
Using Implicit Context to Ease Software Evolution and Reuse

Robert J. Walker and Gail C. Murphy
Department of Computer Science
University of British Columbia

201-2366 Main Mall
Vancouver, BC V6T 1Z4

Canada
+1 604 822 5169�

walker, murphy � @cs.ubc.ca

Technical Report TR-99-13

11 November 1999

Abstract

Software systems should consist of simple, conceptually
clean components interacting along narrow, well-defined
paths. All too often, this is not reality: complex components
end up interacting for reasons unrelated to the functionality
they provide. We refer to knowledge within a component that
is not conceptually required for the individual behaviour of
that component as extraneous embedded knowledge (EEK).
EEK creeps in to a system in many forms, including depen-
dences upon particular names and the passing of extraneous
parameters. This paper proposes implicit context as a means
for reducing EEK in systems. Implicit context combines a
mechanism to reflect upon what has happened in a system
through queries on the call history with a mechanism for al-
tering calls to and from a component. We demonstrate the
benefits of implicit context by describing its use to reduce
EEK in the Java Swing library.

Keywords
Software structure, flexibility, call history, contextual dis-
patch.

1 Introduction

When we begin building a software system, we typically
strive to design components that are simple and conceptually
clean. When we finish building a version of the system, a dif-
ferent story has typically unfolded. An original vision of in-
dependent and cohesive components that interact along nar-
row paths is too often replaced with a reality in which there
exists a larger than desired set of interactions between com-
ponents.

Obviously, components must communicate to provide
system behaviour. Communication leads to interaction be-

tween components. The problem resides in the fact that a
component ends up interacting with other components for
reasons not directly related to providing its behaviour. For
example, when a class participates in the Abstract Factory
pattern [7] as a client, it must be aware of this participa-
tion; the abstract factory class must be explicitly named even
though only the product classes managed by the factory are
of interest to the client.1 Such explicitly-named interactions
make software brittle. We refer to knowledge of the external
world within a component that is not conceptually required
for the individual behaviour of that component as extraneous
embedded knowledge (EEK).

A possible solution lies in the way humans speak to each
other. Humans do not spell out every concept they wish to
communicate at every instance the understanding of those
concepts is required. We expect much information to be un-
derstood from or altered by context. Such use of context
takes two forms: elision, where words are left out to be filled-
in from either cultural knowledge or earlier details within a
conversation, and modification, where the words that are spo-
ken or the way that they are interpreted depends upon the in-
dividuals who are speaking. “It spun wildly” could refer to a
ride at the county fair, or to one’s impression of a room while
experiencing extreme nausea; the details about “it” have been
elided, to be understood from what has previously been dis-
cussed. Likewise, one’s response to the question, “What does
politics mean?” might be quite different depending on who
is asking; the explanation given a young child is likely to be
significantly modified from that given an adult.

Analogously, we can use elision and modification to sim-
plify components and to reduce the coupling between them.
When a message is passed or received, additional details
(such as parameters) can be filled-in by reflecting upon what

1We use the term component to refer to a structural unit such as a method,
class, or module when we do not care to differentiate between these.

1



has been previously said—the call history within the system.
Furthermore,� a message can be altered depending on to whom
it is being sent or from whom it is being received; that is,
messages can be intercepted before or after being sent and
be replaced by other messages depending on the context in
which they occur. We call this contextual dispatch. Combin-
ing these two concepts gives us a powerful mechanism, im-
plicit context, for removing EEK from components.

To demonstrate the approach, we present a proof-of-
concept application of implicit context to the 1,304-class
JavaTM Swing graphical user interface library. We show how
the use of implicit context helped to make components in
Swing simpler and less brittle. We were able to apply im-
plicit context incrementally, evolving parts of Swing to use
implicit context while running side-by-side with unchanged
components.

We begin by expanding upon our description of EEK and
giving a concrete example of its presence within the Swing li-
brary (Section 2). We then describe a mechanism for record-
ing and utilizing implicit context, and explain its application
towards reducing the presence of EEK within Swing (Sec-
tion 3). In Section 4, we discuss issues that arise in using
implicit context and in providing automated support for the
approach. Section 5 compares implicit context to other re-
lated approaches. Finally, we summarize our arguments and
findings in Section 6.

2 Extraneous Embedded Knowledge

Extraneous embedded knowledge creeps into a component as
the component is elaborated and implemented. Sometimes a
developer recognizes when EEK is infiltrating a component:
this situation may be marked by a programmer exclaiming,
“To make this work, I suppose I must link to the...”. More
often, EEK silently invades a component.

A complete categorization of EEK is not warranted for
this initial investigation of implicit context. Instead, we focus
on a few of the more common forms of EEK. We postpone
a discussion of how existing approaches address EEK until
Section 5.

2.1 Forms of EEK

The simplest form of EEK is the dependences a component,
say C, forms on particular names and signatures of exter-
nal components. If any of the external names or signatures
change, component C will break. What should be important
to C is not who will be providing desired external functional-
ity, but rather what functionality is needed.

A more subtle version of EEK arises between compo-
nents. Consider three methods: mA, mB, and mC. Method mA
callsmB, andmB subsequently callsmC. In these calls, various
parameters are passed; among these is a piece of information
called param. Method mC requires param for its execution
and mA is in the best position to obtain or calculate param.

Method mB does not use param in any way except to pass it
on to mC. At some point, it is decided that the call within mB
to mC should be replaced by a call to mD. Method mD serves
the same purpose as mC, but does not require that param be
passed to it. One option is to change the interface to mB, but
this would break all its clients. Instead, mB is typically stuck
accepting a parameter for which it has no use. From the per-
spective of mB, param is an extraneous parameter.

EEK also arises in the form of protocol adherence. Con-
sider a class Cls that has (at least) two methods: init()
and doit(). Cls requires that the init() method be
called prior to any calls to doit(). There are a couple of
ways to handle this constraint, as follows.

We can force all clients of Cls to ensure that init()
is called prior to doit(); however, since no client can be
assured that it will be the first one to have called doit(), a
flag needs to be set to indicate when init() is called. Such
a flag is likely to be stored as a global variable or as a field
within Cls, say isInitialized. Every client of Cls
must then recognize and correctly adhere to this protocol to
check and set isInitialized, spreading this concern ev-
erywhere.

Alternatively, we can force doit() to call init() the
first time it is itself called. Although this approach also re-
quires a flag, this flag is internal to Cls. This situation still
makes Cls too brittle. The doit() method must know
about init() to correctly follow the protocol. If the pro-
tocol is altered, the implicit dependence of doit() must be
recognized and doit() must be modified appropriately. If
doit() is modified, the developer must be careful not to in-
troduce protocol violations.

With only two methods to be concerned with, this seems
like a trivial problem. But with hundreds of methods to man-
age within a class, or with protocols that involve multiple
classes, evolution becomes difficult and dangerous.

2.2 The Java Swing Library

As an example of where EEK arises and how implicit con-
text can address EEK, we describe a part of the Java Swing
library. Swing is a graphical user interface (GUI) toolkit that
is intended to provide consistency in GUI appearance across
platforms and to make it easy to build sophisticated widgets.
Swing is distributed as part of Sun Microsystems’s JDK 1.2.

A major feature of Swing is its pluggable look-and-feel
(PLAF) architecture [6]. This architecture allows the look-
and-feel of a GUI to be altered dynamically. As an example,
a user interface in the Motif look-and-feel can be altered at
run-time to a Windows look-and-feel. We will focus on the
EEK associated with the part of the PLAF architecture that
supports the changing of look-and-feels. We begin with an
overview of the architecture followed by some (simplified)
details of how the architecture works. The details are neces-
sary to recognize the EEK.

2



2.2.1 Overview

In Swing, each GUI widget object contains a separate ob-
ject, called a UI delegate, which is responsible for the dis-
play and interactive characteristics of the widget for a par-
ticular PLAF. For example, a class JButton, which imple-
ments a button widget, has an associated class ButtonUI,
which provides its look-and-feel; ButtonUI has a separate
subclass for each different look-and-feel. When JButton
receives a message to paint itself, it forwards the message
to its installed UI delegate, say a MotifButtonUI object,
which draws the button properly according to its current state.
When the look-and-feel of a widget is to be changed, the cur-
rent UI delegate object for that widget must be uninstalled,
the new UI delegate class must be located and instantiated,
and the new UI delegate object must be installed on the wid-
get.

2.2.2 How PLAF Works

Classes representing GUI widgets should be simple since
GUI widgets themselves are conceptually simple. In Swing,
these classes are complex, containing many details that are
needed to support the PLAF architecture as well as other fea-
tures, such as a separable model architecture. The JButton
class, for example, defines or inherits a total of 183 public
methods within the javax.swing package, plus 144 pub-
lic methods from within the java.awt package—all just to
implement a button!

Figure 1 shows a partially stripped-down object interac-
tion diagram for the process of locating, instantiating, and in-
stalling a new UI delegate into aJButtonobject.2 There are
six classes involved in this process.

� JButton is a GUI widget for which the look-and-feel
is to be changed.

� BasicButtonUI is a specialized button UI delegate.
This class inherits from ButtonUI, which provides a
generic base class for button UI delegates.

� BasicButtonListener is an event handler that re-
sponds to events, such as button presses, in a PLAF-
specific manner. It is explicitly installed onto a given
button widget by a button UI delegate.

� LookAndFeel is a base class for the various PLAFs.
Each subclass of LookAndFeel specifies the set
of UI delegate classes that are appropriate for its
look-and-feel. Each class has an associated string—a
uiClassID—that describes its purpose. For ex-
ample, the MotifLookAndFeel specifies that
MotifButtonUI corresponds to the "ButtonUI"

2The diagram ignores details concerning applet contexts for multiple ap-
plications running in the same virtual machine, as well as various initializa-
tion steps.

(12) installColorsAndFont
(13) installBorder

(22) getClientProperty
(21) addChangeListener
(20) addPropertyChangeListener
(19) addMouseMotionListener

(17) putClientProperty
(18) addMouseListener

(16) setMargin
(15) setOpaque

JButton

LookAndFeel

UIDefaults
Listener

Basic-
Button-

UIManager

Basic-
Button-

UI

(8)
createUI

(3) getDefaults
(4) getLAFState

(9) setUI

(5) getUI

(10) installUI

(6) getUIClassID

(11) getInsets

(7)

getUIClass

(2) getUI

(1) updateUI

(14) <init>

Figure 1: Object interaction graph for the process of in-
stalling a “Basic” PLAF UI delegate into a JButton.

purpose and that MotifRadioButtonUI corre-
sponds to the "RadioButtonUI" purpose.3

� UIDefaults is used by LookAndFeel and its sub-
classes to store the mappings from the uiClassID’s
for a PLAF to the actual UI delegate classes.

� UIManager is an abstract class with various static
methods for registering the UIDefaults information
for the current PLAF.

The interactions between these six classes to support the
changing of the look-and-feel are complex. Figure 1 depicts
the over 20 messages involved. The interactions represented
describe what happens right after the look-and-feel has been
changed via a method call to the UIManager class. At that
point, the application must explicitly call a utility method to
run around and invoke each widget’supdateUI()method.
For JButton, this results in a request to UIManager to
obtain a UI delegate object that is appropriate to the new
PLAF. UIManager passes the current PLAF and the wid-
get asking to be updated to UIDefaults. UIDefaults
asks the passed widget its purpose; JButton responds
"ButtonUI". UIDefaults uses its stored information
to find out the appropriate "ButtonUI" UI delegate class
for the current PLAF. It then uses Java’s reflection inter-
face to instantiate the UI delegate and returns the delegate to
UIManager, which passes it to JButton.

3Note that there is a difference between subclassing and purpose. While
MotifButtonUI extends ButtonUI and MotifRadioButtonUI ex-
tends MotifButtonUI, MotifRadioButtonUI does not satisfy the
"ButtonUI" purpose.

3



JButton then begins the process of installing the button
UI delegate� object. JButtonfirst calls an internal method to
uninstall the current UI delegate object (not shown in the di-
agram) and then calls installUI(JComponent) on the
button UI delegate object, passing itself as the argument. The
button UI delegate installs various default properties onto
the button, some of which are determined by UIManager
and others which are determined by LookAndFeel. At the
same time, the button UI delegate object creates a PLAF-
specific button event handler and installs it on the button ob-
ject.

2.2.3 The Problems

Is this a bad design? Certainly, as the arcs in Figure 1 show,
there is a high degree of coupling between the components to
support the UI delegate installation process. However, these
interactions are not the result of bad design: the design uses
many advanced object-oriented concepts and is reasonable
given the constraints of the the mechanisms available within
Java.

Even if it is state-of-the-art, the design is not satisfactory.
Many components contain unnecessary knowledge.

JButton, for instance, contains EEK because it has
to worry about the PLAF architecture during the UI del-
egate installation process. JButton should not need to
ask UIManager for an appropriate UI delegate instance,
and it should not need to know about its uiClassID.
JButton contains or inherits five methods with the sole pur-
pose of supporting this process: getUIClassID(), up-
dateUI(), getUI(), setUI(ButtonUI), and set-
UI(ComponentUI). If these methods were not present,
JButton would be conceptually cleaner, permitting it to
be modified with less risk of breaking the system, and per-
mitting it to be reused without having to reuse the ability
to change look-and-feels. In addition, it seems unnecessary
for BasicButtonUI to worry about installing a PLAF-
specific event handler on JButton. The emphasized arcs
within Figure 1 are ones we would like to break by replacing
the UI delegate installation process.

Given this EEK, constructing new widget classes is also a
non-trivial task because of the complexity required to support
the library-level architectural concerns. A new class would
need to implement, inherit, or override many similar meth-
ods, the subtle nuances of which quickly become lost.

To reduce the EEK in Swing components, a better mecha-
nism is needed to simplify them, thereby making them more
maintainable, reusable, and extensible. We believe that im-
plicit context is such a mechanism.

3 Implicit Context

Implicit context consists of a means, which we refer to as con-
textual dispatch, for altering and rerouting messages based

upon the history of calls made within a system. In this sec-
tion, we describe the concepts behind a mechanism to sup-
port implicit context, we demonstrate how to overcome the
problems within the abstract examples from Section 2, and
we discuss the use of a proof-of-concept implementation of
implicit context to address the EEK identified earlier in the
Java Swing library.

3.1 Contextual Dispatch

We want to be able to intercept messages before or after they
are sent and to replace them by other messages depending
on the context in which the calls occur. To do so requires a
means of interception and a means of defining replacement
messages.

Since the entire point of leveraging implicit context is to
bring the implementation of a component closer to its con-
ceptual requirements, it makes no sense to embed the inter-
ception and redispatch of messages within the component it-
self. Thus, we place the replacement method invocations in
segments of code outside of the components they are to act
upon; we call these segments boundary maps. There are two
kinds of boundary maps: out-maps and in-maps.

Out-maps reroute calls from a component. Consider a
component C, which through various method calls, names
four external components within its system, S1 (see Fig-
ure 2a). Although C insists that these external components be
present within its system, we want to use C in a new system,
S2; system S2 contains different, but functionally similar,
external components than S1 (see Figure 2b). To match the
requirements of Cwith the actual external components of S2,
we consider there to exist a boundary betweenC and the other
components in S2. When a message crosses this boundary
it is intercepted and redispatched contextually in accordance
with the out-maps (see Figure 2c).

In-maps reroute calls entering a component. Consider a
system in which a component, called C, is called by various
other components (see Figure 3a). Although the other com-
ponents depend on the presence of C, it is to be replaced by
two components (see Figure 3b) with similar net function-
ality. To overcome the disparity between the expected and
actual components, we construct a boundary around C and
insert the new components within this boundary. In-maps
placed on this boundary intercept messages from the rest of
the system on their way to C and reroute them appropriately
to the new components (see Figure 3c).

Boundary maps maintain the façade of an unchanging
interface, thereby permitting a simple means of backwards
compatibility. Out-maps help an individual component to
possess an unchanging view of the system in which it runs,
while in-maps can help a system to possess an unchanging
view of individual components within it even when they are
replaced or modified.

4



C

(a) System S1

C

(b) System S2

C

(c) Using out-maps to redirect calls
from C

Figure 2: Using out-maps to move a component to a new system.

C

(a) System with component C

C

(b) System with two replacements for C

C

(c) Using in-maps to redirect calls to C

Figure 3: Using in-maps to replace a component with two others.

3.2 Call History

In order to reflect upon the history of calls made within a sys-
tem, we need both a means to record the calls made within
that system, and a means to access this record. The kind of
queries used to access the call history largely determine the
form of the information that must be recorded.

To locate calls of a particular form, there are several se-
lection criteria that should be available: the class, method,
and object receiving the call, and the parameters passed
within the call. It also must be possible to determine the rela-
tive order of calls and to determine the causal relationships
between calls. For instance, we must be able to support a
query of the form: ‘Was method mA in the call stack when
method mC was called?”

3.3 Simple Examples

Recall the extraneous parameter example of Section 2. We
can use boundary maps to remove knowledge of the extrane-
ous parameterparam from methodmB. Optimally,mBwould
never have contained knowledge of param since it never
uses it. We can accomplish this with an out-map attached
to mA, which implicitly stores param within the call history,

and an in-map attached to mC, which retrieves param. This
would give mC access to param while allowing mD to ignore
it. Method mB can now be replaced or altered, leaving the
boundary maps in place to maintain the protocol of passing
param or not.

Likewise, the protocol support example of Section 2 be-
comes less problematic with contextual dispatch. Given the
ability to query the call history for whether init() has
been called previously, we can remove all vestiges of sup-
port for the initialization protocol of class Cls from both the
doit()method and all of the clients of Cls. Instead, an in-
map is applied to doit() that checks for a call to init();
if such a call has not happened, init() is called prior to
control passing to doit().

3.4 Application of Implicit Context to Swing

To reduce the EEK identified earlier in Swing, we applied im-
plicit context. We had three specific goals in mind:

1. remove the need to explicitly install PLAF-specific
UI delegates onto JButton, thereby removing all
details of the uninstallation/installation process from
JButton,

5



2. remove the need to explicitly install PLAF-specific
event handlers onto JButton, and

3. meet goals 1 and 2 in such a way that the rest of Swing
continues to operate using the original PLAF architec-
ture.

We chose to remove the PLAF architecture only from
JButton for two reasons: we would want any implicit con-
text approach to be incrementally adoptable, and Swing is too
large and complex to tackle at once for a proof-of-concept.

There were five steps involved in applying implicit con-
text: implement call history, remove the details of the
PLAF architecture from JButton, determine the appro-
priate boundary maps to apply, apply the boundary maps,
and verify that an application runs with the two architec-
tures (PLAF-explicit and PLAF-implicit context) operating
together.

3.4.1 Implementing Call History

Our implementation of call history for Java stores method
calls and method returns within a threaded tree structure.
Each node within the tree represents a call to a method
within the program, including the receiving object, objects
and primitives passed in the parameters, an object represent-
ing the class being called, and an object representing the
method being called. Each of these nodes is an object of the
class Call. Every Call node has a link to an associated
CallReturn object in which the return value of that call
is stored. The thread within the tree records the causal order
of method calls.4

This tree is encapsulated within a class called
CONTEXT.5 CONTEXT defines a number of methods
for performing queries on the call history. Table 1 contains
the ones that have been defined so far; these are not an
exhaustive set of all queries that would ever be needed.

To store a call in the tree, we defined two snippets of code
to instrument the methods in the system, one that was to be
executed at the start of each method and one that was to be ex-
ecuted at the end of each method. These were inserted at the
start and end of each method via AspectJTM, Xerox PARC’s
aspect-oriented programming [11] tool for Java.

Using this approach, we instrumented all methods within
classes in the packages javax.swing, com.sun.java.
swing.plaf.motif, and their subpackages. A total of
1,433 classes were instrumented.

3.4.2 Removing the PLAF Architecture from JButton

To meet our first goal of removing the PLAF uninstal-
lation/installation protocol from JButton we removed

4We currently ignore the issue of method calls occurring in separate
threads; all calls are collected in a single tree.

5CONTEXT is all capitalized simply to indicate that it should not be
treated like any other class. Invoking its methods does not store anything
to the call history, for example.

� getCallReturn(Call)� precedes(Call, Call)� hasBeenCalled(Class, Method, Obj-
ect)� findLastCallTo(Class, Method)� findLastCallToFrom(Class, Method,
Object, Object)� findLastCallToAnySubclass(Call,
Class, Method)� findLastCallToAnySubclass-
From(Class, Method, Object)� findLastCallToPassingSubclass-
Of(Class, Method, Class)

Table 1: The query methods defined on the CONTEXT class.

the five methods providing this functionality from the
class: getUIClassID(), updateUI(), getUI(),
setUI(ButtonUI), and setUI(ComponentUI).
JButton is now free of the EEK arising from the PLAF
uninstallation/installation process.

3.4.3 Determining Appropriate Boundary Maps

To make JButton utilize implicit context in place of the
PLAF architecture, and to patch up the holes we tore in in-
terfaces and protocols by removing the PLAF architectural
methods from JButton, we then needed to apply boundary
maps to several classes.

First, we applied an in-map to JButton to intercept
messages bound for the now removed getUI() operation.
This in-map performed a set of call history queries to deter-
mine the current UI delegate for the button (pseudocode ap-
pears in Table 2). The key idea in this in-map is to deter-
mine whether any UI delegate with the "ButtonUI" pur-
pose has been activated since the last time the button was
painted, indicating that the UI delegate for JButton needs
to be changed. Determining whether any UI delegate with
the "ButtonUI" purpose has been activated required the
application of an out-map to UIDefaults that informed
UIManager of each individual UI delegate class associated
with a PLAF when that PLAF was selected to be current.

To replace the need to explicitly install PLAF-specific
event handlers on JButton instances, we introduced
a generic DefaultButtonListener event handler
class. This class consisted of empty methods for handling
events. An in-map was applied to the getListener()
method of DefaultButtonListener that deter-
mined the current UI delegate, and hence, the appropri-
ate look-and-feel-specific event handler class, such as
BasicButtonListener; events were then rerouted
to an instance of this class. The need to explicitly install
PLAF-specific event handlers, and the EEK this introduced,
were gone.

A variety of other simple in-maps and out-maps were also

6



(1) Set paintCall to be the most recent call to paint
this JButton.

(2) Set assocCall to be the most recent call to asso-
ciate a UI delegate class with a PLAF.

(3) Set uiClass to null.
(4) Repeat (5)–(8):
(5) If paintCall is not null and is more recent than

assocCall, just return the cached UI delegate ob-
ject.

(6) Retrieve the UI delegate class passed in the
assocCall.

(7) Set uiClass to the UI delegate’s purpose.
(8) Set assocCall to be the next most recent call to as-

sociate a UI delegate class with a PLAF.
(9) : until the purpose is "ButtonUI".
(10) Instantiate the UI delegate class and cache the object.
(11) Return the cached object.

Table 2: Pseudocode for the getUI() in-map.

needed to complete the integration of implicit context. An
out-map was attached to JButton to reroute accesses on an
internal UI delegate field to the getUI() in-map. Empty
in-maps were attached to JButton for each of the PLAF
architectural methods that we had earlier torn out, except
getUI(), in order to maintain JButton’s interface. Fi-
nally, in-maps and out-maps were applied to the button UI
delegate classes for a few initialization calls that had been
made during the UI delegate installation process.

In all,JButton required 5 in-maps and 3 out-maps,De-
faultButtonListener required 11 in-maps (for all the
different event handler methods), UIManager and UIDe-
faults each required one in-map, BasicButtonUI re-
quired 8 in-maps and 5 out-maps, and each PLAF-specific
UI delegate class (i.e., MetalButtonUI and MotifBut-
tonUI) required 4 in-maps and 5 out-maps.

Statements to perform queries on the call history were
used five times for JButton within the getUI()
in-map, twice for DefaultButtonListener
within the getListener() in-map, three times for
BasicButtonUI within three in-maps, once for
MetalButtonUI, and once for MotifButtonUI.
All boundary maps except the in-maps for getUI() and
getListener()were short: six lines of code or less. The
in-maps for getUI() and getListener() are 25 lines
of code each; most of this code resulted from handling the
initialization case where the button has not been painted yet.

Since this was a proof-of-concept, we only altered the
Motif and Metal PLAFs. Altering the other PLAFs would be
straightforward.

3.4.4 Applying the Boundary Maps

To apply the boundary maps to components, we manually
wove in the necessary redispatching code to the components.

Attaching an in-map to a method simply required that the
body of the map be inserted (i.e., cut-and-pasted) into that
method prior to any statements in the original method, includ-
ing statements to store into call history. In-mapping a method
that did not exist within a class involved adding a method of
the indicated name and signature with the specified body to
the class.

Out-mapping a call or field access required that a new
method be added to the class to which the mapping was ap-
plied; the new method contained the body of the out-map.
Then, all call sites affected by the map were modified to call
the new out-map method. Doing this manually simply re-
quired a lexical search to ensure that each resulting match
was in the correct scope, followed by a replacement by the
name of the call to the out-map method.

3.4.5 Verifying that It Works

We tested the resulting combination of the PLAF architecture
with the replacement architecture forJButton based on im-
plicit context by building a simple application consisting of
a couple of buttons and labels. Pressing one of the buttons
caused the PLAF to be toggled between the Motif PLAF and
the Java cross-platform (“Metal”) PLAF.

The behaviour of the implicit context-based architec-
ture when the PLAF is changed is depicted in Figure 4.
No arcs remain from JButton to BasicButtonUI or
vice versa, indicating the removal of the installation pro-
cess from JButton and the removal of the installation of a
BasicButtonListener on JButton. Also, the proto-
col is now more centralized and separated from the concerns
of the individual classes, as indicated by the clustering of the
call sites within the in-maps.

3.4.6 Results of Applying Implicit Context

Applying implicit context to Swing had four effects on the
Swing library:

1. the source code for JButton is now conceptually sim-
pler and contains less EEK: the code focuses on imple-
menting the functionality of a button;

2. JButton should be easier to reuse without needing to
reuse the PLAF architecture;

3. JButton should be easier to maintain and evolve now
that it is free of the concerns of the PLAF architecture;
and

4. the components of the PLAF architecture should be eas-
ier to maintain and evolve since they are now free of
EEK related to the core concerns of JButton.

7



LookAndFeel

Listener

Basic-
Button-

Basic-
Button-

UI
JButton

Listener

Default-
Button-

UIManager

CONTEXT

(4) precedes

(1) any event

(2) getUI

(3) findLastCall

(6) findLastCallToFrom

(5) createUI

(7) getCallReturn

(8) getListener

(9) <init>

(10) setOpaque
(11) setMargin

(12) getInsets
(13) installColorsAndFont
(14) installBorder

Figure 4: The behaviour of the implicit context-based
architecture when the PLAF is changed. The shaded
boxes represent the in-maps attached to JButton and
DefaultButtonListener.

4 Discussion

Despite the advantages gained applying implicit context to
Swing, given the early stage of work on implicit context,
many open issues remain.

4.1 Tool Support

To date, we have applied implicit context with minimal auto-
mated support. Making the concept of implicit context work-
able obviously requires tool support for both contextual dis-
patch and for recording and querying call history. Currently,
we are developing tool support for applying implicit context
to Java programs.

4.1.1 Contextual Dispatch

As described earlier, applying in-maps and out-maps to
Swing components was a straightforward process, involv-
ing the addition of new methods and modification of exist-
ing methods in classes with associated maps. Using this ap-
proach, components (classes) can be processed individually.
Building a tool to perform this process requires support for
processing map specifications and manipulating Java source
code. Conceptually, the tool support needed is straight-
forward. However, since we are working with an object-

oriented language such as Java, we must deal with such is-
sues as inheritance and protection levels. The details regard-
ing these issues are beyond the scope of this paper.

4.1.2 Call History

Gathering of call information can be achieved by instrument-
ing each method of each class to record, for every invoca-
tion, the necessary information in the history. Our experi-
ence in instrumenting systems to support object-oriented vi-
sualization [18] suggests that this approach will have a sig-
nificant (negative) impact on performance. Luckily, the in-
map and out-map specifications can help. These specifica-
tions can be analyzed to determine the subset of methods that
must be instrumented, reducing the amount of call informa-
tion that needs to be recorded. Although this approach will
require a global analysis of the components and maps that are
to be used together, we believe this is workable for two rea-
sons. First, the analysis is not heavyweight, requiring only a
scan of the maps and of the static inheritance structure of the
system. Second, the instrumentation that must be applied to
gather the information requires only a simple transformation
to the source code and can even be done at load time.

Collecting the call history information is just one part of
the problem. Support must also be available to query this in-
formation efficiently. If efficient querying remains a problem
after reducing the amount of information collected, we intend
to build upon encoding techniques we have recently devel-
oped to support the visualization of large object-oriented sys-
tems.6

4.2 Effect on Structure

One potential criticism of implicit context is that EEK is not
removed, rather it is simply moved to boundary maps. When
an in- or out-map is used to redirect messages, without use
of the call history, EEK is indeed moved and not removed.
However, the movement of EEK is an advantage: in- and
out-maps are intended to be simple and more modifiable than
having to wade through and change multiple parts of a com-
ponent. As an example, consider the implicit context ver-
sion of our Swing example. Event though the in-map for
JButton still interacts with BasicButtonUI as part of
the installation of the PLAF, moving this interaction to the
map makes it easier to understand the installation process and
simplifies the code for JButton itself.

When the in-map or out-map uses the call history to de-
termine the appropriate dispatch, EEK is indeed removed,
reducing the dependences of one part of a system upon an-
other part. In our modified version of Swing, for example,
JButton no longer requires knowledge of look-and-feel
purpose (i.e., the "ButtonUI" string).

6This work is implemented but not yet published. A technical report will
be forthcoming early in the new year.

8



4.3 Effect on Performance

Our implicit context version of Swing is operational, but
is not fast. Not surprisingly, the main cause of a degrada-
tion in performance compared to the unmodified Swing is at-
tributable to the searches through the call history. We believe
a combination of reducing the size of the history and opti-
mized searching mechanisms can help address this problem.

4.4 Effect on Development

Another criticism of implicit context is that it makes it more
difficult to reason about the operation of the system. For
Swing, we believe our implicit context version is easier to
reason about because it separates and simplifies a particu-
lar complex feature from the regular operation of JButton.
Although several maps must be investigated to understand
the feature, each map is relatively small; the largest is about
25 lines. Certainly, if more features of Swing were sepa-
rated into maps, the maps may become overly complex them-
selves. This criticism also applies to other techniques that
support separation of concerns (e.g., [16, 11]). More expe-
rience must be gathered applying these approaches to assess
the impact.

5 Related Work

Much of the work in software engineering and program-
ming languages is oriented at increasing the independence
and reuse of components.

5.1 Structural Approaches

Implicit invocation (a.k.a. publish-subscribe, event multi-
cast) [8] is a means of separating control-flow from explicit
knowledge of the names of components. Implicit invoca-
tion can remove some EEK arising from the knowledge of
the names of subscribing classes and methods, but much re-
mains. All components in an implicit invocation protocol re-
lationship (i.e., the callback registrar, subscribers, and event
publisher) need to be aware that this particular mechanism is
in place, and subscribers and event publishers need to recog-
nize a common interface for passing events and what those
events are. Implicit context allows protocol concerns to be
separated and allows protocol information to be adapted as
necessary. For instance, parameters expected by a subscriber
might be modified as part of a boundary map.

DeLine’s flexible packaging [5] is a mechanism by which
decisions about how a component is to interact with others
can be delayed until system integration time. Flexible pack-
aging separates a component’s functionality and its packag-
ing into distinct entities: a ware and a packager. A given
ware can then be packaged to work in different environments;
for instance, as a web browser plug-in or as a command-line
filter. DeLine’s approach provides a more abstracted means

of addressing the question of how a component interacts than
the support provided by implicit context. This additional ab-
straction comes at a price: wares must be built to a particular
abstracted notion of interaction. In contrast, implicit context
can be used to adapt a component to work in a new situation
without the component necessarily being aware of the adap-
tation.

A number of more general approaches to separating con-
cerns in a system have been appearing over the last few years.
Subject-oriented composition [16] is a means for composing
and integrating disparate class hierarchies (subjects), each of
which might represent different concerns. Aspect-oriented
programming [11] provides support for modularizing cross-
cutting concerns, such as distribution or look-and-feel, in a
system. Modularized concerns can then be woven in to a sys-
tem as desired. Similar to these approaches, implicit con-
text is intended to help separate different parts of a system,
increasing the independence of those parts. In contrast, im-
plicit context provides later binding of the pieces of a system
to each other through access to the call history.

5.2 Explicit Context

Other approaches focus on the use of explicit context to in-
crease the flexibility of a system.

Context relations [17] provide a language-based mecha-
nism in support of the Strategy pattern [7] by allowing “con-
text objects” to be dynamically attached to instances. Con-
text reflection [15] allows interpretation of messages and
knowledge in terms of an explicitly-set, globally current con-
text, allowing late binding. Behaviourally adaptive objects
[13] separate objects into two separate, interacting entities:
crystals to represent the state of an object, receive messages,
and select behaviour, and contexts to define operations. All
three of these mechanisms permit significant dynamic flexi-
bility, and hence might address the need for eliminating early
binding of names, but they do not provide any special means
for coping with other forms of coupling such as extraneous
embedded knowledge concerning protocol adherence or ex-
traneous parameters.

Traces [10] allow the interpretation of messages to be al-
tered based on a limited form of dynamic context. An ex-
plicit list of “ancestor classes” may be attached to an ob-
ject; methods may be interpreted differently depending on
whether the ancestor list of the receiving object matches pre-
specified lists. Such ancestor lists can be thought of as partic-
ular paths through the call history tree, but at a coarser gran-
ularity than methods. Thus, traces permit a limited means of
reflecting upon system history. However, since traces pro-
vide no means of obtaining objects related to the history, it is
not possible to apply traces to the problem of separating the
Swing PLAF architecture from JButton described earlier.

9



5.3 Remapping Approaches

Many object-oriented reflective systems support the reifica-
tion and manipulation of messages or methods (e.g., [14,
11]). Most of this work does not discuss how the message
manipulation should be structured to support software engi-
neering goals. One approach that supports the remapping
of messages that appear at a boundary in a structured way
is composition filters [1]. In the composition filters model,
an object consists of an internal part, possibly consisting of
multiple objects, and an interface part, which defines input
and output filters to manipulate and possibly redirect mes-
sages. In this model, filters are specified explicitly within
classes, limiting the separation of EEK and limiting the reuse
of classes. In addition, since composition filters do not pro-
vide access to the call history, filters cannot be used to address
such problems as extraneous parameters.

Several other approaches provide programming
language-based approaches to delay the binding of op-
erations to names.

Predicate classes [3] are a generalization of multiple dis-
patch [2] that permit the type of an object to be transiently re-
defined according to its state (or according to a user-defined
predicate that can be fairly arbitrary). Subjectivity [9, 12] al-
lows different method implementations to be executed for a
message depending on the run-time type of the sender of the
message. Both of these approaches increase the flexibility of
a system, but they do not eliminate some forms of EEK that
implicit context is able to eliminate, such as extraneous pa-
rameters.

5.4 Call History

Both LambdaMOO [4] and Perl [19] permit access to the cur-
rent call stack, but to no other, prior calls. Unlike implicit
context, neither provides a means for retrieval of passed pa-
rameters.7 In addition, neither approach provides any means
for separating out the manipulation of messages.

6 Conclusion

Real components are often complex. The complexity within
a component rarely stems from one cause. Rather a compo-
nent, over time, ends up with knowledge of other components
that is not conceptually required for the component to provide
its behaviour, yet is to difficult to remove. We refer to this un-
necessary information as extraneous embedded knowledge
(EEK). EEK occurs in many forms in components, including
a reliance on particular names, extraneous parameters, and a
need to adhere to implicit protocols.

In this paper, we have introduced the concept of im-
plicit context as a way of reducing EEK in components. Im-

7In Perl, access to passed parameters is available in one special case,
when this access occurs within the DB package, as described by Wall et
al. [19, p. 148].

plicit context combines a means for rerouting messages in a
system—contextual dispatch—with an ability to reflect over
the history of calls that have been made in a system. We have
shown how implicit context helped reduce the EEK involved
in the process of installing a new look-and-feel on a compo-
nent from the Java Swing library.

Our work to date has focused on showing the utility of
the implicit context approach. Given the benefits achieved in
applying implicit context to Swing, our next step is to auto-
mate support for implicit context and continue to investigate
its impact on program structure.

Acknowledgements

We thank Martin Robillard for providing insightful com-
ments on an earlier draft of this paper. This work was funded
by the Natural Sciences and Engineering Research Council
(NSERC) of Canada. Java is a trademark of Sun Microsys-
tems. AspectJ is a trademark of Xerox Corporation.

References

[1] Mehmet Akşit, Lodewijk Bergmans, and Sinan
Vural. An object-oriented language–database inte-
gration model: The composition-filters approach. In
Ole Lehrmann Madsen, editor, European Conference
on Object-Oriented Programming, volume 615 of
Lecture Notes in Computer Science, pages 372–395.
Springer-Verlag, 1992. (ECOOP ’92; Utrecht, The
Netherlands; 29 June–3 July).

[2] Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales,
Larry Masinter, Mark Stefik, and Frank Zdybel. Com-
monLoops: Merging Lisp and object-oriented pro-
gramming. In Norman Meyrowitz, editor, Proceed-
ings of the Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages 17–
29. ACM Press, 1986. (OOPSLA ’86; Portland,
USA; 29 September–2 October). Published as ACM
SIGPLAN Notices 21(11), November 1986.

[3] Craig Chambers. Predicate classes. In O. M. Nier-
strasz, editor, ECOOP ’93—Object-Oriented Program-
ming, volume 707 of Lecture Notes in Computer Sci-
ence, pages 268–296. Springer-Verlag, 1993. (1993 Eu-
ropean Conference on Object-Oriented Programming;
Kaiserslautern, Germany; 26–30 July).

[4] Pavel Curtis. LambdaMOO Programmer’s
Manual, March 1997. Version 1.8.0p6.
ftp://ftp.lambda.moo.mud.org/pub/
MOO/ProgrammersManual.ps.

[5] Robert DeLine. Avoiding packaging mismatch with
flexible packaging. In Proceedings of the 1999 Interna-
tional Conference on Software Engineering, pages 97–

10



106. ACM Press, 1999. (ICSE-21; Los Angeles, USA;
16–22 May).

[6] Amy Fowler. A Swing architecture overview:
The inside story on JFC component design.
http://java.sun.com/products/jfc/
tsc/archive/what is arch/swing-arch/
swing-arch.html, 23 August 1999.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
USA, October 1994.

[8] David Garlan and David Notkin. Formalizing design
spaces: Implicit invocation mechanisms. In Søren
Prehn and W. J. (Hans) Toetenel, editors, VDM ’91:
Formal Software Development Methods, Volume 1:
Conference Contributions, volume 551 of Lecture
Notes in Computer Science, pages 31–44. Springer-
Verlag, 1991. (4th International Symposium of
VDM Europe; Noordwijkerhout, The Netherlands;
21–25 October).

[9] William Harrison and Harold Ossher. Subject-oriented
programming: A critique of pure objects. In Proceed-
ings of the Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages
411–428. ACM Press, 1993. (OOPSLA ’93; Wash-
ington, USA; 26 September–1 October). Published as
ACM SIGPLAN Notices 28(10), 1 October 1993.

[10] Gregor Kiczales. Traces (a cut at the “make isn’t
generic” problem). In Shojiro Nishio and Akinori
Yonezawa, editors, Object Technologies for Advanced
Software, volume 742 of Lecture Notes in Computer
Science, pages 27–43. Springer-Verlag, 1993. (First
JSSST International Symposium on Object Technolo-
gies for Advanced Software; ISOTAS ’93; Kanazawa,
Japan; 4–6 November).

[11] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier,
and John Irwin. Aspect-oriented programming.
In Mehmet Akşit and Satoshi Matsuoka, editors,
ECOOP’97—Object-Oriented Programming, volume
1241 of Lecture Notes in Computer Science, pages
220–242. Springer, 1997. (11th European Conference
on Object-Oriented Programming; Jyväskylä, Finland;
9–13 June).

[12] Bent Bruun Kristensen. Subjective method interpreta-
tion in object-oriented modeling. In Proceedings of the
5th International Conference on Object-Oriented Infor-
mation Systems. Springer-Verlag, 1998. (OOIS ’98;
Paris, France; 9–11 September).

[13] Stefan M. Lang and Peter C. Lockemann. Behaviorally
adaptive objects. Theory and Practice of Object Sys-
tems, 4(3):169–182, 1998.

[14] Jeff McAffer. Meta-level programming with CodA.
In W. Olthoff, editor, ECOOP ’95—Object-Oriented
Programming, volume 952 of Lecture Notes in Com-
puter Science, pages 190–214. Springer-Verlag, 1995.
(9th European Conference on Object-Oriented Pro-
gramming; Åarhus, Denmark; 7–11 August).

[15] Hideyuki Nakashima. Context reflection. In Aki-
nori Yonezawa and Brian C. Smith, editors, Proceed-
ings of the International Workshop on New Models for
Software Architecture ’92: “Reflection and Meta-level
Architecture”, pages 172–177, 1992. (IMSA Work-
shop ’92; Tokyo, Japan; 4–7 November).

[16] Harold Ossher, Matthew Kaplan, Alexander Katz,
William Harrison, and Vincent Kruskal. Specifying
subject-oriented composition. Theory and Practice of
Object Systems, 2(3):179–202, 1996.

[17] Linda M. Seiter, Jens Palsberg, and Karl J. Lieberherr.
Evolution of object behavior using context relations.
IEEE Transactions on Software Engineering, 24(1):79–
92, January 1998.

[18] Robert J. Walker, Gail C. Murphy, Bjorn Freeman-
Benson, Darin Wright, Darin Swanson, and Jeremy
Isaak. Visualizing dynamic software system informa-
tion through high-level models. In Proceedings of
the Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pages 271–283,
1998. (OOPSLA ’98; Vancouver, Canada; 18–22 Octo-
ber). Published as ACM SIGPLAN Notices 33(10), Oc-
tober 1998.

[19] Larry Wall, Tom Christiansen, and Randal L. Schwartz.
Programming Perl. O’Reilly & Associates, Inc., Cam-
bridge, UK, second edition, 1996.

11


