
Implicit Context: Easing Software Evolution and Reuse

Robert J. Walker
Department of Computer Science

University of British Columbia
201-2366 Main Mall

Vancouver, BC V6T 1Z4, Canada

walker@cs.ubc.ca

Gail C. Murphy
Department of Computer Science

University of British Columbia
201-2366 Main Mall

Vancouver, BC V6T 1Z4, Canada

murphy@cs.ubc.ca

ABSTRACT
Softwaresystemsshouldconsistof simple,conceptuallycleansoft-
warecomponentsinteractingalongnarrow, well-definedpaths.All
too often, this is not reality: complex componentsend up inter-
actingfor reasonsunrelatedto the functionality they provide. We
referto knowledgewithin a componentthatis not conceptuallyre-
quiredfor the individual behaviour of that componentasextrane-
ous embeddedknowledge(EEK). EEK creepsinto a systemin
many forms,includingdependencesuponparticularnamesandthe
passingof extraneousparameters.This paperproposestheuseof
implicit context asa meansfor reducingEEK in systemsby com-
biningamechanismto reflectuponwhathashappenedin asystem,
throughquerieson thecall history, with a mechanismfor altering
calls to and from a component. We demonstratethe benefitsof
implicit context by describingits useto reduceEEK in theJavaTM

Swinglibrary.

Categoriesand SubjectDescriptors
D.1 [Software]: ProgrammingTechniques;D.2.3 [Software En-
gineering]: CodingTools andTechniques;D.2.7 [Software En-
gineering]: Distribution, Maintenance,andEnhancement;D.2.11
[Software Engineering]: Software Architectures—information
hiding; D.2.13[SoftwareEngineering]: ReusableSoftware.

GeneralTerms
Algorithms,Languages.

Keywords
Structure,flexibility , extraneousembeddedknowledge,EEK, im-
plicit context, call history, contextual dispatch.

1. INTRODUCTION
When we begin building a software system,we typically strive
to designsoftware componentsthat are simple and conceptually
clean.Whenwe finish building a versionof thesystem,a different
storyhastypically unfolded.An originalvisionof independentand
cohesive componentsthat interactalongnarrow pathsis too often

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGSOFT 2000 (FSE-8) 11/00 San Diego, CA, USA
c
� 2000 ACM ISBN 1-58113-205-0/00/0011...$5.00

replacedwith a reality in which thereexists a larger thandesired
setof interactionsbetweencomponents.1

Obviously, componentsmust communicateto provide system
behaviour. Communicationleadsto interactionbetweencompo-
nents. The problemresidesin the fact that a componentendsup
interactingwith othercomponentsfor reasonsnot directly related
to providing its behaviour. For example,whena classparticipates
in the AbstractFactory designpattern[4] as a client, it must be
awareof this participation;the abstractfactoryclassmustbe ex-
plicitly namedeven thoughonly the productclassesmanagedby
thefactoryareof interestto theclient. Suchexplicitly namedinter-
actionsmakesoftwarebrittle. Wereferto knowledgeof theexternal
world within a componentthat is not conceptuallyrequiredfor the
individual behaviour of that componentas extraneousembedded
knowledge (EEK). In Section2, weexpanduponourdescriptionof
EEK andgive somesimpleexamples.

To remove EEK from components,we proposeusing implicit
context—knowledgeof thecomponentsthatexist in a systemand
of themessagesthathave beenpreviously communicatedbetween
them—to interpret and to alter messages.When a messageis
passedor received, additionaldetails(suchasparameters)canbe
filled-in by reflectingupon what haspreviously occurredwithin
thesystem,thecall history. Furthermore,a messagecanbealtered
dependingon to whereit is beingsentor from whereit is being
received; that is, messagescanbeinterceptedbeforeor afterbeing
sentandbe replacedby othermessagesdependingon the context
in which they occur. Wecall thiscontextualdispatch. In Section3,
we expanduponthis descriptionof implicit context andshow how
it maybeappliedto remove theEEK from thesimpleexamplesof
Section2. Wethendescribe,in Section4, asemi-automatedproof-
of-conceptmechanismfor usingimplicit context thatwehaveused,
anddiscussissuesthat arisein providing fully automatedsupport
for theapproach.

To demonstratetheapproach,we presenttheapplicationof our
proof-of-conceptimplementationof implicit context to partof the
1,304-classJavaTM Swing graphicaluser interfacelibrary in Sec-
tion 5. We show how the useof implicit context helpedto make
componentsin Swingsimplerandlessbrittle. We wereableto ap-
ply implicit context incrementally, evolving partsof Swing to use
implicit context while runningside-by-sidewith unchangedcom-
ponents.

In Section6, we discussissuesthatarisein usingimplicit con-
text. Section7 comparesimplicit context to other, relatedap-
proaches.Finally, we summarizeour argumentsand findings in
Section8.

�
We usethe term componentto refer to a structuralunit, suchas

a method,class,or module,whenwe do not careto differentiate
betweenthese.

69

The contributionsmadeby this paperare: (1) to illustrate the
problem

�
of extraneousembeddedknowledge,and(2) to introduce

implicit context, aconceptwhoseusecanreduceEEK, therebyeas-
ing softwareevolutionandreuse.

2. EXTRANEOUS EMBEDDED
KNOWLEDGE

Extraneousembeddedknowledgecreepsinto a componentasthe
componentis elaboratedandimplemented.Sometimesthedepen-
denceswe build in cancomebackto hauntus laterwhenwe need
to changeoursystemor reusepiecesof it. Wefocusonafew of the
morecommonformsof EEK here.2

Thesimplestform of EEK consistsof thedependencesa client
componentforms on particularnamesand signaturesof external
components.If any of the external namesor signatureschange,
our client componentwill break.Whatshouldbeimportantto the
client is not which componentwill be providing desiredexternal
functionality, but ratherwhat functionalityis needed.For example,
say we had a client that referredto the Vector class;at some
pointVector is renamedDynamicArray, therebybreakingour
client. Our client caredabouttheVector functionality, not the
name;therefore,thespecificnamewasEEK within theclient.

More complex EEK arises,for example,whena classpartic-
ipatesin the AbstractFactory designpattern[4] as a Client.
Client mustexplicitly nametheAbstractFactory classand
alter theway in which it would otherwisecreatean instanceof an
AbstractProduct class.Ratherthancontainingstatementsof
theform (usingJava syntax):

AbstractProduct product =
new AbstractProduct();

Client mustusethemoreconvolutedform:

AbstractProduct product =
factory.makeAbstractProduct();

wherefactory is of typeAbstractFactory andcontainsan
instanceof ConcreteFactory, a subclassof AbstractFac-
tory, thathasbeenpassedto theClient at somepoint. There-
fore, Client containsexplicit knowledgeof its participationin
theAbstractFactorydesignpattern:it bothnamestheAbstract-
Factory classandinvokesa factorymethodtherein. The pres-
enceof thisknowledgewithin Client forcestheAbstractFactory
designpatternto beusedwheneverClient is to bereused.Since
Client would be just aseffective at providing its intendedpur-
posewereit possibleto usethefirst form of thestatementabove,
the knowledgeof the AbstractFactorydesignpatterninvolved in
theuseof thesecondform is EEK within Client.

A more subtle version of EEK arisesbetweencomponents.
Consider drawing toy robots representedby a Robot class.
Robot possessesadraw methodthatdelegatesto aseriesof other
methodsfor drawing thedifferentpartsof therobot: thetorso,head,
left arm,andsoforth. Eachof thesemethods,in turn, delegatesto
yet othermethodsfor drawing smallerbits of the robot,primitive
objects(suchasrectangles),or both. In implementingthesemeth-
ods,we realizethatwe needa canvason which to draw primitives.
Becausethe robot may needto be drawn on differentcanvasses,
a canvas objectmustbe passedto the Robot class;therefore,a
parameteris addedto thedraw methodto acceptsuchan object.
�
EEK is a generallyapplicableconcept;however, we limit its dis-

cussiontoobject-orientatedsoftwarewithin thispaperduetoaneed
to groundthediscussionanddueto spacelimitations.

Sincewe needto have this canvasat thepointswhereit is required
to draw primitives, a parameteris addedto all the methodsthat
draw partsof the robot andeachmethoddutifully passesthecan-
vason. Only themethodsthatdraw primitivesactuallydoanything
with thecanvas;theotherssimply passit to themethodsto which
eachdelegates. Knowledgeof the canvascan thusbe seento be
EEK from the perspective of thesemethods:it is needednot for
theconceptualintegrity of eachof thesemethodsbut only because
a canvasobjectneedsto beexplicitly usedto draw primitives,and
this objectmusttravel from theclientsof Robot, throughthehi-
erarchyof delegations,down to the primitive drawing calls being
made.

Categorizationof knowledgeasEEK canonlyoccurrelativetoa
particularcomponent.For example,thefactthatknowledgeof the
AbstractFactorydesignpatternis EEK within Client doesnot
imply that it is EEK within a larger, parentcomponentcontaining
Client. This parentmayindeedbevery concernedwith thefact
that theAbstractFactorydesignpatternis beingusedin favour of
someother meansof flexibility . If this were the case,it would
not make senseto talk of reusingthe parentwithout the Abstract
Factorydesignpatternand,sincethepatternwould bean integral
partof theparent,it would not beEEK there.Likewise,primitive
drawing methodsneedto referto a canvasfor their operationto be
meaningful. Therefore,a canvasobject is not EEK within sucha
primitive drawing method.

3. IMPLICIT CONTEXT
Implicit context is thecontext providedby theexecutionof a sys-
tem:atany givenmomentduringanexecution,theimplicit context
consistsof thestructureof thesystemandthehistoryof interactions
within thesystem.We caninterpretmessagesdifferentlydepend-
ing on theimplicit context in which they arebeingcommunicated.

As an analogy, considerthat in humanconversationwe do not
spell out every conceptwe wish to communicateat every instant
the understandingof thoseconceptsis required.We expectmuch
informationto beunderstoodfrom or alteredby context. Suchuse
of context takestwo forms: omission, wherewordsor detailsare
left out to befilled-in from earlierdetailswithin a conversationor
generalknowledge,andalteration, wherethe wordsthat arespo-
ken or the way that they are interpreteddependsupon the indi-
viduals who arespeaking. “It spunwildly” could refer to a ride
at the countyfair, or to one’s impressionof a room while experi-
encingextremenausea;the detailsabout“it” have beenomitted,
to be understoodfrom what haspreviously beendiscussed.Like-
wise,one’s responseto thequestion,“What is politics?” might be
quitedifferentdependingonwhois asking;theexplanationgivena
youngchild is likely to besignificantlydifferentfrom thatgivenan
adult. Meaningfuluseof context canrequirethat the participants
in a conversationsharea commonworld view when referencing
knowledgeoutsidethe confinesof the conversation. Statingthat
someone“actedthe role of Cyrano” would be meaninglessif the
listenerknew nothingof CyranodeBergerac.3

Similarly, the history of messageswithin a systemcan be
viewed as a conversationbetweencomponents,and so, we can
leveragethe conceptsof omission, alteration, and world view.
Ratherthan forcing componentsto repeatedlygive the samede-
tails in messages,we wish to allow them to sendmessageswith
omitteddetails,theirmeaningsto beunderstoodfrom implicit con-
text. At thesametime,we want to performalterationof messages
�
Our analogyis intendedto be motivational. In humanconversa-

tion, wealsoperformoperationssuchascheckingthatwehaveun-
derstoodwhatis beingdiscussed.Wearenotattemptingto provide
suchoperationsvia implicit context.

70

dependingon wherethey are received or to whom they aresent.
And finally, componentsneedto sharea commonworld view, or
apparentlyshareone,soimplicit context canbecorrectlyused.

With theseconceptsin hand,we proceedto discussa program-
maticmodelfor usingimplicit context, anddemonstrateits utility
on thesimpleexamplesfrom Section2. Wepostponea description
of approachesto implementingamechanismto useimplicit context
until Section4 andadiscussionof how existingapproachesaddress
EEK until Section7.

3.1 The Model
In orderthat themessageswhich aresentandreceivedbemodifi-
ableaccordingto theimplicit context, we needto beableto inter-
cept messages,reflect upon the implicit context, and alter those
messagesaccordingly.4 Our model for utilizing implicit context
separatesthe interception,alteration,andredispatchof messages,
called contextual dispatch,from the reflectionupon the call his-
tory. Ideally, contextualdispatchprovidesthemechanismfor ratio-
nalizingdisparateworld views betweenintercommunicatingcom-
ponents,interpretingmessageswith omitted details,and altering
messagescontextually. The call history and somestructuralin-
formation provide the knowledgewith which to drive contextual
dispatch.

In themodel,we canconsiderthereto exist a boundaryaround
every component.Insidetheboundary, theworld view of thecom-
ponentholdssway; outsidethe boundaryis either the true global
picture,or the world view of a larger, nestingcomponent.Trans-
lation betweentheexternalandinternalworld views occursat the
boundarywithin what aretermedboundarymaps. Therearetwo
kindsof boundarymaps:out-mapsand in-maps. Out-mapstrans-
latefrom theinternalworld view to theexternalworld view, while
in-mapstranslatein the oppositedirection. Eachboundarymap
is responsiblefor the interceptionof a particularkind of message
from onesideof theboundaryandits contextualdispatch,generally
to theothersideof theboundary. We saythatwe attach or applya
boundarymapto a boundarywhentheboundarymapis explicitly
associatedwith thatboundary.

In Figure 1, we seea componentC with a boundaryshown
aroundit; C, throughvariousmethodcalls, namesfour external
components,S1–S4, within its world view. The external world
view is different; it containsfour components,T1–T4. Thereis
only onecomponentthatmatchesbetweentheseworld views: S2
andT2 arethesame.Theworld view representedby theS compo-
nentscouldbethesystemin which C wasoriginally implemented
andtheT componentscould be a systemin which C wasreused.
In order thatC operatecorrectly, we definethreeout-mapsfor it
(shown asgrey circles)that interceptmessagesboundfor thenon-
existentS1, S3, andS4. Messagesboundfor S1 andS4 areal-
waysreroutedto T1. Messagesboundfor S3 arereroutedto either
T3 or T4 on thebasisof thecall history; it couldbethat the least
recentlyusedoneis alwaysused,or it might dependon someini-
tializationchoicethatoccurredpreviously. In-mapsbehave analo-
gously.

Boundarymapsmaintain the façadeof an unchanginginter-
face,therebypermittinga simplemeansof backwardscompatibil-
ity. Out-mapshelp an individual componentpossessan unchang-
ing view of thesystemin which it runs,while in-mapshelpa sys-
tem possessanunchangingview of individual componentswithin
it evenwhenthey arereplacedor modified.
�
Justaswepresentourdiscussionof EEK from anobject-oriented

view, we presentourdiscussionof implicit context from anobject-
orientedview. However, implicit context couldbeusedin any situ-
ationwhereinformationflows acrossa recognizableboundary.

C

S1

S2/T2

S4 S3

T1

T3T4

Figure1: Usingout-mapsto redirectcalls fr om C.

3.2 Removing EEK: Simple Examples
Dependencesonnamesof externalcomponentsaretrivial to repair.
Boundarymapscapturemessagesboundfor thepurportedcompo-
nents,andreplacethemwith messagesto the actualcomponents.
Thus, in our example,messagesboundfor Vector arereplaced
with messagesboundto DynamicArray. TheEEK imposedby
requiringclient componentsto know whatothercomponentsexist
in therealsystemhasbeenremovedfrom theclients.

RecalltheAbstractFactorydesignpatternexampleof Section2.
To permitClient to literally containthestatement:

AbstractProduct product =
new AbstractProduct();

while actuallyutilizing anabstractfactory, wemustcapturethecall
to AbstractProduct in an out-mapattachedto the boundary
of Client. In this out-map,we querycall history to determine
the last instanceof AbstractFactory, which we will refer to
as“factory,” that waspassedto Client. The messagecarry-
ing factory wasignoredthroughanin-mapalsoattachedto the
boundaryof Client. We thenreroutethe call to Abstract-
Product to go to factory.makeAbstractProduct in-
stead,and return the resultingobject to Client. Note that, as
aresultof theboundarymaps,Client doesnotrequireany actual
constructorAbstractProduct to exist to receive this message,
sincethemessageis interceptedbeforeit getsthere.5 Client and
its boundaryareboth part of someparentcomponent;by moving
statementsto theboundary, they remainpartof theparent,but not
part of Client. The EEK in our systemhasnow beenreduced:
theClientno longerhasany knowledgeof theAbstractFactoryde-
signpattern,only theparenthasthisknowledgeandthis is notEEK
asdescribedin Section2.

Our robotexampleis alsostraightforward to dealwith via im-
plicit context. Again, we attachan in-map to the boundaryof
Robot thatfilters out thecanvasobjectthatgetspassedto it. We
attachanout-mapto theboundarythat,for eachprimitive drawing
call, first looks up thepreviously passedcanvasandeitheraddsit
asa parameterto thedrawing call, or reroutesthedrawing call to
the canvasitself. All referencesto the canvashave beenremoved
fromRobot; referencesto thecanvasremainin theboundarymaps
to Robot, but, asdescribedbefore(seeSection2), it is not EEK
there.
�
In ourimplementationdescribedin Section4, thereferencesmade

by this codeto the constructorfor AbstractProduct are re-
placedprior to compilationwith a call to factory.makeAb-
stractProduct, andtherefore,the transformedClient does
not requirethattheconstructorexist.

71

4. IMPLEMENT ATION
We ha� ve implementeda mechanismfor recordingcall historyand
a meansfor performingcontextualdispatchin Java. This proof-of-
conceptimplementationwasbuilt for the purposeof determining
whethertheconceptsenvisagedin implicit context wereworthy of
furtherstudy;asa result,theimplementationattemptsto provide a
literal representationof themodelpresentedin Section3. Not sur-
prisingly, mismatchesexist betweenthegeneralmodelandwhatis
possiblewithin Java,sosomedetailscannot beperfectlyrealized;
we have notedwherewe have madetradeoffs.

We begin with a descriptionof the implementedmeansof
recordingand queryingcall history, then explain how boundary
mapshave beendefinedandapplied,andendwith a brief discus-
sionof how we areaddressingautomatedtool support.

4.1 Call History
In orderto reflectuponthehistoryof calls madewithin a system,
we needbotha meansto recordthecallsmadewithin thatsystem,
anda meansto accessthis record. The kinds of queriesusedto
accessthecall historylargelydeterminetheform of theinformation
thatmustberecorded.

Our proof-of-conceptimplementationof call history for Java
storesmethodcallsandmethodreturnswithin athreadedtreestruc-
ture.Eachnodewithin thetreerepresentsacall to amethodwithin
theprogram,includingthereceiving object,objectsandprimitives
passedin the parameters,an object representingthe classbeing
called,andan objectrepresentingthe methodbeingcalled. Each
of thesenodesis an objectof the classCall. Every Call node
hasa link to an associatedCallReturn objectin which the re-
turn valueof thatcall is stored.Thethreadwithin thetreerecords
thecausalorderof methodcalls,ignoringthepresenceof separate
threads.This treeis encapsulatedwithin a classcalledContext.6

A numberof methodswereimplementedonContext for per-
formingqueriesonthecall history;Figure2 containsalist of these.
This is not anexhaustive list of all possiblequeries.

To storecallsandcall returnsin the tree,we definedtwo snip-
petsof codeto instrumentthe methodsin a system,onethat was
to be executedat the startof eachmethodandonethatwasto be
executedat theendof eachmethod.Thesourcecodefor theclasses
wasthensoinstrumentedby automatedtool support.

4.2 Contextual Dispatch
Boundarymapsare the heartof contextual dispatch,but they re-
quire boundariesto which to apply. For our proof-of-concept,we
consideredonly naturalandeasilynamedboundariesprovidedby
Java, thosearoundmethodsand fields.7 There are two facetsto
boundarymaps:specificationof themessagesthat they shouldin-
terceptandtheredispatchingcodethatshouldbeexecutedwhenthe
correspondingmessagesareintercepted.Themodelcallsfor mes-
sagesto beinterceptedandmodified,but in Java, thereis nomeans
to dothisonactualmessages;therefore,westaticallymodify meth-
odstoachievethesameeffectonall methodcallsandoutgoingfield
accesses.

We can seethesetwo facetsby examining a boundarymap
applicableto the AbstractFactoryexamplefrom Section2. The
�
Note that the Context classis treatedspecially: invoking its

methodsstoresnothingto the call history andit is intendedto be
accessedonly within boundarymaps.	
Classesarealsonaturalandeasilynamedin Java, but boundaries

aroundthem were approximatedfor now by applying the same
boundarymapsto every methodandfield therein.

 getCallReturn(Call)

 precedes(Call, Call)

 hasBeenCalled(Class, Method, Object)

 findLastCallTo(Class, Method)

 findLastCallToFrom(Class, Method,

Object, Object)

 findLastCallToAnySubclass(Call, Class,

Method)

 findLastCallToAnySubclassFrom(Class,

Method, Object)

 findLastCallToPassingSubclassOf(Class,

Method, Class)

 findLastInstanceOfPassedTo(Class, Class)

Figure2: The query methodsdefinedon the Context class.

following out-mapcould have beenapplied to the boundaryof
Client to allow it to referto AbstractProduct directly:

map abstractFactoryMap {
out AbstractProduct() {
AbstractFactory factory =

Context.findLastInstanceOfPassedTo
(AbstractFactory.class,
Client.class);

return factory.makeAbstractProduct();
}

}
apply abstractFactoryMap to Client;

In this example, an out-mapthat interceptsmessagesto a con-
structor of AbstractProduct is applied to the boundaryof
Client. An identifier, abstractFactoryMap in the exam-
ple, permitsmultiple in- andout-mapsto be given a singlename,
making it easierto apply a set of maps to a component. The
one out-mapin abstractFactoryMap replacesmessagesto
theAbstractProduct constructorwith the indicatedblock of
redispatchingcode. This block makes a call to Context to lo-
catewhichever instanceof AbstractFactory waslast passed
to Client. A factorymethodis theninvoked on the locatedob-
ject.

To applytheboundarymapsto componentboundaries,weman-
ually addedtherelevantredispatchingcodeinto theclassesnamed
in apply statements.Attaching an in-map to a methodbound-
ary simply requiredthat its redispatchingcodeblock be inserted
(i.e.,cut-and-pasted)into thatmethodprior to any statementsin the
original method,includingstatementsto storeinto call history. In-
mappingamethodthatdid notexist within aclassinvolvedadding
a methodof the indicatednameand signaturewith the specified
bodyto theclass.Wedid notpermitfield accessesto bein-mapped
becausethereis no meansof capturingaccessesto the fields of a
classin Java.8

Out-mappinga call or field accessinvolved adding a new
methodto the classto whoseboundarythemappingwasapplied;
thenew methodcontainedtheredispatchingcodeblock of theout-
map.Then,all call sitesaffectedby themapweremodifiedto call
thenew out-mapmethod.Doing thismanuallyrequiredasearchto
�
All theclientclasseswhoaccessafield couldhavehadequivalent

out-mapsattachedto their boundaries,but we wantedto maintain
theconceptof independentcompilationof classes.

72

ensurethateachresultingmatchwasin thecorrectscope,followed
by a replacementby the nameof the call to the out-mapmethod.
An additionalparameteris requiredby theout-mapmethodto hold
theobjectto which theoriginalmessagewasto besent.

Althoughwe did not encountertheneedin our examplestudy,
themodelaccountsfor theapplicationof multiple mapsto a given
boundary. Theseareappliedsequentiallyin theorderspecifiedby
theengineer, andeachaddedmapmodifiesthecodeaddedby those
beforeit.

4.3 AutomatedTool Support
To date,we have appliedimplicit context with minimal automated
support. Making the conceptof implicit context workableobvi-
ously requirestool supportfor both contextual dispatchand for
recordingandqueryingcall history. Currently, we aredeveloping
automatedtool supportfor utilizing implicit context in Java pro-
grams.

As describedearlier, applying in-maps and out-maps is a
straightforwardprocess,involving theadditionof new methodsand
modificationof existing methodsin classeswith associatedmaps.
Using this approach,components(classes)canbeprocessedindi-
vidually. Building a tool to performthis processrequiressupport
for processingboundarymapspecificationsandmanipulatingJava
sourcecode.9 We areusingJavaCC10 from Metamatato parseJava
sourceandboundarymapcode.We aremanipulatingtheresulting
tokensto achieveaneffect identicalto themanualinsertionprocess
describedabove.

5. EXAMPLE:
THE JAVA SWING LIBRAR Y

As anexampleof whereEEK arisesandhow implicit context can
addressEEK,wedescribeapartof theJavaSwinglibrary. Swingis
a graphicaluserinterface(GUI) toolkit that is intendedto provide
consistency in GUI appearanceacrossplatformsandto makeit easy
to build sophisticatedwidgets.Swing is distributedaspartof Sun
Microsystems’s JDK 1.2.

A majorfeatureof Swingis its pluggablelook-and-feel(PLAF)
architecture[3]. Thisarchitectureallowsthedisplayandinteractive
characteristics(the“look-and-feel”)of a GUI to bealtereddynam-
ically; for example,a userinterfacein theMotif look-and-feelcan
bealteredat run-timeto a Windows look-and-feelandbackagain.

5.1 EEK in JButton
In Swing,eachGUI widgetobjectcontainsaseparateobject,called
aUI delegate, whichis responsiblefor thelook-and-feelof thewid-
getfor aparticularPLAF. For example,theJButton class,which
implementsa button widget, hasan associatedclassButtonUI,
which providesits look-and-feel;ButtonUI hasa separatesub-
classfor eachdifferentlook-and-feel.WhenJButton receivesa
messageto paint itself, it forwardsthemessageto its currentlyin-
stalledUI delegate,sayaMotifButtonUI object,which draws
thebutton properlyaccordingto its currentstate.Whenthe look-
and-feelof awidgetis to bechanged,thecurrentUI delegateobject
for thatwidgetmustbeuninstalled,thenew UI delegateclassmust
belocatedandinstantiated,andthenew UI delegateobjectmustbe
installedon thewidget.

A button is a conceptuallysimple thing, yet the JButton
classdefinesor inheritsa total of 183 public methodswithin the
javax.swing package,plus144publicmethodsfrom within the
�
Thismanipulationcouldalsobeperformedon classfiles.��

http://www.metamata.com/JavaCC/

java.awt package.Weconsidermuchof thisto beEEK from the
perspective of theJButton class.For instance,knowledgeabout
the PLAF architectureis EEK from the perspective of JButton
becauseit shouldbepossibleto reusebuttonwidgetsin theabsence
of thePLAF architecture.

To identify how JButton (andultimately, therestof thewid-
get classesin Swing) could be evolved to remove detailsof the
PLAF architecturewithoutbreakingSwing,we first needto exam-
ine thedetailsbehindtheoperationof thePLAF architecture.

5.2 How PLAF Works
Figure3 shows a simplifiedobjectinteractiondiagramfor thepro-
cessof locating,instantiating,andinstallinganew UI delegateinto
aJButton object.Therearefive classesinvolved in this process
asidefrom JButton.

 BasicButtonUI is a specializedbuttonUI delegate.This
classinherits from ButtonUI, which provides a generic
baseclassfor buttonUI delegates.

 BasicButtonListener is an event handler that re-
spondsto events,suchasbuttonpresses,in a PLAF-specific
manner. It is explicitly installedonto a givenbuttonwidget
by a buttonUI delegate.

 LookAndFeel is a baseclassfor thevariousPLAFs.Each
subclassof LookAndFeel specifiesthesetof UI delegate
classesthatareappropriatefor its look-and-feel.Eachclass
hasanassociatedstring—auiClassID—thatdescribesits
purpose.For example,theMotifLookAndFeel specifies
that MotifButtonUI correspondsto the "ButtonUI"
purposeandthatMotifRadioButtonUI correspondsto
the"RadioButtonUI" purpose.

 UIDefaults is usedbyLookAndFeel andits subclasses
to storethemappingsfrom theuiClassID’s for aPLAF to
theactualUI delegateclasses.

 UIManager is anabstractclasswith variousstaticmethods
for registeringtheUIDefaults informationfor thecurrent
PLAF.

Theinteractionsbetweenthesefiveclassesto supportthechang-
ing of thelook-and-feelarecomplex. Figure3 depictsmostof the
over 20 messagesinvolved. The interactionsrepresenteddescribe
whathappensright after the look-and-feelhasbeenchangedvia a
methodcall to theUIManager class. At that point, the applica-
tion mustexplicitly call a utility methodto run aroundandinvoke
eachwidget’supdateUI method(1). For JButton, this results
in a request(2) to UIManager to obtaina UI delegateobjectthat
is appropriateto thenew PLAF. UIManager locatesthecurrent
PLAF (3, 4) andpassesit (5) with thewidgetaskingto beupdated
to UIDefaults. UIDefaults asksthe passedwidget its pur-
pose(6); JButton responds"ButtonUI." UIDefaults uses
its storedinformation(7) to find out theappropriate"ButtonUI"
UI delegateclassfor thecurrentPLAF. It thenusesJava’sreflection
interfaceto instantiatetheUI delegate(8) andreturnsthedelegate
to UIManager, whichpassesit to JButton.

JButton then begins the processof installing the button UI
delegateobject(9). JButton firstcallsaninternalmethodto unin-
stall thecurrentUI delegateobject(not shown in thediagram)and
thencallsinstallUI (10)onthebuttonUI delegateobject,pass-
ing itself astheargument.ThebuttonUI delegateinstallsvarious
default propertiesonto thebutton (15–17),someof which arede-
terminedbyUIManager (11)andotherswhicharedeterminedby

73

(22) getClientProperty
(21) addChangeListener
(20) addPropertyChangeListener
(19) addMouseMotionListener

(17) putClientProperty
(18) addMouseListener

(16) setMargin
(15) setOpaque

JButton

LookAndFeel

UIDefaults
Listener

Basic-
Button-

UIManager

Basic-
Button-

UI

(8)
createUI

(3) getDefaults
(4) getLAFState

(12) installColorsAndFont
(13) installBorder

(9) setUI

(5) getUI

(10) installUI

(6) getUIClassID

(11) getInsets

(7)

getUIClass

(2) getUI

(1) updateUI

(14) <init>

Figure 3: Object interaction graph for the processof installing
a “Basic” PLAF UI delegateinto a JButton.

LookAndFeel (12, 13). At the sametime, the button UI dele-
gateobjectcreatesa PLAF-specificbuttonevent handler(14) and
installsit on thebuttonobject(18–22).

5.3 Applying Implicit Context to JButton
In part, JButton containsEEK becauseit has to worry about
thePLAF architectureduring theUI delegateinstallationprocess.
JButton shouldnot needto askUIManager for an appropri-
ateUI delegateinstance,andit shouldnot needto know aboutits
uiClassID.

JButton containsor inheritsfive methodswith the solepur-
poseof supportingthis process:getUIClassID, updateUI,
getUI, setUI(ButtonUI), andsetUI(ComponentUI). If
thesemethodswerenot present,JButton would beconceptually
cleaner, permittingit to bemodifiedwith lessrisk of breakingthe
system,andpermittingit to be reusedwithout having to reusethe
ability to changelook-and-feels. In addition, it is EEK for Ba-
sicButtonUI to worry aboutinstalling a PLAF-specificevent
handleronJButton.

Wehadthreespecificgoalsin mindin applyingimplicit context
to JButton:

1. remove the needto explicitly install PLAF-specificUI del-
egatesand event handlersonto JButton, therebyremov-
ing all detailsof theuninstallation/installationprocessfrom
JButton,

2. have the PLAF of JButton remaindynamicallychange-
able,and

3. meetgoals1 and2 in sucha way thattherestof Swingcon-
tinuesto operateusingtheoriginalPLAF architecture.

Therewerethreestepsinvolvedin applyingimplicit context: re-
move thedetailsof thePLAF architecturefrom JButton, deter-
mineboundarymapsto supportthegoals,andapply theboundary
maps(asdescribedin Section4).

5.3.1 Removing thePLAFArchitecturefrom
JButton

To meet our first goal of removing the PLAF uninstalla-
tion/installation protocol from JButton we removed the five
methods providing this functionality from the class: get-
UIClassID, updateUI, getUI, setUI(ButtonUI), and
setUI(ComponentUI). To maintainthe sameexternally visi-
ble interfaceto JButton, in-mapswereappliedto its boundary
thatcapturedmessagesto eachof thesemethodsandignoredthem.
JButton wasthenfreeof theEEK arisingfrom thePLAF unin-
stallation/installationprocess.Sincethis broke thePLAF architec-
tureandthusSwing,we neededto useimplicit context in placeof
theEEK.

5.3.2 DeterminingAppropriateBoundaryMaps
To repair the damageto Swing producedby removing the PLAF
architecturefrom JButton, we neededto apply boundarymaps
to severalclassboundaries.(Theresultingarchitectureis shown in
Figure5.)

Thein-mapattachedto JButton’sgetUI methodperformsa
setof call historyqueries.Thesedeterminewhetherany UI dele-
gatewith the"ButtonUI" purposehasbeenactivatedsincethe
lasttime thebuttonwaspainted,indicatingthattheUI delegatefor
JButton needstobechanged.Pseudocodefor thein-mapappears
in Figure4.

To replacethe needto explicitly install PLAF-specificevent
handlerson JButton instances,we introduceda genericDe-
faultButtonListener event handlerclass. This classcon-
sistedof emptymethodsfor handlingevents. An in-mapwasat-
tachedto the boundaryof the getListener methodof De-
faultButtonListener that determinesthe currentUI dele-
gate,andhence,theappropriatePLAF-specificeventhandlerclass;
eventsarethenreroutedto an instanceof this class. The needto
explicitly install PLAF-specificevent handlerson JButton and
theEEK this introducedarenow gone.

A varietyof othersimplein-mapsandout-mapswerealsoused
to completethe integration of implicit context. In all, JBut-
ton required5 in-mapsand3 out-maps,DefaultButtonLis-
tener required11 in-maps(for all the different event handler
methods),UIManager andUIDefaults eachrequiredonein-
map,BasicButtonUI required8 in-mapsand5 out-maps,and
eachPLAF-specificUI delegateclass(i.e.,MetalButtonUI and
MotifButtonUI) required4 in-mapsand5 out-maps.

Statementsto perform querieson the call history were used
five timesfor JButton within thegetUI in-map,twice for De-
faultButtonListener within the getListener in-map,
threetimesfor BasicButtonUIwithin threein-maps,11 andonce
for eachPLAF-specificbutton UI delegate class. All boundary
mapsexcept the in-mapsfor getUI and getListener were
short:six linesof codeor less.Thein-mapsfor getUI andget-
Listener are25 lines of codeeach;mostof this coderesulted
from handlingtheinitializationcasewherethebuttonhasnot been
paintedyet.

5.3.3 Resultsof ApplyingImplicit Context
We testedthe resultsof our changesby building a simpleappli-
cationwhosePLAF waschangeddynamically. The behaviour of
the implicit context-basedarchitecturewhenthePLAF is changed
���

Only oneof theseusesis significant;theothersarethereto make
surethatanerroroccursif theold architectureis beingusedfrom a
JButton.

74

(1) SetpaintCall to bethemostrecentcall to paintthis
JButton.

(2) SetassocCall to bethemostrecentcall to associate
a UI delegateclasswith a PLAF.

(3) SetuiClass to null.
(4) If paintCall is not null andis morerecentthan

assocCall, just returnthecurrentlycachedUI del-
egateobject.

(5) Retrieve the UI delegateclasspassedin theassoc-
Call.

(6) SetuiClass to theUI delegate’s purpose.
(7) SetassocCall to bethenext mostrecentcall to as-

sociatea UI delegateclasswith a PLAF.
(8) If uiClass is not"ButtonUI," go to (4).
(9) InstantiatetheUI delegateclassandcachetheobject.
(10) Returnthecachedobject.

Figure4: Pseudocodefor the getUI in-map.

is depictedin Figure5. No arcsremainfrom JButton to Ba-
sicButtonUI or viceversa,andnoarcsremainfrom JButton
to UIManager or vice versa;this indicatestheremoval of the in-
stallationprocessfrom JButton andthe removal of the installa-
tion of aBasicButtonListener onJButton.

Applying implicit context to Swing had three effects on the
Swinglibrary:

1. the sourcecodefor JButton is now conceptuallysimpler
and containslessEEK: the codefocuseson implementing
thefunctionalityof abutton;

2. JButton shouldbeeasierto reusewithoutneedingto reuse
thePLAF architecture;and

3. JButton shouldbeeasierto maintainandevolve now that
it is freeof theconcernsof thePLAF architecture.

6. DISCUSSION
Despitetheadvantagesofferedby applyingimplicit context, given
theearlystageof this work, many openissuesremain.

6.1 Effect on Comprehensibility
Implicit context maymake it moredifficult to reasonabouttheop-
erationof a system.Wediscusstwo possiblecriticismshere.

Onecriticism is thatcomprehensibilityis decreasedby thesep-
arationof smallpiecesof codeinto mapswhich affect component
code. This criticism alsoappliesto other techniquesthat support
separationof concerns(e.g., [10, 8]). More experiencemust be
gatheredapplyingtheseapproachesto assessthe impact. An ini-
tial assessmentof aspect-orientedprogramming[15] foundthatthe
numberof file switchesduring certainprogrammingtaskswhen
usingaspect-orientedprogrammingwerecomparableto or slightly
lessthan when using conventionalobject-orientedprogramming;
this wasinterpretedasindicatingthatany confusioncreatedby the
division wascompensatedfor by thegreaterclarity of thedivided
pieces.It wouldbewrongto ascribetoogreataconfidencein these
weakresults,but, to date,it is the only empiricalevidenceavail-
able.

Another criticism is that boundarymapscould becomecom-
plex anddifficult to understand.For Swing,webelieveour implicit

CONTEXT

LookAndFeel

Listener

Basic-
Button-

Basic-
Button-

UI
JButton

Listener

Default-
Button-

UIManager

(3) findLastCall

(1) any event

(2) getUI

(6) findLastCallToFrom

(4) precedes

(5) createUI

(7) getCallReturn

(8) getListener

(9) <init>

(10) setOpaque
(11) setMargin

(12) getInsets
(13) installColorsAndFont
(14) installBorder

Figure5: The behaviour of the implicit context-basedarchitec-
tur e when the PLAF is changed. The shadedcirclesrepresent
the in-maps attached to the boundaries of JButton and De-
faultButtonListener.

context versionis easierto reasonaboutbecauseit separatesand
simplifiesa particularcomplex featurefrom the regular operation
of JButton. Although several boundarymapsmustbe investi-
gatedto understandthe feature,eachmapis relatively small; the
largestis about25 lines. While the majority of in- andout-maps
weretrivial, the pseudocodegiven in Figure4 for thegetUI in-
map is not trivial. Someof the complexity in this mapis dueto
other existing intricaciesof the PLAF architecture. Were we to
morethoroughlyapply implicit context to this example,themaps
would likely becomesimpler. However, oneof the advantagesof
the implicit context approachis thatwe areableto apply it either
to a new systemor incrementallyto anexistingsystem.

In our limited experience,once an understandinghas been
gainedof thefeaturein a systemto bemodified,suchasthePLAF
architecture,determiningwhichmapsareneededandwriting those
mapsis not an oneroustask. Somemapsaremorecomplex than
others.In thesecases,thedevelopermustreasonthroughthesys-
tem to determinehow to accessthe informationof interestin the
pastexecutionof the system.The difficulty of this taskwill vary
dependingon thecomplexity of thesystemandon thecomplexity
of the EEK that is beingremoved. Furtherexperienceis needed
to develop a bettersenseof the complexity or simplicity brought
aboutby theuseof implicit context.

6.2 Effect on Development
Theuseof implicit context allowsusto removeEEK from systems.
Implicit context doesnot merely move EEK aroundin a system
sincea determinationof what is EEK is relative to a component.
As describedin Section2, whenEEK movesout of a component
to the component’s boundary, the codeplacedin the boundaryis

75

generallynot EEK to the higher-level, nestingcomponent.As an
example,� considerthe implicit context versionof our Swing ex-
ample. Even thoughthe in-mapfor JButton still interactswith
BasicButtonUI aspartof theinstallationof thePLAF, moving
this interactionto theboundarymapseparatesthePLAF architec-
turefrom thecodefor JButton itself, therebymakingit possible
to reuseJButton without the PLAF architecture. The separa-
tion would ideally make it easierto understandandmodify both
JButton andthe PLAF architecturein isolationalthoughmore
experienceis requiredbeforethiscanbeassured.Whenthebound-
arymapusesthecall historyto determinetheappropriatedispatch,
EEK is moreobviously removed,reducingthedependencesof one
part of a systemupon anotherpart. In our modified versionof
Swing, for example,JButton no longer requiresknowledgeof
look-and-feelpurpose(i.e., the"ButtonUI" string).

In realizingsystems,flexibility mechanisms,suchascertainde-
sign patterns,arecurrentlychosenat somepoint beforeor during
implementationaccordingto theperceivedneedsof thesystem.We
do not claim that theseflexibility mechanismsare“bad” in andof
themselves. It is the fact that thesemechanismstend to pervade
componentsthat is “bad”—they becomeEEK. If the wrong kind
of flexibility has beenchosen,altering our systemto meetnew
flexibility demandsis hard; altering componentsis hard because
the flexibility mechanismscan obscurecore concernsof compo-
nents,andcanevenbebrokenwhenchangingthosecoreconcerns.
Implicit context allows us to gain the benefitsof theseflexibility
mechanismswithout beingpermanentlytied to themandwithout
theneedto beconcernedwith themwhile developingor evolving
components.

Althoughthispaperhasconcentratedontheuseof implicit con-
text in changinganexisting system,it alsohasapplicability to the
initial developmentof a system.If we couldprevent the introduc-
tion of EEK during the inceptionof a system,thehopeis that the
systemwould simplerto create.Whethersuchspeculationis more
thanwishful thinking is a matterfor futurework.

6.3 Potential Implementations
Ourcurrentimplementationof amechanismto useimplicit context
is simplistic;it is intendedasameansof studyingwhetherimplicit
context canincreasethereusabilityandflexibility of components.
The test applicationwe usedin our Swing exampleexperienced
anorderof magnitudeslowdown whenusingour proof-of-concept
implementation. For implicit context to be useful, better imple-
mentationsareneeded;we argueherethat suchimplementations
arepossible.

Therearetwo obvious drawbacksto our proof-of-conceptim-
plementation. First, it storescall history by instrumentingeach
methodof eachclass;for every invocation,theinformationrelated
to thecall is recordedin thehistory. Our experiencein instrument-
ing systemsto supportobject-orientedvisualization[16] suggests
that this approachwill have a significant,negative impacton per-
formance,andwill requirea greatdealof storagefor long-running
programs. Second,it supportsan arbitrarysetof querieson call
history. The morepowerful that a queryis, the moreinformation
thatmustbecollectedto supportit.

Theseproblemsareaddressable.The informationthatmustbe
storedfor somesimplequeriesis optimizable;for example,thein-
formationrequiredto answertheprecedes(A, B) querycould
bestoredasa singlebit: thebit would besetwhenB is calledand
resetwhenA is called.Suchoptimizationscanlikely befoundfor
anecessarysubsetof kindsof queries.Furthermore,wemightonly
recordtheinformationthatis actuallyneededto answerthequeries

madein agivensystem.If efficientqueryingremainsaproblemaf-
terreducingtheamountof informationcollected,weintendtobuild
uponencodingtechniqueswe have recentlydevelopedto support
toolsfor theanalysisof largeobject-orientedsystems[17].

To performtheseoptimizations,the in-mapandout-mapspec-
ificationscanhelp. Thesespecificationscanbeanalyzedto deter-
mine the subsetof methodsthat must be instrumented,reducing
theamountof call informationthatneedsto berecorded.Although
this approachwill requirea globalanalysisof thecomponentsand
mapsthat areto be usedtogether, we believe this is workablefor
two reasons.First, theanalysisis not heavyweight, requiringonly
ascanof themapsandof thestaticinheritancestructureof thesys-
tem.Second,theinstrumentationthatmustbeappliedto gatherthe
informationrequiresonly a simpletransformationto thecodeand
canevenbedoneat loadtime.

We have not addressedtheseconcernsyet sinceit is necessary
to understandwhat form of thecall historyandqueriesareuseful
beforewecanconsideroptimizations.

7. RELATED WORK
Much of the work in softwareengineeringandprogramminglan-
guagesis orientedatincreasingtheindependenceandreuseof com-
ponents.

7.1 Separationof Concerns
Implicit context is most closely relatedto thoseapproachesin-
tendedto helpexplicitly separateconcernsin programtext. Some
separationof concerns(SOC)approachesprovide specificsupport
for a particularkind of separation.Othersprovide a moregeneral
mechanism.We describeexamplesof eachbelow anddiscusshow
implicit context compares.

TherelationshipbetweenEEK andconcernsis unclear. While
webelieve thattheseareoverlappingconcepts,wealsobelieve that
the overlap is incomplete. EEK includesdetailstoo minor to be
consideredfull-fledgedconcerns,suchasnamedependences,while
a componentcouldpossessnon-extraneousknowledgeof multiple
concerns.This relationshiprequiresfurtherinvestigation.

7.1.1 SpecificSOCApproaches
DeLine’s flexible packaging[2] focuseson separatingthe details
abouta component’s interactionfrom thecomponentitself. Flex-
ible packagingseparatesa component’s functionalityandits inter-
actions,called its packaging,into distinct entities: a ware anda
packager. A givenwarecanbepackagedto work in differentenvi-
ronments,suchasa plug-in for a webbrowseror a command-line
filter.

Implicit parameters[9] allow oneto explicitly designatewhen
a setof interveningmethodsbetweena senderanda receiver do
not needto be aware of a set of parameters:the parametersare
transferredfrom thesenderto thereceiver withoutalterationof the
sourcecodefor the interveningmethods.Thedeveloperspecifies
within thesourcecodefor thesenderandfor thereceiver thateach
parameteris to communicatevia theimplicit mechanism.

In comparisonto implicit context, bothflexible packagingand
implicit parametersprovide a more abstractedmeansof dealing
with particularkindsof EEK. Flexible packagingprovidesa more
abstractmeansof addressingthequestionof howa componentin-
teracts.Implicit parametersprovide a specificmeansof expressing
whenaparameteris extraneousandof describinghow to transmitit
to theappropriatereceiver. In eachcase,this additionalabstraction
comesataprice: thesourcefor eachcomponentmustbewritten to

76

explicitly usetheparticularmechanism.In contrast,implicit con-
text can� be usedto achieve the sameobjectiveswithout having to
write eachcomponentto usethemechanism.

7.1.2 General SOCApproaches
A numberof more generalapproachesto separatingconcernsin
a systemhave beenappearingover the last few years. Subject-
orientedprogramming[6, 10] is a meansfor composingandinte-
gratingdisparateclasshierarchies(subjects),eachof which might
representdifferentconcerns;subsequentwork onhyperspaces[14]
considersseparatingconcernsin multiple dimensionsat once.
Aspect-orientedprogramming[8] providessupportfor modulariz-
ing cross-cuttingconcerns,suchas distribution or look-and-feel,
in a system. Modularizedconcernscan thenbe combinedinto a
systemasdesired.Compositionfilters [1] separateobjectsinto an
internalpart,possiblyconsistingof multiple objects,andan inter-
facepart,which definesinput andoutputfilters to manipulateand
possiblyredirectmessages.Filters can be usedto separatesuch
concernsassynchronization.

Similar to theseapproaches,implicit context is intendedto help
separatedifferentpartsof a system,increasingthe independence
of thoseparts. Also similar to implicit context, eachof theseap-
proachesinvolvesexplicit separationof partsof aprogram’ssource.
Implicit context differs from theseapproachesin supportingcon-
textual dispatchthroughreflectionuponthe call history of a sys-
tem. This featuresupportsthe investigationof how later binding
of componentsto eachotherwill affect thestructuringof systems.
Sinceall of theseapproachesareat anearlystageof development,
detailedanalysesof thebenefitsandcostsof eachform of separa-
tion arenotyetavailable.

7.2 Explicit Context
To increasethe flexibility of a system,someapproacheshave fo-
cusedon theuseof explicit context.

Traces[7] allow the interpretationof messagesto be altered
basedupona limited form of explicit context. A list of “ancestor
classes,” which areindependentof theclasshierarchy, maybeex-
plicitly built andattachedto anobject.Also attachedto eachobject
is a setdescribingpatternsof ancestorclasses.Whena messageis
receivedby anobject,thechoiceof methodto invokeis determined
by whichpatterntheancestorlist of thatobjectmatches.

Context relations[13] provide a language-basedmechanismin
supportof the Strategy pattern[4] by allowing “context objects,”
basicallydispatchtables,to be dynamicallyattachedto instances.
Upon receiptof a messageby an object,methodselectionis per-
formedby thecontext objectcurrentlyattachedto thereceiver ob-
ject.

Bothof thesemechanismshelpaddressa specifickind of EEK.
The ancestorlists of tracescan be thoughtof as particularpaths
throughthecall historytree,permittinga limited meansof reflect-
ing uponthesystemhistory. Context relationsaddresstheneedfor
eliminatingEEK relatedto theearlybindingof names.

The explicitnessof thesemechanismsforces a developer to
commit to them at an early stageof developmentby intricately
embeddingtheir usewithin the sourcecode,unlike with implicit
context. Implicit context alsopermitsthe removal of moreforms
of EEK. For instance,in theimplicit context approach,it is possible
to accessmoreinformationin thecall history, suchastheparame-
tersrelatedto a call. This additionalinformationmakesit possible
to separatetheSwingPLAF architecturefromJButton described
earlier. This kind of separationwould not bepossibleusingthese
explicit context approaches.

7.3 Adaptors and Wrappers
A varietyof previouswork attemptsto decouplecomponentseither
throughalterationof interfaces,or by addingadditionalfunctional-
ity behindanapparentlyunchangedinterface.

Many of the structuraldesignpatterns[4] areattemptsat this.
For example,the Adapterdesignpatternaltersthe interfaceof a
classso that it may be usedby clientsexpectinga differentone,
while the Decoratordesignpatternallows additionalresponsibil-
ities to be attachedto anobjectdynamically. TheAdapterdesign
patternhasthedisadvantagethat,in its simplestform, it isnottrans-
parentto all clientssinceanadaptedobjectno longerconformsto
its original interface. Of course,if clientswereto accessthe ob-
ject only throughthe adaptedinterface,this would not be a prob-
lem. Otherwise,multi-way adaptation[4, p. 143] canbe usedto
getaroundthisproblem,but it introducestheneedfor clientsto in-
stantiatea differentclass,i.e., thesourcecodefor theclientsmust
bealtered.SincetheDecoratorpatternworksvia delegation,there
ensuesthe notoriousproblemof ensuringthat the objectcalls its
own methodsvia thedecorator—theobjectidentityproblem.

POLYLITH [12] providesa“softwarebus” thatallowsthespec-
ificationsof anapplication’s structure,its deploymentontonodes,
andinter-componentcommunicationto beseparated.Simplecom-
municationstatementswithin componentsareadaptedto conform
to the needsof the actualdeploymentgeometryandcommunica-
tion protocolneedsof aheterogeneousarchitectural-andlanguage-
environment. While POLYLITH is an attemptat makingcompo-
nentsmoreflexible by separatingthe concernsof distributedand
inter-processcommunication,it cannotremove thesamedegreeof
EEK sinceit doesnot permit the indirect kind of communication
that implicit context provideswhere,for example,parameterscan
befilled in from thecall history.

Type adaptation[19] provides much the samemechanismas
would contextual dispatchin theabsenceof call history. Call his-
tory allows us to fill in additionalparametersin a way that type
adaptationdoesnot.

Thegoalsof implicit context aresimilar to thoseof its adaptor
andwrapperpredecessorsin that it allows a componentto provide
oneinterfacewhile its clientsexpectanother;asa result,compo-
nentsarereusablewithout invasivechangebeingneeded.However,
implicit context is amechanismthatallowsgreaterdissimilaritybe-
tweentheexpectedandprovidedinterfaces.With implicit context,
we are not constrainedby the information being directly passed
or directly accepted:we mayaddadditionalinformationgarnered
from thecall history, or have informationstoredtherefor lateruse.

7.4 Similar Mechanisms
A numberof existing approachessupportsimilar mechanismsto
thoseusedin implicit context.

Implicit invocation [5] is a meansof separatingcontrol-flow
from explicit knowledge of the namesof components. Implicit
invocationcanremove someEEK arisingfrom the knowledgeof
namesof subscribingclassesandmethods,but muchremains:all
componentsinvolvedin animplicit invocationprotocolrelationship
mustbeawarethatthis particularmechanismis in place,plussub-
scribersandeventpublishersneedto recognizeacommoninterface
for passingeventsandwhatthoseeventsare.

A few languages(e.g.,Perl [18] andTcl [11]) permitaccessto
the currentcall stack. Unlike implicit context, noneof thesepro-
vide accessto prior calls. Nor doesany of theseprovide a general
meansfor theretrieval of passedparameters.

Dynamic scoping,available in languagessuchas someLisp
variants,alsosharessomesimilarity in mechanismto implicit con-

77

text. Dynamicscopingallows variablenamesto be boundinto a
non-le

�
xical scopeasdeterminedby the call stackat run-time. In

contrastto implicit context, dynamicscopingdoesnot permit any
descriptionof what variablea nameshouldbe boundto, beyond
that nameitself; no propertiesof the scopein which the desired
variable is to be found nor the structureof the call history upon
which to basethe searchcanbe described.At the sametime, we
canlearnfrom theexperiencesgainedin usingdynamicscopingas
we elaboratetheimplicit context approach.

8. CONCLUSION
The reusabilityand evolvability of componentsare two goalsof
softwareengineeringthataredifficult to achieve with currenttech-
nology. Usingcurrentapproaches,componentsareoftencomplex.
Thecomplexity within a componentrarelystemsfrom onecause.
Rathera componentwill endup with knowledgeof othercompo-
nentsthatis notconceptuallyrequiredfor thecomponentto provide
its behaviour, yet is difficult to remove. We refer to this unneces-
saryinformationasextraneousembeddedknowledge(EEK). EEK
occursin many forms in components,includinga relianceon par-
ticular names,supportingnon-localstructure,andextraneouspa-
rameters.

In thispaper, wehaveintroducedtheconceptof implicit context
asa way of reducingEEK in components.Implicit context com-
binesameansfor reroutingmessagesin asystemwith anability to
reflectover thehistoryof callsthathave beenmadein a system.

Our work to datehasfocusedon showing theutility of the im-
plicit context approach.Given the benefitsachieved in applying
implicit context to Swing,our next stepis to automatesupportfor
implicit context and to continueto investigateits impacton pro-
gramstructure.

In a perfectworld wherewe had software that never evolved
andwherewewerenotconcernedaboutthecostof reinventingthe
wheelfor everynew system,implicit context wouldnotbeneeded.
Implicit context allowsusto incrementallymanipulatethestructur-
ing of systemsto addresstheproblemsof reusabilityandevolvabil-
ity encounteredin softwareengineering.

9. ACKNOWLEDGEMENTS
We thankSiobh́an Clarke andMartin Robillard for providing in-
sightful commentson anearlierdraft of this paper, Brian deAlwis
for a discussionon flexibility anddesign,andGregor Kiczalesfor
a versionof thecanvaspassingexample.Thiswork wasfundedby
theNaturalSciencesandEngineeringResearchCouncil (NSERC)
of Canada.“Java” is a trademarkof SunMicrosystems.

10. REFERENCES
[1] M. Akşit, L. Bergmans,and S. Vural. An object-oriented

language–databaseintegration model: The composition-
filtersapproach.In EuropeanConferenceonObject-Oriented
Programming, pp.372–395,1992.LNCS 615.

[2] R. DeLine.Avoidingpackagingmismatchwith flexible pack-
aging.In InternationalConferenceon Software Engineering,
pp.97–106,1999.

[3] A. Fowler. A Swing architectureoverview: The inside
story on JFC componentdesign. http://java.sun.
com/products/jfc/tsc/archive/what is arch
/swing-arch/swing-arch.html, 1999.

[4] E. Gamma,R. Helm, R. Johnson,and J. Vlissides.Design
Patterns: Elementsof ReusableObject-OrientedSoftware.

Addison-Wesley, 1994.

[5] D. GarlanandD. Notkin.Formalizingdesignspaces:Implicit
invocationmechanisms.In InternationalSymposiumof VDM
Europe, pp.31–44,1991.LNCS 551.

[6] W. Harrison and H. Ossher. Subject-orientedprogram-
ming: A critique of pureobjects.In Conferenceon Object-
Oriented ProgrammingSystems,Languages, and Applica-
tions, pp.411–428,1993.ACM SIGPLAN.

[7] G. Kiczales.Traces(a cut at the “make isn’t generic”prob-
lem). In InternationalSymposiumonObjectTechnologiesfor
AdvancedSoftware, pp.27–43,1993.LNCS742.

[8] G. Kiczales,J.Lamping,A. Mendhekar, C. Maeda,C. Lopes,
J.-M. Loingtier, andJ. Irwin. Aspect-orientedprogramming.
In EuropeanConferenceon Object-OrientedProgramming,
pp.220–242,1997.LNCS1241.

[9] J. Lewis, M. Shields,E. Meijer, andJ. Launchbury. Implicit
parameters:Dynamic scopingwith static types.In Sympo-
siumonPrinciplesof ProgrammingLanguages, pp.108–118,
2000.

[10] H. Ossher, M. Kaplan,A. Katz,W. Harrison,andV. Kruskal.
Specifyingsubject-orientedcomposition.Theoryand Prac-
tice of ObjectSystems, 2(3):179–202,1996.

[11] J.Ousterhout.Tcl andtheTkToolkit. Addison-Wesley, 1994.

[12] J. Purtilo. The POLYLITH softwarebus.ACM Transactions
on Programming Languages and Systems, 16(1):151–174,
1994.

[13] L. Seiter, J. Palsberg, andK. Lieberherr. Evolution of object
behavior usingcontext relations.IEEE Transactionson Soft-
ware Engineering, 24(1):79–92,1998.

[14] P. Tarr, H. Ossher, W. Harrison,and S. Sutton. � degrees
of separation:Multi-dimensionalseparationof concerns.In
InternationalConferenceon Software Engineering, pp.107–
119,1999.

[15] R. Walker, E. Baniassad,andG. Murphy. An initial assess-
mentof aspect-orientedprogramming.In InternationalCon-
ferenceonSoftware Engineering, pp.120–130,1999.

[16] R. Walker, G. Murphy, B. Freeman-Benson,D. Wright, D.
Swanson,and J. Isaak.Visualizing dynamic software sys-
teminformationthroughhigh-level models.In Conferenceon
Object-OrientedProgramming, Systems,Languages,andAp-
plications, pp.271–283,1998.ACM SIGPLAN.

[17] R. Walker, G. Murphy, J. Steinbok,and M. Robillard. Ef-
ficient mapping of software systemtracesto architectural
views. TechnicalreportTR-00-09,Departmentof Computer
Science,Universityof British Columbia,2000.

[18] L. Wall, T. Christiansen,andR.Schwartz.ProgrammingPerl.
O’Reilly & Associates,2ndedition,1996.

[19] D. Yellin andR. Strom.Interfaces,protocols,andthe semi-
automaticconstructionof software adaptors.In Conference
on Object-OrientedProgrammingSystems,Languages, and
Applications, pp.176–190,1994.ACM SIGPLAN.

78

