
Efficient Mapping of Software System Traces
to Architectural Views

Robert J. Walker, Gail C. Murphy, Jeffrey Steinbok, and Martin P. Robillard
Department of Computer Science,
University of British Columbia,

201-2366 Main Mall,
Vancouver, BC V6T 1Z4, Canada

Abstract
Information about a software system’s execution
can help a developer with many tasks, including
software testing, performance tuning, and program
understanding. In almost all cases, this dynamic in-
formation is reported in terms of source-level con-
structs, such as procedures and methods. For some
software engineering tasks, source-level informa-
tion is not optimal because there is a wide gap be-
tween the information presented (i.e., procedures)
and the concepts of interest to the software devel-
oper (i.e., subsystems). One way to close this gap is
to allow developers to investigate the execution in-
formation in terms of a higher-level, typicallyarchi-
tectural, view. In this paper, we present an encoding
technique for dynamic trace information that makes
it tractable and efficient to manipulate a trace from
a variety of different architecture-level viewpoints.
To motivate the need for the encoding technique,
we describe two tools that use the technique: a vi-
sualization tool and a path query tool. We present
the encoding technique to enable the development
of additional tools that manipulate dynamic infor-
mation at a higher-level than source.

Keywords

Dynamic information, execution information,
paths, software integration testing, program under-
standing, performance analysis, traces, encoding.

1 Introduction
Dynamic information—information about a soft-
ware system’s execution—can help a developer
with many different tasks, including software test-
ing [9], performance tuning [4], and program un-

derstanding [1]. Since dynamic information is col-
lected either by instrumenting the code or by mod-
ifying the execution environment, the information
is fine-grained, reporting on such items as instruc-
tions and basic blocks. To help the developer inter-
pret this information, tools typically take this fine-
grained information and report it in terms of con-
structs that the developer is manipulating in the
source code, such as procedures.

For some software engineering tasks, source-
level information is not optimal because there is a
wide gap between the presented information and
the concepts of interest to the software developer.
For example, when performing some kinds of soft-
ware integration testing or when reasoning about
the impact of some program changes, it may be
more natural for a developer to think in terms
of subsystems rather than procedures. Manually
maintaining the association of source-level infor-
mation to more abstract concepts such as subsys-
tems is, at best, time-consuming and error-prone.
For large systems, manual maintenance of the as-
sociation may be intractable.

Although tools to help developers manipulate
static information at a higher level than source have
been available for a number of years (e.g., [10,
6]), there has been less work focused on helping
developers interpret and manipulate dynamic in-
formation from an abstract, typically architectural,
view. Those tools that do exist take one of two ap-
proaches. The first is to annotate the code to report
the dynamic information in terms of the system’s
architecture (or other abstract concepts); this ap-
proach was taken by Sefika and colleagues in a tool
built to report performance information in archi-
tectural terms [17]. However, this approach limits



both the architectural views that can be used and the
means by which the information is collected. The
second approach is to allow information to be col-
lected at a fine-grained level and then to be mapped
to the architecture-level; we have focused on the
latter approach [13, 19].

Specifically, in this second approach, a developer
provides a mapping specification that describes
how the collected information relates to the abstract
level. In the two tools we briefly describe in this
paper, the mapping specification consists of an or-
dered list of pairs of regular expressions and names
of architectural components: an entity reported in
the dynamic information is considered to be part of
the first architectural component whose regular ex-
pression it matches. This approach allows a devel-
oper to alter the mapping to view the system from
different architectural perspectives. Just as the na-
ture of a task can vary rapidly, so too can the per-
spective appropriate to that task.

If the dynamic information of interest is a sum-
mary of the execution, it is generally reasonable and
efficient to map the information after it is collected.
For example, if the dynamic information is a sum-
mary of the number of times each procedure has
been entered, each procedure would only need to be
mapped once. However, when the dynamic infor-
mation is in the form of a trace,1 it is costly to map
each element. In our approach, for instance, we
would end up matching each trace element against
a potentially large set of regular expressions, result-
ing in a large number of costly comparisons. Fur-
thermore, if a developer wants to manipulate the
dynamic information from more than one architec-
tural view, it may be necessary to duplicate large
traces, which may be impractical.

In this paper, we describe an encoding technique
for traces that makes it tractable and efficient to
interpret and manipulate a trace from a variety of
architecture-level views. This support enables a de-
veloper to choose the most appropriate view for the
task currently being performed. We present this
technique to foster discussion and to enable the in-
vestigation of the usefulness of manipulating dy-
namic information at a higher level.

To motivate the encoding scheme, we describe
two tools we have built upon scheme to aid the anal-
ysis of systems at the architecture-level (Section 2).
We then present the process we use to collect traces,

1A trace is an ordered sequence of events that occurred dur-
ing the execution of a system.

our encoding scheme, our approach to mapping en-
coded traces, and an analysis of the benefits of the
encoding scheme (Section 3). We conclude the pa-
per with a comparison to other related approaches
(Section 4), and a brief discussion on why we be-
lieve architecture-level traces open new opportuni-
ties to develop tools to aid developers in analyzing
systems (Section 5).

2 Using Architectural Traces

To investigate whether architectural traces might
help developers perform software engineering
tasks, two tools have been built.

The first tool visualizes dynamic information
collected from an object-oriented system. Two
small case studies have been conducted on the use
of this tool. These studies provided some positive
indications that this tool may help developers tune
the performance of their system. A brief overview
of this tool is provided in Section 2.1; further details
are available elsewhere [19].

The second tool supports the extraction of paths
between architectural components from trace data.
We have not yet performed any studies on the use
of this tool beyond applying it to some of the sys-
tems we have developed. We describe briefly how
this tool might help support integration testing ac-
tivities.

2.1 Visualization Tool

Our visualization tool allows a developer to ana-
lyze the execution of a system off-line. The visu-
alization consists of a temporally-ordered series of
pictures, each detailing information about a corre-
sponding point in the execution of the system be-
ing analyzed, and a summary of the execution to
that point. Rather than displaying events between
low-level entities in the source code, such as calls
between particular methods or objects, events are
mapped to architecture-level entities as chosen by
the developer. Using the visualization tool, a devel-
oper can navigate across the trace, either one event
at a time or as an animation, seeing how objects
mapped to the architectural entities call each other,
as well as where objects are allocated and deallo-
cated.

To clarify the architectural views provided by our
visualization tool, Figure 1 shows a screen snap-
shot of the tool in action. This snapshot shows a
point about halfway through the execution of an



ModulesAndSuch

Stop Step >>Play<< Step SummaryStop

��

���� ����

�
�
�
�
�

�
�
�
�
�

�����
�
�
�

��

��
��
��
��
��

��
��
��
��
��

�������� ��
��
��
��

Options

1037 3916

476

0

0

127

127

659

4516

Stack: Clustering − Rest − SimFunc
SimFunc

Rest Rest

Clustering

ModulesAndSuch

SimFunc

1451

Cel#: 14

Clustering

Data Visualization

Figure 1: Architecture-level Visualization

implementation of a hierarchical agglomerative re-
verse engineering algorithm [16]. This algorithm
automatically clusters entities, such as procedures
in a C program, based on a similarity function to
determine a subsystem organization for the sys-
tem. In the visualization, the classes implementing
the algorithm are mapped to four architectural en-
tities (the grey squares): Clustering, representing
the class performing the clustering analysis; Sim-
Func, representing the class containing methods for
computing the similarity function; ModulesAnd-
Such, representing the classes denoting the mod-
ules whose similarity is being compared; and Rest,
representing all other classes involved in the algo-
rithm. The solid arrows show the calls between ob-
jects mapped to the separate architectural entities.
The dashed arrow represents the current call stack.
Object allocation and deallocation information is
shown in two ways: the total number of objects al-
located and deallocated per architectural entity are
shown within each grey square; and, the histograms
provide a view on the memory usage over time by

an architectural entity. This particular visualization
was used in a case study that discovered the source
of an execution problem in the implementation of
the reverse engineering algorithm; further details
about the case study are available elsewhere [19].

The software developer using the visualization
tool is in control of the particular architectural view
used. Figure 2 shows the specification used to map
the lower-level source code entities to the architec-
tural entities chosen for the reverse engineering sys-
tem. This specification uses regular expressions to
identify classes in the system to map to a particular
architectural entity. For instance, the first line states
that any class named ArchClusteringAnalysis is to
be associated with the architectural entity named
Clustering. This association means that any event
associated with the class ArchClusteringAnalysis
will be associated with the Clustering entity in the
visualization. The last line indicates that any class
whose name starts with the string Schwanke is to be
associated with the Rest architectural entity.

Visualizing a system at a higher level can put in-



category Clustering
class "ArchClusteringAnalysis"

category ModulesAndSuch
class "Arch(Procedure|Symbol)"

category SimFunc
class "ArchSimFunc"

category Rest
class "Schwanke.*"

Figure 2: Map Specification for Figure 1

formation in perspective, providing insight into dif-
ferent kinds of performance problems than might be
evident with a standard profiler. For example, a de-
veloper may be able to more easily determine when
a subsystem is using more memory than expected
and why that is happening.

A key property of our visualization tool is its de-
pendence on fast, iterated mapping, or abstraction,
to the higher, typically architectural, level. An abil-
ity to quickly change the architectural view being
used is important for two reasons. First, a devel-
oper assigned to a task, such as tracking down a per-
formance problem, may not initially have a good
idea of how the system is designed. This situation
can arise when an organization designates perfor-
mance experts for solving such problems. Our tool
allows the developer to posit a higher-level design
for the system which might provide a useful view,
and then to iterate that view as driven by the task.
Second, developers performing different tasks may
benefit from different views. For example, the ar-
chitectural entities shown in Figure 1 were helpful
in tracking down a caching problem with the im-
plementation of the reverse engineering algorithm.
However, a different view is likely needed to in-
vestigate the performance of the input subsystem.
Yet another view, or a set of views, might be bet-
ter for helping a new developer understand the op-
eration of the program. A developer can easily vi-
sualize the system from multiple viewpoints at one
time by running the visualization tool with different
map specifications. This approach of using views
that are “good-enough” for the task at hand has been
successful in previous work on software reflexion
models [12, 13].

If the process of specifying a map and perform-
ing the abstraction is time-consuming, the usability
of our tool suffers markedly. An efficient means of
performing the mapping was thus needed, leading

to the development of the encoding technique de-
scribed in Section 3.

2.2 Path Query Tool

Consider a software developer faced with the task
of developing integration test cases for a large sys-
tem. Hopefully, the developer will have access
to various documents describing the system design
and implementation that can be used to determine
which cases need to be tested. The developer would
then proceed to determine inputs and configurations
to execute the desired cases. However, how can the
developer determine if a particular test case, once
executed, does indeed exercise the paths of interest?

To the best of our knowledge, little support is
available to help software developers answer this
question. Existing coverage tools report informa-
tion about such items as basic blocks, line, func-
tions, files, directories, and sometimes, libraries
and applications.2 A developer might use this cov-
erage information to gauge which entry points to a
subsystem were being exercised, but from this in-
formation it would be difficult to determine path in-
formation.

Path profile tools can provide more useful in-
formation. Although early path profile tools were
limited to reporting intra-procedural paths [2], a
more recent tool reports inter-procedural path pro-
files [8]. These inter-procedural path profiles rep-
resent a summary of the execution that could help
determine path coverage. Summary information as
found in these profiles, however, may not always be
sufficient. Rather, it might be helpful to understand
the relative ordering of paths in an execution and
to have, as part of the path, additional events such
as object allocations. For instance, in an object-
oriented program, it may be important to have one
path execute prior to another path to appropriately
set the state of a series of objects.

To investigate whether detailed path information
might help a software developer reason about a set
of integration test cases, we have developed a path
query tool that operates on trace data and that sup-
ports queries at the architecture-level. Given a trace
and a mapping specification (similar to that shown
in Figure 2) describing how source-level compo-
nents relate to architectural components, the tool
will extract all paths starting in one named archi-
tectural component and ending with an entry to a

2For example, Rational’s PureCoverage product can report
coverage at line, function, file, and other, levels.



Controller

Parser AST

Type System

Jex Loader

Figure 3: Jex Architecture

second named architectural component. The paths
extracted contain both call information and object
allocation and deallocation information. Sub-paths
are also reported.

To try out this tool, we applied it to analyze some
test cases for the Jex static analysis tool [15]. Jex
analyzes the flow of exceptions in JavaTM programs
and consists of over 100 classes. Jex is comprised
of five main architectural entities: a Controller, a
Parser, a Type system, an AST, and a Loader for
reading intermediate files (Figure 3). In our trial
use of the path query tool, we were interested in the
paths exercised between the AST and the Loader
component by three test cases. We formulated the
map specification shown in Figure 4 to describe the
relationship between the Jex source code and the ar-
chitectural entities and then ran the tool, providing
the map and the trace, and requesting the paths be-
tween the AST and the Loader. The path query tool
returned 534 paths. We analyzed these paths to de-
termine if they were indeed the paths intended to be
exercised. Our analysis showed that one of the test
cases exercises a greater variety of paths than the
other two test cases. Specifically, one case ensures
that the Loader component is called in three dif-
ferent situations: while processing method invoca-
tion expressions, while processing throw expres-
sions, and while processing other Java expressions.
The other test cases focus only on the latter situa-
tion. This information may be useful to help assess
and select test cases. Furthermore, one might care
about invoking the Loader from a method invoca-
tion prior to a throw expression; the path query
tool can help you determine if a test case meets this
criterion.

The ability of our tool to understand the mapping
between the source and architectural components
makes it easy for a software developer to extract
the paths of interest. Instead of having to translate
the questions of interest for the software integra-
tion testing task, a developer can express the ques-

category Parser
class "jex\.parser.JavaParser.*"

category Parser
class "jex\.parser.JJTJavaParser.*"

category Parser
class "jex\.parser.JJCalls.*"

category Parser
class "jex\.parser.Token.*"

category Parser
class "jex\.parser.ParseException"

category AST
class ".*AST.*"

category Type
class "jex\.type\.TypeSystem.*"

category Type
class "jex\.type\.ClassInfo"

category rest
class "jex\.file\.ASCII_CharStream"

category Loader
class "jex\.file.*"

category Controller
class "jex\.Analyzer"

category Parser
class "jex\.type\.Resolver"

category rest class .*

Figure 4: Map Specification for Jex

tions directly in terms of the components being in-
tegrated. Once relevant paths have been extracted
using this approach, a variety of further analyses
can be performed. For instance, the paths could
be viewed using a browser similar to the Hot Path
Browser by Ball and colleagues [3], or could be an-
alyzed using concept analysis as also described by
Ball [1].3

As with our visualization tool, the developer may
need to iterate the mapping specification to refine it
to answer the test case question of interest. For in-
stance, as the developer learns about the different
possible courses of execution, the developer may
wish to refine subsystem boundaries. As before,
then, fast, iterated abstraction is a must here, hence
the need for the encoding technique described in
Section 3.

3 Mapping Traces
Both our visualization and our path query tool rely
on trace information collected from a program’s ex-

3Our trace information does include timestamps so the dura-
tions of paths can be determined.



ecution. For the object-oriented systems we have
been studying, these traces are comprised of in-
formation about message sends, object allocations,
and object deallocations. This information can be
collected in one of three ways: by instrumenting
source files, by instrumenting object files, or by al-
tering the execution environment.4 The framework
we have developed encodes events of interest that
occur during execution in the format described be-
low.

In this section, we describe our trace representa-
tion. First, we describe the events we are recording
and how we encode these events in the trace rep-
resentation. Next, we describe how the encoding
facilitates the abstraction and summarization of the
events. Finally, we describe the benefits of using
this encoding scheme.

3.1 Events

The traces we are collecting describe the execution
of an object-oriented system. Traces compose the
following types of events:

� class method entry and exit events,

� instance method entry and exit events,

� object allocation and deallocation events, and

� thread start and stop events.

Each event carries particular information rele-
vant to the system event it represents. Class method
entry and exit events record the name of the class
and the name of the method that was entered or ex-
ited (class and method identifiers). Instance method
entry and exit events record an additional identifier
representing the object on which the method was
called. Object allocation and deallocation events
record a class identifier and an object identifier. All
of these event types also record the name of the
thread executing the event (thread identifier). Fi-
nally, the thread start and stop events record a thread
identifier.

4Our current set of tools works on Java pro-
grams. We are using AspectJTM from Xerox PARC
(http://www.aspectj.org/) to instrument Java
source, and the Jikes Bytecode Toolkit from IBM Re-
search (http://www.alphaworks.ibm.com/)
to instrument bytecode. We have also created a
translator to convert IBM Research’s Jinsight traces
(http://www.alphaworks.ibm.com/), which are
produced by a JVMPI implementation, to our trace format.

3.2 Encoding Events

As with any encoding scheme, the key lies in de-
termining the patterns that can be used to encode
the information of interest. Since our goal was to
abstract each event, we needed to determine how
to support the abstraction operation efficiently. The
abstraction operation consists of testing an event to
see whether it meets some set of properties associ-
ated with the description of an abstract item. For
instance, in the tools described above, the associa-
tion between an event and an abstract item consists
of a set of regular expressions; an event is associ-
ated with the abstract item if it matches one of the
regular expressions.

Our encoding scheme meets this goal by cate-
gorizing events and then encoding the categories.
Specifically, we record traces in two streams: an
encoding stream, and an event stream. The en-
coding stream consists of a sequence of records,
each containing information about a given primi-
tive category; primitive categories cannot be subdi-
vided. The event stream also consists of a sequence
of records; in this stream, each record contains an
index to a primitive category within the encoding
stream, plus some additional information that de-
pends on the specific type of event represented.

A primitive category consists of a unique combi-
nation of class identifier, method identifier, thread
identifier, and event type. Primitive categories do
not include object identifier information because,
in general, the number of events associated with a
given object will be small, and therefore, the num-
ber of primitive categories with which we would
have to deal would increase dramatically. Events
that contain object identifiers record them within
the event stream.

Figure 5 demonstrates this encoding scheme.
The event stream starts with a ClassMethod-
EntryEvent. The details about this event, such
as the class and method that were entered and
the thread in which the method was executed, are
recorded on the encoding stream. The record on
the event stream specifies the ordinal number of
the full information on the event encoding stream.
When the second ClassMethodEntryEvent
occurs, it is a call to the same class and method
in the same thread as the first event; therefore,
we reference the same encoded primitive category
record, and nothing new is written to the encoding
stream. The InstanceMethodEntryEvent
that occurs later in the event stream is encoded sim-



Category 1

Encoding
Stream

Event
Stream

Category 1 Category 5
OID 126 ...

ClassMethodEntry
Class C

Method m()
Thread main

InstanceMethodEntry

Method n(int)
Thread main

Class D

...

......

51

Time 2 Time 10 Time 23

Figure 5: Encoding Scheme

ilarly to the first event. Unlike the ClassMeth-
odEntryEvent, the record on the event stream
for the entry of an instance method includes infor-
mation about the object on which the method was
invoked.

3.3 Abstracting Events

Interpreting a trace at an abstract level requires ap-
plying an abstraction operation to each event in the
trace. Encoding the event stream facilitates this
interpretation. Instead of having to apply the ab-
straction operation against each event, the abstrac-
tion operation need only be applied against each
record in the encoding stream, i.e., each primitive
category. The architecture-level entities to which
the primitive categories are mapped are termed ab-
stract categories.

For each tool, the developer using it specifies a
mapping from a set of primitive categories to an
abstract category through a partial, ordered speci-
fication of matching criteria. For example, in Fig-
ure 2, the developer specified that any events refer-
ring to the class ArchClusteringAnalysis
should be mapped to the Clustering abstract cate-
gory. This means that each encoding stream record
has its class identifier (if any) compared against this
matching criterion. If it matches, the event is placed
in the Clustering abstract category; if not, the event
is then compared against the next mapping crite-
rion. If the event matches none of the criteria, it is
not mapped, and is not used further.

The abstraction operation produces an array of
values: the primitive category number serves as
an index into the array, which stores the abstract
category to which each primitive category is to be
mapped. In the example in Figure 2, we might have
had hundreds of primitive categories, but only four
abstract categories, so our array would have been

(identically) hundreds of elements in size, but each
element would reference an abstract category as a
number from 1 to 4, or 0 if it was not mapped at all.
The larger event stream can then be traversed, and
each individual event, which refers to its primitive
category, can be mapped to the appropriate abstract
category via an O(1) lookup in this array.

3.4 Summarizing Events

Software developers can also benefit from the sum-
marization of events: summarization abstracts the
events over time. For example, as described earlier
in this paper, path profile tools summarize the paths
taken during an execution [2, 8].

Summarization and abstraction of events are or-
thogonal techniques. Although each is useful on
its own, their combination can provide further soft-
ware analysis support. For example, to help soft-
ware developers understand a trace, our visual-
ization tool summarizes, throughout the trace, the
number of objects allocated and deallocated that be-
long to each abstract category.

Our encoding scheme facilitates the combination
of these techniques by allowing the most costly part
of summarization to occur once, prior to abstrac-
tion. Summarization is performed with respect to
individualprimitive categories and recorded. Later,
these recorded summaries can be abstracted by ap-
plying the abstraction operation to the primitive
categories in the summary, and then, for each ab-
stract category, aggregating the summarizations of
the primitive categories that map to it.5 Since many
events may map to a primitive category, this two-
step process allows the abstraction to be altered
much more cheaply than re-summarizing in a sin-
gle step would.

For example, if we found that 32 instances of
String and 14 instances ofStringBuffer had
been allocated during a trace and the architectural
view called for all String and StringBuffer
events to be grouped together into the StringOp
abstract category, we would simply add the two
counts to find that 46 objects were allocated in the
trace that mapped to StringOp.

Without the notion of indivisible, primitive cate-
gories, as found in our encoding scheme, each event
could be mapped arbitrarily to an abstract category.
This would prevent any partial summarization from

5This aggregative scheme assumes that the total summariza-
tion in question is describable solely as a function of abstract cat-
egory.



being performed prior to abstraction. Since sum-
marization over a trace requires processing of the
entire trace, if the architectural view of the system is
to be changed frequently, as it is in our model, sum-
marization can be a prohibitively expensive opera-
tion.

3.5 Savings

The encoding strategy is only an advantage if two
conditions are met: (1) primitive category informa-
tion tends to be repeated in the trace, and (2) the ab-
straction operation is costly to perform.

The first condition is important since we will
only gain an advantage if the encoding stream is
smaller than the event stream. This condition will
typically hold: the number of events produced
when running a system is large compared with the
number of classes and methods in a system, upon
which the encoding scheme is based. The total
number of encodings possible for a given system
is a small multiplier of the product of the number
of classes and the number of methods and the num-
ber of threads. As one example, for the Jex tool de-
scribed in Section 2, Jex produced a trace compos-
ing 5 � 105 events as it analyzed one simple Java
class. Encoding this trace results in only 725 prim-
itive categories.

The second condition matters because all events
in the trace still require processing. When the ab-
straction operation is cheap to perform, it may as
well be applied as the events are traversed. How-
ever, when the abstraction operation is expensive, it
is an advantage to apply it only to the much smaller
number of encodings. At first glance, our regu-
lar expression-based comparison may appear cheap
since an individual regular expression comparison
is not necessarily costly. Although we do not
yet have much experience with applying the reg-
ular expression-based operation against trace data,
when applying it to static data collected from the
source code of Microsoft Excel to support an ex-
perimental reengineering task, the map specifica-
tion grew to be large, over 1000 regular expres-
sions in total, leading to a large number of com-
parisons [11]. Obviously in such a case, compar-
ing against the primitive categories rather than the
events results in a more efficient tool. This savings
also provides an opportunity to try out more expen-
sive abstraction operations, such as operations in-
volving some inference.

To clarify the savings of the encoding scheme,

consider that the cost of abstracting a trace is on
the order of

P
eipi + ai where ei is the number

of events belonging to primitive category i, pi is
the cost of identifying that a given event belongs
to primitive category i, and ai is the cost of apply-
ing the abstraction operation to primitivecategory i.
Without the encoding scheme, we can still consider
the set of events that would have belonged to prim-
itive category i, for the sake of our analysis. In the
absence of the encoding, the abstraction operation
has to be performed on each event instead of once
for the entire primitive category for a total cost ofP

aiei.6 The savings in using the encoding scheme
is on the order of

P
(ai�pi)ei�ai. The encoding

scheme will thus be an advantage when the condi-
tions above are met.

4 Related Work
Program trace information has been used for many
years and a number of techniques have been devel-
oped for collecting and storing it [7]. These efforts
have focused on the efficient collection and rep-
resentation of detailed information about the pro-
gram, such as the instructions executed and the data
locations referenced. The code for a system is ana-
lyzed before execution to determine the minimum
amount of trace information that needs to be col-
lected: a full trace can later be generated from the
collected information. For example, only the first
statement in a basic block needs to be recorded
as being executed to know that all statements in
the block were executed. These detailed traces
help support the design of memory systems and
help guide the behaviour of parallelizing compilers,
amongst other uses.

In comparison, the traces we use support soft-
ware engineering activities. We can support these
activities using less detailed traces. For the object-
oriented systems we have been studying, traces are
comprised of information about message sends, ob-
ject allocations, and object deallocations. Although
this information is already at a higher-level than
program instructions, we believe software devel-
opers dealing with large systems can benefit from
further abstraction of the information. Supporting
the efficient abstraction of this information requires

6Abstracting an event directly to an abstract category will
cost the same as abstracting an event from a primitive category.
The actual abstraction process is a regular expression matching
that could be performed on either events or primitive category
records identically.



a different approach to encoding than is typically
used for the more detailed program traces. We need
to exploit patterns of individual events rather than
sequences of events.

There are two other approaches of which we are
aware that explicitly support the abstraction of trace
information to the architecture level. Sefika and
colleagues have built a tool that provides a vari-
ety of views of dynamic information correlated to
the architecture-level, including bar charts, space
filling diagrams, affinity diagrams, and ternary di-
agrams [17]. In their on-line system, instrumen-
tation is built into the the architecture of the sys-
tem of interest; queries are used to turn various in-
struments on and off as desired. One advantage of
this approach is that the instrumentation run-time
can take advantage of its architectural knowledge to
pre-aggregate information to be displayed. In com-
parison, our trace and encoding approach makes it
easier to gather trace information from an arbitrary
system and then to summarize and to manipulate
the information through an architectural view cho-
sen for a particular task.

Grundy and Hosking have built the SoftArch tool
that enables a developer to describe the architec-
ture of an object-oriented system and how it refines
down to a set of classes [5]. When the system ex-
ecutes, events associated with classes can then be
remapped to the architectural view using the refine-
ment links. Grundy and Hosking do not describe
the performance characteristics of their approach.
The SoftArch tool could potentially benefit from
the encoding scheme described in this paper.

5 Summary

Can the abstraction and summarization of trace
information enable new software analysis ap-
proaches? Can it enhance existing approaches?
Can it help software developers perform software
engineering tasks more effectively?

There are no definitive answers to these
questions—yet. To answer these questions, it is
necessary to have the base technology to abstract
and summarize traces efficiently. This technology
allows tools to be built that can be applied to
realistic systems and realistic scenarios.

This paper has presented an encoding scheme
that provides this base technology. Traces com-
posed of basic object-oriented execution events
may be abstracted to different architectural views.

Trace information may also be intermittently sum-
marized and then abstracted. There is nothing in-
herent in our encoding scheme that limits its ap-
plication to object-oriented execution events, such
as calls between methods. The encoding scheme
could also be applied to encode events exchanged
between components, interactions between remote
processes, and other similar execution events that
occur more than once.

To date, we have only limited experience with
applying this technology. However, we believe it
holds promise for increasing the usefulness of dy-
namic information in software engineering tools
and techniques. As an example, in addition to the
visualization and path query tools we have built,
the approach may enable the determination of ar-
chitectural dependences between pieces of existing
systems [18]. This information could enable a new
way to verify that a system adheres to its architec-
tural goals.

Acknowledgments
This research was funded in part by the Natural Sci-
ences and Engineering Research Council of Canada
(NSERC) and in part by the Consortium for Soft-
ware Engineering Research (CSER) in cooperation
with Object Technology International, Inc. “As-
pectJ” is a trademark of Xerox Corporation. “Java”
is a trademark of Sun Microsystems.

About the Authors
Robert J. Walker is a Ph.D. candidate in the De-
partment of Computer Science at the University of
British Columbia. His thesis work concerns the
use of dynamic contextual information for soft-
ware evolution and reuse. He may be contacted at
walker@cs.ubc.ca.

Gail C. Murphy is an assistant professor in the
Department of Computer Science at the Univer-
sity of British Columbia. Her research interests
are in software evolution, software design, and
source code analysis. She may be contacted at mur-
phy@cs.ubc.ca.

Jeffrey Steinbok is a recent graduate from the
University of British Columbia. He currently
works at Microsoft. He may be contacted at jeff-
stei@microsoft.com.

Martin P. Robillard is a Ph.D. student in the De-
partment of Computer Science at the University of
British Columbia. His research interests include



program understanding, evolution, and modulariza-
tion. He may be contacted at mrobilla@cs.ubc.ca.

References
[1] Thomas Ball. The concept of dynamic anal-

ysis. In Nierstrasz and Lemoine [14], pages
216–234.

[2] Thomas Ball and James R. Larus. Efficient
path profiling. In Proceedings of the 29th An-
nual InternationalSymposium on Microarchi-
tecture, pages 46–57, Paris, France, 2–4 De-
cember 1996.

[3] Thomas Ball, James R. Larus, and Genevieve
Rosay. Analyzing path profiles with the
Hot Path Browser. In Workshop on
Profile and Feedback-Directed Compi-
lation, Paris, France, 13 October 1998.
http://www.research.microsoft.com/
�tball/abstracts.html.

[4] Susan L. Graham, Peter B. Kessler, and Mar-
shall K. McKusick. gprof: A call graph execution
profiler. In Proceedings of the SIGPLAN ’82 Sym-
posium on Compiler Construction, pages 120–126,
Boston, Massachusetts, USA, 23–25 June 1982.

[5] John Grundy and John Hosking. High-level static
and dynamic visualisation of software architec-
tures. In Proceedings of 2000 IEEE Symposium on
Visual Languages, 2000. To appear.

[6] David R. Harris, Howard B. Reubenstein, and
Alexander S. Yeh. Reverse engineering to the ar-
chitectural level. In Proceedings of the 17th In-
ternational Conference on Software Engineering,
pages 186–195, New York, NY, April 1995. ACM.

[7] James R. Larus. Efficient program tracing. Com-
puter, 26(5):52–61, 1993.

[8] James R. Larus. Whole program paths. In Proceed-
ings of the ACM SIGPLAN ’99 Conferenceon Pro-
gramming Language Design and Implementation,
pages 259–269, Atlanta, Georgia, USA, 1–4 May
1999.

[9] Edward F. Miller, Jr. Program testing: Art meets
theory. Computer, 10(7):42–51, July 1977.

[10] Hausi A. Müller and Karl Klashinsky. Rigi—a sys-
tem for programming in-the-large. In Proceedings
of the 10th International Conference on Software
Engineering, pages 80–87, Singapore, 11–15 April
1988.

[11] Gail C. Murphy and David Notkin. Reengineering
with reflexion models: A case study. Computer,
30(8):29–36, August 1997.

[12] Gail C. Murphy, David Notkin, and Kevin Sulli-
van. Software Reflexion Models: Bridging the
Gap between Source and High-Level Models. In
Proceedingsof SIGSOFT’95 Third ACM SIGSOFT
Symposium on the Foundations of Software En-
gineering, pages 18–28, New York, NY, October
1995. ACM.

[13] Gail C. Murphy, David Notkin, and Kevin Sulli-
van. Software reflexion models: Bridging the gap
between design and implementation. IEEE Trans-
actions on Software Engineering, 2000. To appear.

[14] Oscar Nierstrasz and Michel Lemoine, edi-
tors. ESEC/FSE ’99, volume 1687 of Lecture
Notes in Computer Science, Toulouse, France,
6–10 September 1999. 7th European Software
Engineering Conference held jointly with the 7th
ACM SIGSOFT Symposium on the Foundations
of Software Engineering.

[15] Martin P. Robillard and Gail C. Murphy. Analyzing
exception flow in JavaTM programs. In Nierstrasz
and Lemoine [14], pages 322–337.

[16] Robert W. Schwanke. An intelligent tool for re-
engineering software modularity. In Proceedings
of the 13th International Conference on Software
Engineering, pages 83–92, Austin, Texas, USA,
13–17 May 1991.

[17] Mohlalefi Sefika, Aamod Sane, and Roy H. Camp-
bell. Architecture-oriented visualization. In
Proceedings of Object-oriented Programming Sys-
tems, Languages, and Applications Conferences,
pages 389–405, 1996.

[18] Judith A. Stafford and Alexander L. Wolf.
Architecture-level dependence analysis in support
of software maintenance. In Proceedings of
the Third International Workshop on Software
Architecture, pages 129–132, Orlando, FL,
1-5 December 1998. ACM.

[19] Robert J. Walker, Gail C. Murphy, Bjorn Freeman-
Benson, Darin Wright, Darin Swanson, and
Jeremy Isaak. Visualizing dynamic software
system information through high-level models. In
Proceedings of the ACM Conference on Object-
Oriented Programming, Systems, Languages, and
Applications, pages 271–283, Vancouver, British
Columbia, Canada, 18–22 October 1998.


