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Abstract

Information about a software system’s execution
can help a developerwith many tasks,including
softwaretesting,performancetuning,andprogram
understanding.In almostall cases,thisdynamicin-
formationis reportedin termsof source-level con-
structs,suchasproceduresandmethods.For some
software engineeringtasks,source-level informa-
tion is not optimalbecausethereis a wide gapbe-
tweenthe informationpresented(i.e., procedures)
and the conceptsof interest to the software de-
veloper(i.e., subsystems).Oneway to closethis
gap is to allow developersto investigatethe exe-
cutioninformationin termsof a higher-level, typi-
cally architectural,view. In this paper, we present
a straightforwardencodingtechniquefor dynamic
traceinformation that makes it tractableandeffi-
cientto manipulatea tracefrom a varietyof differ-
entarchitecture-level viewpoints.We alsodescribe
how this encodingtechniquehasbeenusedto sup-
port the developmentof two tools: a visualization
tool anda pathquery tool. We presentthis tech-
niqueto enablethedevelopmentof additionaltools
that manipulatedynamicinformationat a higher-
level thansource.
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1 Introduction
Dynamic information—informationabout a soft-
ware system’s execution—canhelp a developer
with many differenttasks,includingsoftwaretest-
ing [7], performancetuning [4], andprogramun-
derstanding[1]. Sincedynamicinformationis col-
lectedeitherby instrumentingthe sourcecodeor
by modifyingtheexecutionenvironment,theinfor-
mationis fine-grained,reportingon suchitemsas
instructionsand basicblocks. To help the devel-
operinterpretthis information,toolstypically take
this fine-grainedinformationandreportit in terms
of constructsthat thedeveloperis manipulatingin
thesourcecode,suchasprocedures.

For some software engineeringtasks, source-
level informationis not optimalbecausethereis a
wide gap betweenthe presentedinformation and
the conceptsof interestto the softwaredeveloper.
For example,whenperformingsomekindsof soft-
ware integration testingor when reasoningabout
the impact of someprogramchanges,it may be
more natural for a developer to think in terms
of subsystemsrather than procedures. Manually
maintainingthe associationof source-level infor-
mation to moreabstractconceptssuchassubsys-
temsis, at best,time-consuminganderror-prone.
For large systems,manualmaintenanceof the as-
sociationmaybeintractable.

Although tools to help developersmanipulate
staticinformationatahigherlevel thansourcehave
beenavailable for a numberof years(e.g., [8]),
therehasbeenlesswork focusedon helping de-
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velopersinterpretand manipulatedynamic infor-
mation from an abstract, typically architectural,
view. Thosetoolsthatdo exist take oneof two ap-
proaches.The first is to annotatethe sourcecode
to report the dynamicinformation in termsof the
system’s architecture(or otherabstractconcepts);
this approachwastaken by Sefikaandcolleagues
in a tool built to reportperformanceinformationin
architecturalterms[13]. However, this approach
limits boththearchitecturalviews thatcanbeused
and the meansby which the information is col-
lected. The secondapproachis to allow informa-
tion to becollectedat a fine-grainedlevel andthen
to bemappedto thearchitecture-level; we have fo-
cusedon thelatterapproach[10, 15].

Specifically, in this secondapproach,a devel-
oper provides a mapping specificationthat de-
scribeshow thecollectedinformationrelatesto the
abstractlevel. In the two toolswe describein this
paper, themappingspecificationconsistsof anor-
deredlist of pairsof regularexpressionsandnames
of architecturalcomponents:an entity reportedin
thedynamicinformationis consideredto bepartof
thefirst architecturalcomponentwhoseregularex-
pressionit matches.This approachallows a devel-
operto alter themappingto view thesystemfrom
differentarchitecturalperspectives.

If thedynamicinformationof interestis a sum-
mary of the execution, it is generallyreasonable
andefficient to mapthe informationafter it is col-
lected. For example, if the dynamic information
is a summaryof the numberof timeseachproce-
durehasbeenentered,eachprocedurewould only
needto be mappedonce. However, whenthe dy-
namic information is in the form of a trace,1 it is
costly to mapeachelement. In our approach,for
instance,we would end up matchingeachtrace
elementagainsta potentially large set of regular
expressions,resultingin a large numberof costly
comparisons. Furthermore,if a developerwants
to manipulatethedynamicinformationfrom more
thanonearchitecturalview, it maybenecessaryto
duplicatelargetraces,which maybeimpractical.

In this paper, we describea straightforwarden-
codingtechniquefor tracesthat makesit tractable
and efficient to interpretand manipulatea trace,
from a variety of architecture-level views. We
presentthis techniqueto foster discussionand to
enablethe investigationof the usefulnessof ma-

1A traceis anorderedsequenceof eventsthatoccurreddur-
ing theexecutionof asystem.

nipulatingdynamicinformationat a higherlevel.
To begin the discussion,we describethe tools

we havebuilt uponourencodingschemeto aid the
analysisof systemsat the architecture-level (Sec-
tion 2). We then presentthe processwe use to
collect traces,our encodingscheme,our approach
to mappingencodedtraces,andan analysisof the
benefitsof the encodingscheme(Section3). We
concludewith a short descriptionof why we be-
lieve architecture-level tracesopennew opportuni-
tiesto developtoolsto aid developersin analyzing
systems(Section4).

2 Using Architectural Traces
To investigatewhetherarchitecturaltracesmight
help developersanalyzesystems,two tools have
beenbuilt.

The first tool visualizesdynamic information
collected from an object-orientedsystem. Two
small casestudieshave beenconductedon theuse
of this tool. Thesestudiesprovidedsomepositive
indicationsthat this tool mayhelpdeveloperstune
theperformanceof their system.A brief overview
of this tool is provided in Section2.1; further de-
tails areavailableelsewhere[15].

Thesecondtool supportstheextractionof paths
betweenarchitecturalcomponentsfrom tracedata.
We have not yet performedany studieson theuse
of this tool beyondapplyingit to someof thesys-
temswe have developed.We describebriefly how
this tool might helpsupportintegrationtestingac-
tivities.

2.1 Visualization Tool

Our visualizationtool allows a developerto ana-
lyze the executionof a systemoff-line. The visu-
alizationconsistsof a temporally-orderedseriesof
pictures,eachdetailinginformationabouta corre-
spondingpoint in the executionof the systembe-
ing analyzed.Ratherthandisplayingraw, low-level
events,eventsaremappedto architectural-levelen-
tities aschosenby the developer. Using the visu-
alizationtool, a developercannavigateacrossthe
trace,eitheroneeventat a time or asananimation,
seeinghow objectsmappedto thearchitecturalen-
tities call eachother, aswell aswhereobjectsare
allocatedanddeallocated.2

2Theotherboxesin thescreenshotsarehistogramsthatpro-
vide a view on the memoryusageby an architecturalcompo-
nent.
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category Clustering
class "ArchClusteringAnalysis"

category ModulesAndSuch
class "Arch(Procedure|Symbol)"

category SimFunc
class "ArchSimFunc"

category Rest
class "Schwanke*"

Figure 2: Map Specification for Figure 1

In contrastto many performanceanalyzers,such
asprofilers,thevisualizationof a tracecanput in-
formation in perspective, showing how andwhen
componentsof asysteminteract.Abstractingthese
interactionsto thearchitecture-levelcanprovidein-
sightinto differentkindsof performanceproblems,
such as when a subsystemmight be using more
memorythanexpectedandwhy thatis happening.

Figure 1 shows a screensnapshotof the tool.
Thissnapshotshowsapointabouthalfwaythrough
the executionof a samplerun of the implementa-
tion of a hierarchicalagglomerative reverseengi-
neeringalgorithm[12]. This algorithmattemptsto
automaticallyclusterentities, suchas procedures
in a C program,comprisinga softwaresysteminto
subsystems(modules)basedon a similarity func-
tion. In thevisualization,theclassesimplementing
this algorithmaremappedto four architecturalen-
tities (thedarkboxes):Clustering, representingthe
classperformingtheclusteringanalysis;SimFunc,
representingtheclasscontainingmethodsfor com-
puting the similarity function; ModulesAndSuch,
representingthefunctionsandmoduleswhosesim-
ilarity wasto becompared;andRest, representing
all otherclassesinvolvedin thealgorithm.Figure2
shows the specificationcreatedto map low-level
eventsto thesearchitecturalentities;eachevent is
comparedagainsttheregularexpressionin thelex-
ical orderspecifieduntil it matchesone,at which
point it is mappedto the correspondingarchitec-
tural entity. This particularvisualizationwasused
in a casestudythat discoveredthe sourceof exe-
cution problemsin the implementationof the re-
verseengineeringalgorithm; further detailsabout
thecasestudyareavailableelsewhere[15].

A key propertyof thevisualizationtool is its de-
pendenceon fast,iteratedmapping,or abstraction,
to the architecturallevel. The developermay not
have a good ideaof what architecturalentitiesto

mapto initially. Furthermore,evenwhenthedevel-
operhasa goodideaof what architecturalentities
to usefor a giventask,that taskcanchangeasini-
tial questionsareanswered,or new questionsarise.
If the processof specifyingthe mapandperform-
ing theabstractionis time-consuming,theusability
of thetool suffersmarkedly. An efficient meansof
performingthemappingwasneeded,leadingto the
developmentof the encodingtechniquedescribed
in Section3.

2.2 Path Query Tool

Considera softwaredeveloperfacedwith the task
of developingintegrationtestcasesfor a largesys-
tem. Hopefully, the developer will have access
to variousdocumentsdescribingthesystemdesign
andimplementationthat canbe usedto determine
whichcasesneedto betested.Thedeveloperwould
then proceedto determineinputs and configura-
tions to executethe desiredcases.However, how
canthedeveloperdetermineif aparticulartestcase,
onceexecuted,doesindeedexercisethepathsof in-
terest?

To the bestof our knowledge, little supportis
available to help software developersanswerthis
question. Existing coveragetools report informa-
tion aboutsuchitems asbasicblocks, line, func-
tions, files, directories,and sometimes,libraries
andapplications.3 A developermight usethis cov-
erageinformationto gaugewhich entrypointsto a
subsystemwerebeingexercised,but from this in-
formation it would be difficult to determinepath
information.

Path profile tools can provide more useful in-
formation. Although early pathprofile tools were
limited to reporting intra-proceduralpaths[2], a
morerecenttool reportsinter-proceduralpathpro-
files [6]. Theseinter-proceduralpathprofilesrep-
resenta summaryof the executionthat couldhelp
determinepathcoverage.Summaryinformationas
foundin theseprofiles,however, maynotalwaysbe
sufficient. Rather, it mightbehelpful to understand
the relative orderingof pathsin an executionand
to have, aspartof thepath,additionaleventssuch
as object allocations. For instance,in an object-
orientedprogram,it maybe importantto have one
pathexecuteprior to anotherpathto appropriately
setthestateof aseriesof objects.

3For example,Rational’s PureCoverageproductcanreport
coverageat line, function,file, andother, levels.
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Data Visualization

Figure 1: Architecture-level Visualization

To investigatewhetherdetailedpathinformation
might helpa softwaredeveloperreasonabouta set
of integrationtestcases,we have developeda path
querytool thatoperateson tracedataandthatsup-
portsqueriesatthearchitecture-level. Givenatrace
anda mappingspecification(similar to thatshown
in Figure 2) describinghow source-level compo-
nentsrelate to architecturalcomponents,the tool
will extract all pathsstartingin onenamedarchi-
tecturalcomponentandendingwith an entry to a
secondnamedarchitecturalcomponent.Thepaths
extractedcontainboth call informationandobject
allocationanddeallocationinformation.Sub-paths
arealsoreported.

To try out this tool, we applied it to analyze
sometestcasesfor theJex staticanalysistool [11].
Jex analyzesthe flow of exceptionsin JavaTM pro-
gramsand consistsof over 100 classes. Six ar-
chitecturalentitiescompriseJex: a Controller, a
Parser, a Typesystem,anAST, a Loaderfor read-
ing intermediatefiles, anda utility subsystem.In
our trial useof the path query tool, we were in-

terestedin the pathsexercisedbetweenthe AST
andtheLoadercomponentby threetestcases.We
usedthe path query tool to extract the pathsbe-
tween thesetwo architecturalentities: 534 paths
werefound. We analyzedthesepathsto determine
if they were indeedthe pathsintendedto be ex-
ercised. Our analysisshowed that oneof the test
casesexercisesa greatervariety of pathsthan the
othertwo testcases.Specifically, onecaseensures
that the Loadercomponentis called in threedif-
ferentsituations:while processingmethodinvoca-
tion expressions,while processingthrow expres-
sions,andwhile processingotherJavaexpressions.
The othertestcasesfocusonly on the latter situa-
tion. This informationmaybeusefulto helpassess
andselecttestcases.Furthermore,onemight care
aboutinvoking the Loaderfrom a methodinvoca-
tion prior to a throw expression;the pathquery
tool canhelpyoudetermineif atestcasemeetsthis
criterion.

Theability of ourtool to understandthemapping
betweenthe sourceand architecturalcomponents
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makes it easyfor a software developerto extract
thepathsof interest.Insteadof having to translate
the questionsof interestfor the software integra-
tion testingtask,a developercanexpresstheques-
tionsdirectly in termsof thecomponentsbeingin-
tegrated.Oncerelevant pathshave beenextracted
using this approach,a variety of further analyses
can be performed. For instance,the pathscould
beviewedusinga browsersimilar to theHot Path
Browserby Ball andcolleagues[3], or couldbean-
alyzedusingconceptanalysisasalsodescribedby
Ball [1].4

As with our visualization tool, the developer
may needto iterate the mappingspecificationto
refine it to answerthe test casequestionof inter-
est. For instance,as the developer learnsabout
thedifferentpossiblecoursesof execution,thede-
velopermaywish to refinesubsystemboundaries.
As before,then,fast,iteratedabstractionis a must
here,hencetheneedfor theencodingtechniquede-
scribedin Section3.

3 Mapping Traces
Both of the tools describedrely on traceinforma-
tion collectedfrom a program’s execution. Pro-
gram trace information has beenusedfor many
yearsand a numberof techniqueshave beende-
velopedfor collectingandstoringit [5]. Theseef-
forts focuson theefficient collectionandrepresen-
tation of detailedinformation aboutthe program,
suchas the instructionsexecutedand the datalo-
cationsreferenced.Thesedetailedtraceshelpsup-
port thedesignof memorysystemsandhelpguide
the behaviour of parallelizingcompilers,amongst
otheruses.

In comparison,the traceswe usesupportsoft-
wareengineeringactivities. We cansupportthese
activities usinglessdetailedtraces. In the object-
orientedsystemswehavebeenstudying,our traces
consistof informationaboutmessagesends,object
allocations,andobjectdeallocations.Althoughthis
information is alreadyat a higher level than pro-
graminstructions,we believe softwaredevelopers
dealingwith largesystemscanbenefitfrom further
abstractionof theinformation.

Trace information is collectedin one of three
ways: by instrumentingsourcefiles, by instru-
mentingobject files, or by altering the execution

4Ourtraceinformationdoesincludetimestampssothedura-
tionsof pathscanbedetermined.

environment.5 The framework we have developed
encodesobjects,representingeventsof interestthat
occurduringexecution,in theformatdescribedbe-
low.

In this section,wedescribeour tracerepresenta-
tion. First, we describethe eventswe arerecord-
ing and how we encodetheseeventsin the trace
representation.Next, we describehow the encod-
ing facilitatestheabstractionandsummarizationof
theevents.Finally, we describewhy this encoding
schemeis of benefit.

3.1 Events

Thetraceswearecollectingdescribetheexecution
of an object-orientedsystem.Tracescomposethe
following typesof events:

� classmethodentryandexit events,

� instancemethodentryandexit events,

� objectallocationanddeallocationevents,and

� threadstartandstopevents.

Each event carries particular information rel-
evant to the systemevent it represents. Class
methodentry and exit eventsrecordthe nameof
theclassandthenameof themethodthatwasen-
teredor exited (classandmethodidentifiers). In-
stancemethodentry andexit eventsrecordan ad-
ditional identifierrepresentingtheobjecton which
themethodwascalled.Objectallocationanddeal-
locationeventsrecorda classidentifierandanob-
ject identifier. All of theseevent typesalsorecord
thenameof the threadexecutingtheevent (thread
identifier). Finally, thethreadstartandstopevents
recorda threadidentifier.

3.2 Encoding Events

As with any encodingscheme,thekey liesin deter-
mining thepatternsthatcanbeusedto encodethe
informationof interest. Sinceour goal wasto ab-
stracteachevent, we neededto determinehow to
supportthe abstractionoperationefficiently. The

5Our current set of tools works on Java pro-
grams. We are using AspectJTM from Xerox PARC
(http://www.aspectj.org/) to instrument Java
source, and the Jikes Bytecode Toolkit from IBM Re-
search (http://www.alphaworks.ibm.com/)
to instrument bytecode. We have also created a
translator to convert IBM Research’s Jinsight traces
(http://www.alphaworks.ibm.com/), which are
producedby theJinsightVM, to our traceformat.
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abstractionoperationconsistsof testinganeventto
seewhetherit meetssomesetof propertiesassoci-
atedwith the descriptionof an abstractitem. For
instance,in thetoolsdescribedabove, theassocia-
tion betweenaneventandanabstractitemconsists
of a setof regularexpressions;an event is associ-
atedwith theabstractitem if it matchesoneof the
regularexpressions.

Our encodingschememeetsthis goal by cat-
egorizing events and encodingthe categories in
the trace. With this encodingscheme,we record
tracesin two streams:anencodingstream,andan
event stream. The encodingstreamconsistsof a
sequenceof records,eachcontaininginformation
aboutagivencategory; thesecategoriesaretermed
primitive becausethey cannotbe subdivided. The
eventstreamconsistsof asequenceof records,each
of which containsan index to a primitive category
within the encodingstream,plus someadditional
information that dependson the type of event in-
volved.

A primitivecategoryconsistsof auniquecombi-
nationof classidentifier, methodidentifier, thread
identifier, andevent type. Primitive categoriesdo
not include object identifier information because,
in general,thenumberof eventsassociatedwith a
givenobjectwill besmall,andtherefore,thenum-
ber of primitive categorieswith which we would
have to dealwould increasedramatically. Events
that containobject identifiersrecordthem within
theeventstream.

Figure 3 demonstratesthis encodingscheme.
The event streamstartswith a ClassMethod-
EntryEvent. The detailsaboutthis event,such
as the class and method that were enteredand
the threadin which the methodwasexecuted,are
recordedontheencodingstream.Therecordonthe
eventstreamincludestheordinalnumberof thefull
informationon the event encodingstream. When
thesecondClassMethodEntryEvent occurs,
it is a call to the sameclassand methodin the
samethreadas the first event; therefore,we en-
codeit in the event streamasbeingthe samecat-
egory, andnothingnew is written to the encoding
stream. The InstanceMethodEntryEvent
thatoccurslaterin theeventstreamis encodedsim-
ilarly to the first event. Unlike theClassMeth-
odEntryEvent, the recordon the event stream
for theentryof an instancemethodincludesinfor-
mationaboutthe objecton which the methodwas
invoked.
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Figure 3: Encoding Scheme

3.3 Abstracting Events

Interpretinga traceat anabstractlevel requiresap-
plying anabstractionoperationto eacheventin the
trace.Encodingtheeventstreamfacilitatesthis in-
terpretation.

Insteadof having to apply the abstractionoper-
ation againsteachevent, the abstractionoperation
needonly beappliedagainsteachrecordin theen-
coding stream,i.e., eachprimitive category. The
architecture-level entitiesto which they are to be
mappedaretermedabstractcategories.

For eachtool, the developerusingit specifiesa
mappingfrom a set of primitive categoriesto an
abstractcategory througha partial, orderedspeci-
ficationof matchingcriteria. For example,in Fig-
ure2, thedeveloperspecifiedthatany eventsrefer-
ring to the classArchClusteringAnalysis
shouldbe mappedto the Clusteringabstractcate-
gory. Thismeansthateachencodingstreamrecord
has its classidentifier (if any) comparedagainst
this matchingcriterion. If it matches,the event is
placedin the Clusteringabstractcategory; if not,
the event is thencomparedagainstthe next map-
pingcriterion. If theeventmatchesnoneof thecri-
teria,it is notmapped,andis notusedfurther.

The abstractionoperationproducesan array of
values: the primitive category numberserves as
an index into the array, which storesthe abstract
category to which eachprimitive category is to be
mapped.In theexamplein Figure2, wemighthave
hadhundredsof primitivecategories,but only four
abstractcategories,so our arraywould have been
(identically)hundredsof elementsin size,but each
elementwould referencean abstractcategory asa
numberfrom 1 to 4, or 0 if it wasnotmappedatall.
The largereventstreamcanthenbetraversed,and
eachindividual event,which refersto its primitive
category, canbemappedto theappropriateabstract
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categoryvia an ·¹¸�º�» lookupin this array.

3.4 Summarizing Events

Softwaredeveloperscanalsobenefitfrom thesum-
marizationof events: summarizationabstractsthe
eventsover time. For example,asdescribedearlier
in thispaper, pathprofiletoolssummarizethepaths
takenduringanexecution[2, 6].

Summarizationandabstractionof eventsareor-
thogonaltechniques.Although eachis useful on
its own, theircombinationcanprovidefurthersoft-
wareanalysissupport. For example,to help soft-
ware developersunderstanda trace, our visual-
ization tool summarizes,throughoutthe trace,the
numberof objectsallocatedand deallocatedthat
belongto eachabstractcategory.

Ourencodingschemefacilitatesthecombination
of thesetechniquesbyallowing themostcostlypart
of summarizationto occuronce,prior to abstrac-
tion. Summarizationis performedwith respectto
individualprimitivecategoriesandrecorded.Later,
theserecordedsummariescanbeabstractedby ap-
plying the abstractionoperationto the primitive
categoriesin the summary, andthen,for eachab-
stractcategory, aggregatingthesummarizationsof
theprimitivecategoriesthatmapto it.6 Sincemany
eventsmay mapto a primitive category, this two-
step processallows the abstractionto be altered
muchmorecheaplythanre-summarizingin a sin-
glestepwould.

For example, if we found that 32 instancesof
String and 14 instancesof StringBuffer
hadbeenallocatedduringa traceandthearchitec-
tural view called for all String andString-
Buffer events to be groupedtogetherinto the
StringOp abstractcategory, we would simply
addthetwo countsto find that46 objectswereal-
locatedin thetracethatmappedto StringOp.

Without the notion of indivisible, primitive cat-
egories, as found in our encodingscheme,each
event could be mappedarbitrarily to an abstract
category. This would prevent any partial summa-
rizationfrom beingperformedprior to abstraction.
Sincesummarizationovera tracerequiresprocess-
ing of the entiretrace,if the architecturalview of
the systemis to be changedfrequently, as it is in
our model, summarizationcan be a prohibitively
expensiveoperation.

6Thisaggregative schemeassumesthatthetotal summariza-
tion in questionis describablesolely asa function of abstract
category.

3.5 Savings

The encodingstrategy is only an advantageif two
conditionsaremet: (1) primitivecategory informa-
tion tendsto be repeatedin the trace,and(2) the
abstractionoperationis costlyto perform.

The first condition is important since we will
only gain an advantageif the encodingstreamis
smallerthanthe eventstream.This conditionwill
typically hold: the number of events produced
whenrunninga systemis largecomparedwith the
numberof classesandmethodsin a system,upon
which the encodingschemeis based. The total
numberof encodingspossiblefor a given system
is a small multiplier of the productof the number
of classesandthenumberof methodsandthenum-
ber of threads. As one example,for the Jex tool
describedin Section2, Jex produceda tracecom-
posing5 ¼ 105 eventsasit analyzedonesimpleJava
class.Encodingthis traceresultsin only 725prim-
itive categories.

Thesecondconditionmattersbecauseall events
in the tracestill requireprocessing.Whenthe ab-
stractionoperationis cheapto perform, it may as
well be appliedasthe eventsaretraversed.How-
ever, whentheabstractionoperationis expensive,it
is anadvantageto applyit only to themuchsmaller
numberof encodings. At first glance,our regu-
lar expression-basedcomparisonmayappearcheap
sincean individual regularexpressioncomparison
is not necessarilycostly. Although we do not
yet have much experiencewith applying the reg-
ular expression-basedoperationagainsttracedata,
whenapplying it to staticdatacollectedfrom the
sourcecodeof Microsoft Excel to supportan ex-
perimentalreengineeringtask,thenumberof com-
parisonsgrew to be large, over 1000 in total [9].
Obviously in sucha case,comparingagainstthe
primitive categoriesratherthan the eventsresults
in a moreefficient tool. This savingsalsoprovides
an opportunityto try out moreexpensive abstrac-
tion operations,suchasoperationsinvolving some
inference.

To clarify the savings of the encodingscheme,
considerthat the cost of abstractinga traceis on
the orderof ½¿¾ªÀ
Á[ÀÃÂÅÄÆÀ where ¾ªÀ is the number
of eventsbelongingto primitive category Ç , ÁÈÀ is
the cost of identifying that a given event belongs
to primitive category Ç , and ÄÆÀ is the cost of ap-
plying the abstractionoperationto primitive cate-
gory Ç . Without theencodingscheme,we canstill
considerthesetof eventsthatwouldhavebelonged
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to primitivecategory Ç , for thesakeof ouranalysis.
In theabsenceof theencoding,theabstractionop-
erationhasto be performedon eachevent instead
of oncefor theentireprimitive category for a total
costof ½ ÄÆÀ�¾ªÀ .7 Thesavings in usingtheencoding
schemeis on theorderof ½ ¸�Ä�ÀÊÉËÁÈÀ�»q¾ªÀ�ÉÌÄÆÀ . The
encodingschemewill thusbe an advantagewhen
theconditionsabovearemet.

4 Summary

Can the abstractionand summarizationof trace
information enable new software analysis ap-
proaches? Can it enhanceexisting approaches?
Canit help softwaredevelopersperformsoftware
engineeringtasksmoreeffectively?

There are no definitive answers to these
questions—yet. To answerthesequestions,it is
necessaryto have the basetechnologyto abstract
andsummarizetracesefficiently. This technology
allows tools to bebuilt thatcanbeappliedto real-
istic systemsandrealisticscenarios.

This paperhas presentedan encodingscheme
thatprovidesthis basetechnology. Tracesmaybe
abstractedto different architecturalviews. Trace
informationmayalsobeintermittentlysummarized
andthenabstracted.

Although, to date,we have only limited expe-
riencewith applying this technology, we believe
it holds promisefor increasingthe usefulnessof
dynamicinformationin softwareengineeringtools
andtechniques.As an example,in additionto the
visualizationand path query tools we have built,
the approachmay enablethe determinationof ar-
chitecturaldependencesbetweenpiecesof existing
systems[14]. This informationcouldenablea new
way to verify thata systemadheresto its architec-
tural goals.
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