiences requiredbeforethis canbeassuredWhenthebound-
ary mapusesghecall historyto determingheappropriatalispatch,
EEK is moreohviously removed, reducingthe dependencesf one
part of a systemupon anotherpart. In our modified version of
Swing, for example,JBut t on no longer requiresknowledge of
look-and-feeppurposg(i.e.,the” But t onUl " string).

In realizingsystemsflexibility mechanismssuchascertainde-
sign patterns are currently chosenat somepoint beforeor during
implementatioraccordingo the percevedneedf thesystem.We
do not claim thattheseflexibility mechanismsire“bad” in and of
themseles. It is the fact that thesemechanismdendto penade
componentghatis “bad"—they becomeEEK. If the wrongkind
of flexibility hasbeenchosen,altering our systemto meetnew
flexibility demandss hard; altering componentss hard because
the flexibility mechanismsan obscurecore concernsof compo-
nents,andcanevenbebrokenwhenchanginghosecoreconcerns.
Implicit context allows us to gain the benefitsof theseflexibility
mechanismsvithout being permanentlytied to them and without
the needto be concernedvith themwhile developingor evolving
components.

Althoughthis paperasconcentratedn theuseof implicit con-
text in changingan existing system,it alsohasapplicabilityto the
initial developmentof a system.If we could preventthe introduc-
tion of EEK duringthe inceptionof a system the hopeis thatthe
systemwould simplerto create.Whethersuchspeculatioris more
thanwishful thinking is a matterfor futurework.

6.3 Potential Implementations

Our currentimplementatiorof amechanisnto useimplicit context
is simplistic; it is intendedasa meansof studyingwhetherimplicit
contet canincreasethe reusabilityandflexibility of components.
The testapplicationwe usedin our Swing example experienced
anorderof magnitudeslovdovn whenusingour proof-of-concept
implementation. For implicit contect to be useful, betterimple-
mentationsare neededwe amgue herethat suchimplementations
arepossible.

Therearetwo ohvious dravbacksto our proof-of-concepim-
plementation. First, it storescall history by instrumentingeach
methodof eachclass;for every invocation,theinformationrelated
to the call is recordedn thehistory Our experiencen instrument-
ing systemgo supportobject-orientedvisualization[16] suggests
thatthis approachwill have a significant,negative impacton per
formance andwill requirea greatdealof storagefor long-running
programs. Second,it supportsan arbitrary setof querieson call
history The more powerful thata queryis, the moreinformation
thatmustbe collectedto supportit.

TheseproblemsareaddressableThe informationthatmustbe
storedfor somesimplequeriess optimizable;for example thein-
formationrequiredto answerthepr ecedes(A, B) querycould
be storedasa singlebit: the bit would be setwhenB is calledand
resetwhenA is called. Suchoptimizationscanlik ely be foundfor
anecessargubsef kindsof queries.Furthermorewe mightonly
recordtheinformationthatis actuallyneededo answetthequeries

76

madein agivensystem.If efficientqueryingremainsa problemaf-

terreducingheamountf informationcollected weintendto build

uponencodingtechniquesve have recentlydevelopedto support
toolsfor the analysisof large object-orientedystemg17].

To performtheseoptimizations the in-mapandout-mapspec-
ificationscanhelp. Thesespecificationcanbe analyzedo deter
mine the subsetof methodsthat must be instrumentedreducing
theamountof call informationthatneedgo berecorded Although
this approachwill requirea globalanalysisof the componentsand
mapsthat areto be usedtogethey we believe this is workablefor
two reasonsFirst, the analysisis not hearyweight, requiringonly
ascanof themapsandof the staticinheritancestructureof the sys-
tem. Secondtheinstrumentatiorthatmustbeappliedto gatherthe
informationrequiresonly a simpletransformatiorto the codeand
canevenbedoneatloadtime.

We have not addressetheseconcerngyet sinceit is necessary
to understandvhat form of the call history and queriesare useful
beforewe canconsideroptimizations.

7. RELATED WORK

Much of the work in software engineeringand programmingan-
guagess orientedatincreasingheindependencandreuseof com-
ponents.

7.1 Separationof Concems

Implicit contet is most closely relatedto those approachesn-
tendedto help explicitly separateoncernsn programtext. Some
separatiorof concern{SOC)approachegrovide specificsupport
for a particularkind of separation Othersprovide a moregeneral
mechanismWe describeexamplesof eachbelov anddiscusshow
implicit context compares.

TherelationshipbetweenEEK andconcernss unclear While
we believe thattheseareoverlappingconceptsyve alsobelieve that
the overlapis incomplete. EEK includesdetailstoo minor to be
consideredull-fledgedconcernssuchasnamedependencesyhile
acomponentould possession-etraneouknowledgeof multiple
concernsThis relationshiprequiresfurtherinvestigation.

7.1.1 SpecificSOCApproaces

DeLine’s flexible packaging[2] focuseson separatinghe details
abouta componens interactionfrom the componenitself. Flex-
ible packagingseparates componens functionality andits inter-
actions,calledits packaging,into distinct entities: a ware and a
padkager. A givenwarecanbepackagedo work in differentervi-
ronmentssuchasa plug-in for a web brovseror a command-line
filter.

Implicit parameter$9] allow oneto explicitly designatevhen
a setof intervening methodsbetweena senderand a recever do
not needto be aware of a setof parametersthe parametersare
transferredrom the sendetto therecever without alterationof the
sourcecodefor the interveningmethods. The developerspecifies
within the sourcecodefor the sendeiandfor therecever thateach
parameteis to communicatevia theimplicit mechanism.

In comparisorto implicit context, bothflexible packagingand
implicit parametersrovide a more abstractedneansof dealing
with particularkinds of EEK. Flexible packagingprovidesa more
abstracimeansof addressinghe questionof howa componentn-
teracts.Implicit parameterprovide a specificmeansof expressing
whenaparameteis extraneousandof describinghow to transmitit
to theappropriateecever. In eachcasethis additionalabstraction
comesata price: the sourcefor eachcomponenmustbewrittento

explicitly usethe particularmechanism.In contrast,implicit con-
text canbe usedto achieve the sameobjectiveswithout having to
write eachcomponento usethemechanism.

7.1.2 Genenl SOCAppradces

A numberof more generalapproacheso separatingconcernsin
a systemhave beenappearingover the last few years. Subject-
orientedprogramming6, 10] is a meansfor composingandinte-
gratingdisparateclasshierarchiegsubjects) eachof which might
representlifferentconcernssubsequenvork on hyperspacefl 4]
considersseparatingconcernsin multiple dimensionsat once.
Aspect-orientegprogramming8] providessupportfor modulariz-
ing cross-cuttingconcerns suchas distribution or look-and-feel,
in a system. Modularizedconcernscanthenbe combinedinto a
systemasdesired.Compositiorfilters [1] separat@bjectsinto an
internalpart, possiblyconsistingof multiple objects,andaninter
facepart, which definesinput andoutputfilters to manipulateand
possiblyredirectmessages Filters can be usedto separatesuch
concernsassynchronization.

Similarto theseapproachedmplicit context is intendedo help
separatdifferent partsof a system,increasingthe independence
of thoseparts. Also similar to implicit contet, eachof theseap-
proachednvolvesexplicit separatiomf partsof aprogramssource.
Implicit context differs from theseapproachesn supportingcon-
textual dispatchthroughreflectionuponthe call history of a sys-
tem. This featuresupportsthe investigationof how later binding
of componentso eachotherwill affectthe structuringof systems.
Sinceall of theseapproacheareat an early stageof development,
detailedanalysesf the benefitsand costsof eachform of separa-
tion arenotyetavailable.

7.2 Explicit Context

To increasethe flexibility of a system,someapproache$ave fo-
cusedon theuseof explicit context.

Traces[7] allow the interpretationof messageso be altered
basedupona limited form of explicit context. A list of “ancestor
classeswhich areindependenof the classhierarchy may be ex-
plicitly built andattachedo anobject.Also attachedo eachobject
is a setdescribingpatternsof ancestoclassesWhena messagés
recevedby anobject,thechoiceof methodto invoke is determined
by which patternthe ancestotist of thatobjectmatches.

Contet relations[13] provide a language-baseshechanismin
supportof the Stratgy pattern[4] by allowing “context objects,
basicallydispatchtables,to be dynamicallyattachedo instances.
Upon receiptof a messagdy an object, methodselectionis per
formedby the context objectcurrentlyattachedo therecever ob-
ject.

Both of thesemechanismé&elpaddressa specifickind of EEK.
The ancestolists of tracescan be thoughtof as particularpaths
throughthe call historytree,permittinga limited meansof reflect-
ing uponthesystemhistory Context relationsaddresshe needfor
eliminatingEEK relatedto the earlybindingof names.

The explicitness of thesemechanismdgorces a developer to
commit to them at an early stageof developmentby intricately
embeddingheir usewithin the sourcecode,unlike with implicit
contet. Implicit context alsopermitsthe removal of moreforms
of EEK. Forinstancejn theimplicit context approachit is possible
to accessnoreinformationin the call history, suchasthe parame-
tersrelatedto a call. This additionalinformationmakesit possible
to separaté¢he SwingPLAF architecturdrom JBut t on described
earlier This kind of separatiorwould not be possibleusingthese
explicit context approaches.

7

7.3 Adaptors and Wrappers

A varietyof previouswork attemptdo decouplecomponentegither
throughalterationof interfaces pr by addingadditionalfunctional-
ity behindanapparentlyunchangedhterface.

Mary of the structuraldesignpatterng4] are attemptsat this.
For example,the Adapterdesignpatternaltersthe interface of a
classso thatit may be usedby clients expectinga differentone,
while the Decoratordesignpatternallows additionalresponsibil-
ities to be attachedo an objectdynamically The Adapterdesign
patterrhasthedisadwantagehat,in its simplestform, it is nottrans-
parentto all clientssincean adaptedbjectno longerconformsto
its original interface. Of course,if clientswereto accesshe ob-
ject only throughthe adaptednterface,this would not be a prob-
lem. Otherwise multi-way adaptatior[4, p. 143] canbe usedto
getaroundthis problem,but it introduceshe needfor clientsto in-
stantiatea differentclass,i.e., the sourcecodefor the clientsmust
bealtered.Sincethe Decoratompatternworksvia delegation,there
ensueghe notoriousproblemof ensuringthat the objectcalls its
own methodsvia thedecorator—the objectidentity problem.

POLYLITH [12] providesa “softwarebus” thatallows thespec-
ificationsof anapplications structure jits deploymentonto nodes,
andinter-componentommunicatiorto be separatedSimplecom-
municationstatementsvithin componentareadaptedo conform
to the needsof the actualdeploymentgeometryand communica-
tion protocolneedsf aheterogeneouarchitecturalandlanguage-
ervironment. While POLYLITH is an attemptat makingcompo-
nentsmoreflexible by separatinghe concernsof distributed and
inter-procescommunicationit cannotremove the samedegreeof
EEK sinceit doesnot permitthe indirectkind of communication
thatimplicit context provideswhere,for example,parametergan
befilled in from thecall history

Type adaptation[19] provides much the samemechanismas
would contetual dispatchin the absencef call history Call his-
tory allows usto fill in additionalparametersn a way that type
adaptatiordoesnot.

The goalsof implicit contet aresimilar to thoseof its adaptor
andwrapperpredecessoris thatit allows a componento provide
oneinterfacewhile its clientsexpectanother;asa result,compo-
nentsarereusablavithoutinvasive changebeingneededHowever,
implicit contet is amechanisnthatallows greatedissimilaritybe-
tweenthe expectedandprovidedinterfaces.With implicit context,
we are not constrainedby the information being directly passed
or directly acceptedwe may addadditionalinformationgarnered
from thecall history; or have informationstoredtherefor lateruse.

7.4 Similar Mechanisms

A numberof existing approachesupportsimilar mechanismgo
thoseusedin implicit context.

Implicit invocation[5] is a meansof separatingcontrol-flov
from explicit knowledge of the namesof components. Implicit
invocationcanremore someEEK arisingfrom the knowledge of
namesof subscribingclassesand methods but muchremains:all
componentivolvedin animplicit invocationprotocolrelationship
mustbe awarethatthis particularmechanisnis in place,plussub-
scribersandeventpublishersieedto recognizeacommoninterface
for passingeventsandwhatthoseeventsare.

A few languagege.g.,Perl[18] andTcl [11]) permitaccesdo
the currentcall stack. Unlike implicit contect, noneof thesepro-
vide accesgo prior calls. Nor doesary of theseprovide a general
meandor theretrieval of passegarameters.

Dynamic scoping, available in languagessuch as someLisp
variants,alsosharesomesimilarity in mechanisno implicit con-

text. Dynamic scopingallows variablenamesto be boundinto a
non-leical scopeasdeterminedby the call stackat run-time. In

contrastto implicit context, dynamicscopingdoesnot permitary

descriptionof what variable a nameshouldbe boundto, beyond
that nameitself; no propertiesof the scopein which the desired
variableis to be found nor the structureof the call history upon
which to basethe searchcanbe described.At the sametime, we
canlearnfrom theexperiencegiainedin usingdynamicscopingas
we elaboratgheimplicit context approach.

8. CONCLUSION

The reusability and evolvability of componentsare two goals of
softwareengineeringhataredifficult to achieve with currenttech-
nology Usingcurrentapproaches;omponentsreoftencomple.
The compleity within a componentarely stemsfrom onecause.
Rathera componentill endup with knowledgeof othercompo-
nentsthatis notconceptuallyequiredfor thecomponento provide
its behaviour, yet is difficult to remove. We referto this unneces-
saryinformationasextraneousembeddedknowledge(EEK). EEK
occursin mary formsin componentsincluding a relianceon par
ticular names,supportingnon-localstructure,and extraneouspa-
rameters.

In this paperwe haveintroducedheconcepbf implicit context
asaway of reducingEEK in components.Implicit context com-
binesameandor reroutingmessagei asystemwith anability to
reflectover thehistory of callsthathave beenmadein a system.

Ourwork to datehasfocusedon shaving the utility of theim-
plicit context approach. Given the benefitsachiezed in applying
implicit context to Swing, our next stepis to automatesupportfor
implicit context andto continueto investigateits impacton pro-
gramstructure.

In a perfectworld wherewe had software that never evolved
andwherewe werenot concernedboutthe costof reinventingthe
wheelfor every new systemjmplicit context would notbeneeded.
Implicit contet allows usto incrementallymanipulatehestructur
ing of systemgo addresshe problemsof reusabilityandevolvabil-
ity encountereih softwareengineering.

9. ACKNOWLEDGEMENTS

We thank Siobhan Clarke and Martin Robillard for providing in-
sightful commenton anearlierdraft of this paper Brian de Alwis
for a discussioron flexibility anddesign,andGregor Kiczalesfor
aversionof the carvaspassingaxample. This work wasfundedby
the NaturalSciencesandEngineeringResearctCouncil (NSERC)
of Canada‘Java” is atrademarlof SunMicrosystems.

10. REFERENCES

[1] M. Aksit, L. Begmans,and S. Vural. An object-oriented
language—databasimtegration model: The composition-
filters approachin EuropeanConfeenceon Object-Oriented
Programming pp.372-395,1992.LNCS 615.

[2] R.DeLine.Avoiding packagingmismatchwith flexible pack-
aging.In InternationalConfeenceon Softwae Engineering

pp. 97—106,1999.
(3]

A. Fowler. A Swing architectureovervien: The inside
story on JFC componentdesign. http://j ava. sun.
com products/jfc/tsc/archivel/what is_arch

/ swi ng- ar ch/ swi ng-arch. ht m ,1999.
[4]

E. Gamma,R. Helm, R. Johnson,and J. Vlissides.Design
Patterns: Elementsof ReusableObject-OrientedSoftwae.

78

Addison-Weésley, 1994.
[5] D. GarlanandD. Notkin. Formalizingdesignspacesimplicit
invocationmechanismdn International Symposiunof VDM
Europe pp.31-44,1991.LNCS551.
[6] W. Harrison and H. Ossher Subject-orientedprogram-
ming: A critique of pureobjects.In Confeenceon Object-
Oriented Programming SystemsLanguaes, and Applica-
tions pp.411-4281993.ACM SIGPLAN.
[7] G.Kiczales.Traces(a cut at the “make isn’t generic” prob-
lem). In International Symposiunon ObjectTechnolagiesfor
AdvancedSoftwae, pp.27-43,1993.LNCS 742.
[8] G.KiczalesJ.Lamping,A. MendhekarC. MaedaC. Lopes,
J.-M. Loingtier, andJ. Irwin. Aspect-orientegorogramming.
In EuropeanConfeenceon Object-OrientedProgramming
pp-220-2421997.LNCS 1241.
[9] J.Lewis, M. Shields,E. Meijer, andJ. Launchlury. Implicit
parameters:Dynamic scopingwith static types.In Sympo-
siumon Principlesof ProgrammingLanguaes pp.108-118,
2000.
[10] H. OssherM. Kaplan,A. Katz, W. Harrison,andV. Kruskal.
Specifying subject-orienteccomposition.Theory and Prac-
tice of ObjectSystems2(3):179—-2021996.

[11] J.OusterhoutTcl andthe Tk Toolkit. Addison-Weésley, 1994.

[12] J.Purtilo. The POLYLITH software bus. ACM Transactions
on Programming Languajes and Systems 16(1):151-174,
1994,

[13] L. Seiter J. Palsbeg, andK. Lieberherr Evolution of object

behaior usingcontext relations.|EEE Transactionon Soft-

ware Engineering 24(1):79-921998.

[14] P. Tarr, H. Ossher W. Harrison,and S. Sutton. N degrees

of separation:Multi-dimensionalseparatiorof concernsin

International Confeenceon Softwae Engineering pp. 107—

119,1999.

[15] R. Walker, E. Baniassadand G. Murphy. An initial assess-

mentof aspect-orientegrogrammingln InternationalCon-

ferenceon Softwae Engineering pp.120-130,1999.

[16] R. Walker, G. Murphy, B. Freeman-BensorD). Wright, D.

Swanson,and J. Isaak. Visualizing dynamic software sys-

teminformationthroughhigh-level models.In Confeenceon

Object-OrientedProgramming Systemd,anguayes,and Ap-

plications pp.271-283,1998.ACM SIGPLAN.

[17] R. Walker, G. Murphy, J. Steinbok,and M. Robillard. Ef-

ficient mapping of software systemtracesto architectural

views. Technicalreport TR-00-09,Departmenif Computer

ScienceUniversity of British Columbia,2000.

[18] L. Wall, T. ChristiansenandR. Schwartz. ProgrammingPerl.

O'Reilly & Associates2ndedition,1996.

[19] D. Yellin andR. Strom.Interfaces,protocols,andthe semi-

automaticconstructionof software adaptorsin Confeence

on Object-OrientedProgrammingSystemsl.anguajes, and

Applications pp.176-190,1994.ACM SIGPLAN.

