
An Exploration of a Lightweight Means of Concern Separation

Martin P. Robillard and Gail C. Murphy

Department of Computer Science

University of British Columbia

201-2366 Main Mall

Vancouver, BC V6T 1Z4 Canada

fmrobilla,murphyg@cs.ubc.ca

March 28, 2000

A position paper submitted to the ECOOP'2000 work-
shop on aspects and dimensions of concerns.

1 Introduction

Di�erent concerns which arise when developing a sys-
tem, such as di�erent features, often end up scat-
tered and tangled in code bases. The scattering and
tangling of concerns complicates the performance of
many software engineering tasks. For example, the
scattering of a feature across a set of source �les
complicates the task of making any change to that
feature. To help reduce the scattering and tangling
problems, several separation of concerns mechanisms
have been proposed (e.g., Composition Filters [1],
Aspect-oriented Programming[4], Hyperspaces [7]).

Separation of concerns mechanisms allow a devel-
oper to describe how a concern integrates (composes)
with other concerns and other code. Di�erent mecha-
nisms provide di�erent means of describing the com-
position, including di�erent means of describing the
join points of the composition|the points in the code
where a concern is to be integrated. Since existing
separation of concerns mechanisms are limited in the
kinds of join points which can be speci�ed (i.e., sub-
method join points are not possible), applying a sep-
aration of concerns mechanism to an existing system

typically requires some restructuring of the existing
code base.

In earlier work, we reported on the trade-o�s of
various restructurings of the jFTPd code base when
separating previously identi�ed concerns [5] with the
Hyper/JTM tool developed at IBM T.J. Watson Re-
search Center [6].1 The jFTPd code base implements
an FTP server in JavaTM [2].

When trying to decide what to restructure, one
can be overly in
uenced by the nature of the separa-
tion of concerns mechanism at hand. To consider
in more depth the restructurings we had used for
jFTPd, we revisited the code base, this time consid-
ering how concerns might be factored using only a
lightweight approach. Our approach was to refactor
the jFTPd code to explicitly represent the concerns
directly in the object-oriented structure, to perform
that refactoring respecting a set of design rules, and
to use simple lexical tools, such as grep, to allow
a concern to be factored out of the code base (Sec-
tion 3 and 4). We are not implying our lightweight
approach should replace or compete with separation
of concerns mechanisms; in particular, our approach
supports decomposition, but not composition, of con-
cerns. However, comparing the costs and bene�ts of
such a lightweight approach with separation of con-
cerns mechanisms might help determine conditions

1jFTPd (Version 1.3) was written by Brian Nenninger.

1

under which separation of concerns mechanisms are
warranted. In addition, the restructurings used in
our lightweight approach are di�erent than those used
when we applied Hyper/J: each restructuring also has
di�erent trade-o�s and carries di�erent consequences
(Section 5).

2 Lightweight Concern

Restructuring in jFTPd

Table 1 summarizes the concerns identi�ed in a pre-
vious study of the jFTPd code base [5]. The key con-
cerns we consider in this investigation are in bold
text. The restructuring of the code we describe in
this paper was performed by the �rst author, who
was involved neither with the initial concern mark-
up experiment, nor with the Hyper/J restructuring
experiment [6].

Table 1: Concerns identi�ed in the code of jFTPd

Concern Name

User Interface

GUI

Debugging

Logging

Platform Speci�c

Windows Speci�c

Client Feedback

Client Interaction

Directory Commands

List Commands

Server File Manipulation

Connection Commands

2.1 Debug

The code relating to the Debugging concern consisted
of a constant boolean attribute (DEBUG) declared and
initialized in most of the classes, and of code which
prints information to the console screen if the value
of the DEBUG attribute is set to true. Most of the code

identi�ed as part of the debug concern consisted of
lines similar to the following.

if (DEBUG) System.out.println(...);

Our restructuring consisted of de�ning a Debug

class with a boolean attribute and methods
such as entering(String), exiting(String), and
message(String). In every class, the DEBUG attribute
was replaced by the declaration and instantiation of
a Debug object named aDebug, and each if structure
to print debug information was replaced by a single
method call.

2.2 Logging

The Logging concern comprised pieces of code to per-
form the logging of various FTP operations. The
code comprising the Logging concern was scattered
as follows.

� Four attributes of the class FTPHandlerwere only
used for logging operations.

� Some methods declared in FTPHandler were fully
marked as relating to the Logging concern.
These methods were only called in blocks of code
also marked as part of the Logging concern.

� Two else-if clauses, part of a bigger else-if

structure, in a method of FTPHandler.

� Two blocks of code marked as part of the
Logging concern in two di�erent methods of
FTPHandler. These block of code were identical.

� One line in a di�erent class, FTPConnection,
called some of the logging functionality on an
object of class FTPHandler.

This combination of code hinted at the fact that
the Logging concern should actually have been an ob-
ject. It was straightforward to encapsulate this con-
cern with an object. A FTPLog class was created, and
the four logging attributes were moved to it. Meth-
ods fully marked as part of the Logging concern were

2

also moved to the FTPLog class, and were speci�ed as
private methods. After these movements, we were
left with the blocks of code and the branches of the
else-if. Both cases were implemented as smallmeth-
ods. Because of the high redundancy (and even du-
plication) of the scattered logging code, this resulted
in the creation of only two methods. The branches of
the else-ifwere put in a method of the FTPLog class,
which was called in the else branch of the else-if

structure.

With this restructuring, all logging functionality in
FTPHandler is performed through methods calls on the
FTPLog object. The object is declared as an attribute
of the FTPHandler class.

2.3 Client Feedback

The Client Feedback concern corresponds to the gen-
eration of textual messages to the clients of the FTP
server, such as \500 No such directory".

The Client Feedback concern was scattered
throughout the FTPHandler class. Basically, it con-
sisted of an attribute|an output bu�er|declared
in FTPHandler, numerous one-line statements writ-
ing messages to this bu�er, and a limited number of
blocks of code performing slightly more sophisticated
output operations involving lists. The scattering was
not limited to FTPHandler: the class FTPConnection

also contained a block of code marked as part of the
Client Feedback concern. This block of code was in-
dependent from the bu�er attribute.

Similarly to the cases of the Debug and Log-
ging concerns, the Client Feedback concern was im-
plemented in a new class, FTPClientFeeback, and
all statements concerning client feedback operations
were hidden in methods of this class. In FTPHandler

and FTPConnection, all the parts of the code dealing
with client feedback were reduced to a single method
call.

2.4 GUI

The GUI concern related to the graphical display of
windows indicating the status of the FTP server.

The case of the GUI concern was di�erent than
the concerns previously discussed. In the case
of the GUI concern, the class FTPHandler declared
two attributes marked as GUI, a boolean variable
and a FTPStatusWindow object. The code in the
FTPStatusWindow class was not fully marked as part of
the GUI, but also contained some code that provided
core functionality for the FTP server. This intermix-
ing of core and GUI functionality made it impossi-
ble to encapsulate the GUI concern in a class as we
did earlier. Numerous callback methods would have
been necessary which would have made the code more
complicated. For this reason, it was not possible to
implement the GUI concern as an object.

3 Lightweight Strategy

The overall strategy we used was to encapsulate each
concern in a class. Classes representing a concern
were named to re
ect the concern. As a �rst step
towards this encapsulation, we moved all attributes
marked as a particular concern into the concern class.
In all the cases we analyzed, attributes that were
marked as relating to a particular concern were only
used in blocks of code that were marked as relating
to the same concern. We speci�ed these moved at-
tributes to be private attributes of the concern class.
The next step consisted of moving all the methods
that were completely marked as part of a concern di-
rectly in the concern class. These methods were also
scoped private.

Then, we needed to factor out concern-speci�c be-
havior that did not align with method boundaries. To
achieve this, we took all blocks of code relating to a
concern, and encapsulated the behavior in a method,
using parameters to pass any information that was
external to the concern. This step was not as dif-
�cult as expected because scattered blocks of code
pertaining to the concerns analyzed tended to be co-

3

hesive. Often, the new method could be named us-
ing the comment above the block of code. Blocks of
code were also duplicated, so encapsulating them in a
method resulted in removing some code duplication.

The general result of this approach is that the
data and behavior related to any particular concern
becomes encapsulated in an class. Access to this
concern in other classes consisted of calling a single
method on an instance of the concern class.

For three out of the four concerns analyzed, it was
possible to reduce the e�ects of scattering and tan-
gling of concerns in jFTPd by judiciously using simple
design rules.

Use a naming convention for concerns. Not only did
we encode the name of the concern in the concern
class, but we also named the objects representing the
concerns judiciously, using the idea of information
transparency [3]. We did this to make it possible to
�nd join points. For example, we named our concerns
using the name of their class pre�xed by the letter 'a'
(for attribute). The FTPHandler class thus contained
the following declarations.

// Concerns

FTPClientFeedback aFTPClientFeedback;

Debug aDebug;

FTPLog aFTPLog;

Insert join points (method calls to concern objects)
so that their removal does not break the syntax of the
program. For example,

if (...)

aClientFeedback.message();

should be

if (...)

{

aClientFeedback.message();

}

so that removal of the line containing
aClientFeedback does not cause a compile er-
ror. See Section 4 for further details on removing a
concern.

Methods in concern objects should not have side ef-
fects on anything that is not part of the concern (i.e.,
the parameters to a method). This helps to ensure
that the program will still behave correctly even if a
concern is not included.

4 Bene�ts and Limitations

4.1 Bene�ts

Our lightweight approach allows us to achieve some
the bene�ts of separation of concerns. By having all
data and behavior relating to a concern encapsulated
within a class, we reduce scattering. Changing the
internals of the concerns can be achieved simply by
looking at a particular class. Another bene�t of the
strategy is the reduction of code tangling. Since at
each join point, the connection to the concern is ex-
pressed as a single method class, it is possible to re-
move all such points using a lexical tool such as grep.2

With the join points of a concern removed, developers
can look at a class without having to account for the
interactions related to that concern. Better still, the
class can also be compiled with some of the concerns
removed, thus achieving an e�ective decomposition
of concerns.

The main bene�t of this lightweight approach is
that the relative reduction in scattering and tangling
described above can be achieved with simple tools.
Furthermore, in the case of the concerns analyzed in
jFTPd, the approach resulted in a simple design and
implementation, perhaps one from which all separa-
tion of concerns mechanisms should be applied. (We
return to this point in Section 5).

2The grep tool, used with the option -v, �lters from the
input all lines matching a speci�c pattern.

4

4.2 Limitations

Although the lightweight approach is simple and
straightforward to apply, there are some limitations.

� The approach cannot deal with overlapping con-
cerns. Even if some statements were marked as
belonging to multiple concerns, they were ulti-
mately integrated in a single concern class (the
one that seemed the most relevant).

� While it is possible to decompose concerns, it is
not possible to compose them. As a result, join
points are inevitably scattered.

� Depending on how the code is organized, the
concerns can end up with a set of small meth-
ods that do not make much sense without the
context in which they are used.

� The restructuring can result in a loss of e�ciency
of the code. For example, if the branches of an
else-if structure are factored in di�erent con-
cern objects, the resulting join points will have
to be a series of if structures, which involves
more test operations at run-time.

Perhaps the most stringent limitation is that some
code structures simply do not allow for direct refac-
toring of concern code into methods. For example,
any block of code containing a return statement can-
not easily be encapsulated in a method. As another
example, there can be no dependence from the con-
cern code to the class using the concern. In our expe-
rience with the GUI concern, this situation resulted in
very complex callback schemes that clearly degraded
the overall structure of the code.

5 Other Restructuring

Approaches

As outlined in Section 1, the restructuring described
above is not our �rst encounter with jFTPd. In earlier

work [6], we investigated three di�erent restructur-
ings of jFTPd when using Hyper/J to separate the
previously identi�ed concerns in the code base. Al-
though space does not permit a full description of
the restructurings nor a full analysis of the trade-o�s
between the di�erent approaches, we brie
y describe
and compare the approaches.

To simplify the discussion, each restructuring ap-
proach is numbered. We will use Restructuring #1 to
refer to the restructuring used with our lightweight
approach described above. In Restructuring #2, con-
cerns found within a method on a class were restruc-
tured into multiple methods on the same class. In
Restructuring #3, concerns were factored into sepa-
rate class hierarchies, with common code necessary
for a concern appearing in each relevant hierarchy.3

Finally, Restructuring #4 refers to a restructuring in
which concerns were separated into classes, similar to
Restructuring #1, in such a way that a before and
after method approach could be used to recombine
concerns. This constraint meant that sometimes call
sites of restructured concerns had to be restructured
to pass new parameters.

The most signi�cant di�erence between
Restructuring #1 and the other three restruc-
turings is that it is harder to state join points with
Restructuring #1. This di�culty arises because
the join points do not lie on method boundaries,
rather calls to an encapsulated concern appear in
the middle of methods.

The �rst, third and fourth restructurings
are similar in that they encapsulate concerns.
Restructuring #2 separates concerns into methods
but does not encapsulate those methods within a
class. However, Restructuring #2 is likely easier to
automate for this very reason.

No restructuring clearly dominates any other for
making concerns easy to manipulate at a reasonable
cost for performing the restructuring. Moreover, each
restructuring in some way limits the reexpression
of concerns. For instance, the restructurings which

3In other words, each class hierarchy for each concern was
declaratively complete.

5

separate the concerns into di�erent classes may re-
duce the ability of a user to express a new concern
which overlaps with an existing concern. Although
Restructuring #2 makes less of a commitment with
respect to what a concern is and which code it in-
volves, the naming of di�erent methods as part of dif-
ferent concerns may still make manipulation of some
new cross-cutting concern di�cult.

6 Summary

Di�erent levels of sophistication in separation of con-
cerns mechanisms provide di�erent levels of returns.
We have described a lightweight approach to sepa-
rating some concerns which can help decompose, but
not compose, concerns in a system. Investigating this
approach on the jFTPd code base led us to consider
a restructuring of the code. We have also found re-
structuring necessary when applying other separation
of concerns mechanisms, namely Hyper/J, to an ex-
isting code base. Each restructuring approach has
di�erent costs and bene�ts. A more thorough under-
standing of the trade-o�s between di�erent restruc-
turing approaches is needed to understand how to
best apply separation of concerns mechanisms to ex-
isting systems.

References

[1] M. Aksit, L. Bergmans, and S. Vural. An object-
oriented language-database integration model:
The composition-�lters approach. In Proceedings
of ECOOP '92, pages 372{395, 1992.

[2] James Gosling, Bill Joy, and Guy Steele. The
Java Language Speci�cation. Addison-Wesley
Longman, Inc., 1996.

[3] William G. Griswold. Coping with software
change using information transparency. Techni-
cal Report CS98-585, Department of Computer
Science and Engineering, University of California,
San Diego, April 1998. Revised August 1998.

[4] Gregor Kiczales, John Lamping, Anurag Mend-
hekar, Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Mehmet Ak�sit and
Satoshi Matsuoka, editors, Proceedings of the Eu-
ropean Conference on Object-Oriented Program-
ming (ECOOP), volume 1241 of Lecture Notes
in Computer Science, pages 220{242. Springer-
Verlag, June 1997.

[5] Albert Lai and Gail C. Murphy. The structure of
features in Java code: An exploratory investiga-
tion. Position paper for the OOPSLA'99 work-
shop on multi-dimensional separation of concerns
in object-oriented systems. October 1999.

[6] Albert Lai, Gail C. Murphy, and Robert J.
Walker. Separating concerns with Hyper/JTM:
An experience report. Position paper for the ICSE
2000 workshop on multi-dimensional separation
of concerns.

[7] Peri Tarr, Harold Ossher, William Harrison, and
Stanley M. Sutton Jr. N degrees of separation:
Multi-dimensional separation of concerns. In Pro-
ceedings of the 21st International Conference on
Software Engineering, pages 107{119, May 1999.

6

