The Structure of Featuresin Java Code;
An Exploratory Investigation

Albert Lai and Gail C. Murphy
Dept. of Computer Science
University of British Columbia
201-2366 Main Mall
Vancouver, BC V6T 174 Canada
{alai,murphy}@cs.ubc.ca

September 15, 1999

A Position Paper Submitted to the OOPSLA ' 99 Work-
shop on Multi-dimensional Separation of Concerns

1 INTRODUCTION

Techniques to help software developers explicitly sep-
arate different concerns in their programs have been
gaining increasing attention in the last few years.
Three examples of such techniques are composition fil -
ters [ABV92], aspect-oriented programming [KLM*97],
and hyperspaces [TOHSJI99]. A centra idea behind these
techniques is that software systems would be easier to
change if various design and programming decisions
were modul arized separately and simultaneously.

But what isa concern? And how do different concerns
interact within a code base?

To gain someinsightinto these questions, we have con-
ducted an exploratory investigation of concernsin two ex-
isting Java [GJS96] packages: gnu.regexp,® and jFTPd.?
Each of the packages was marked for concernsby each au-
thor of thisposition paper. Wethen compared theconcerns
identified and analyzed how the concerns interacted with
each other and across the existing structure of the Java
package.

The results of thisinvestigation provide:

IWritten by Wes Biggs (Version 1.0.8)
2Written by Brian Nenninger (Version 1.3)

o examples of concerns (in our terminology, features)
that a software developer might want to explicitly
separate,

o examples of the interactions that occur between fea-
tures, and

e someinsightsinto support that might help to identify
and consolidate features.

2 FINDING FEATURES

21 FEATURE SELECTION TOOL

To make it easier to conduct this study, we developed
atool—Feat ure Sel ect or —to help mark and ana
lyze features in Java code. The Feat ure Sel ect or
tool parses a defined set of Java files and alows a user
to highlight and tag segments of code as belongingto one
or more user-defined features. The tool does not provide
any automation mechanisms for marking code; al codeis
marked manually by the user.

Figure 2.1 illustratesthe use of thetool. A user has de-
fined several features (i.e., an error handling feature, ade-
bugging feature, etc.), and has assigned each feature adif-
ferent highlighting color. The files available for brows-
ing and the features defined to date are visiblein the left
frame of thetool’sinterface. The user has determined that

The Structure of Featuresin Java Code: An Exploratory Investigation

UFTFD fp
[CiFeatureijfipd_srciCo
[CiFeatureijfipd_srciCo
[CoFeatureiftpd_sreif TR &
() CiFeaturelfipd_srciFTH ©
[CiFeatureljpd_srciF TE
[CoFeaturelfipd_sroF TH
[CiFeaturetfipd_srciFTH
[CiFeatureijfipd_sroiGe
[CiFeatureljpd_srcildly
[CiFeatureljpd_srciPa;
[CaFeaturelftpd_srowil
ErrorHandling :
Debugging §§ 1
GLI 5
Pratocal
Metwarking
FileSystemiO
Timeout
Logaing

public

1
elze

1
else
I

H
else

Ftring up]

if (upling

handled

handled =

void doConmand(3tring line)

getBusy(true) ;

. Add ErrorHandling
. Add Debugging
] ada Gui

] Add Protocol

] Add Networking
[] Add FileSystemi0
[Add Timeout

|:| Add Logging
if (upline.startsWith("PL33 "))

“Cat Co

doP mmatd (line) ;

if (upline.equals("LIZT™) || up

. handled = dolistConmand(line);

if (upline.startsWith("LIST ™)

Figure 1. Festure Selection Tool

a segment of code visible in the main frame is related to
debugging and has brought up a menu of thefeatures cur-
rently defined. The user may select the debugging feature
and the code will be highlightedto indicatethetagging. A
segment of code may be highlighted as being part of more
than onefeature. The user also has access to aquery facil-
ity that will summarize al code belonging to a particular
festure or to a combination of features.

Since the Feat ur e Sel ect or tool parses the Java
code into an abstract syntax tree representation, we are
able to analyze the relationship of a set of features to the
existing code structure.

2.2 FEATURE SELECTION PROCESS

Before marking any code, we reviewed both packages to
gain an understanding of how the code works. This task
was necessary to support feature selection.

Feature selection was based on various criteria. Some
features were selected based on standards conformation.
Examples of features selected using this criterioninclude
the FTP protocol in jFTPd, and various regular expres-

Submitted to the OOPSLA ‘99 Multi-d SOC Workshop 2

sion syntaxes supported by gnu.regexp (e.g. Perl [Wal90],
grep, and awk [AKW79)).

Other features encapsulated a configuration of the soft-
ware package. As an example, the gnu.regexp package
supports various forms of input, including among others,
character arrays and strings. Each of these different forms
of inputwas designated asafestureasitisconceivablethat
only asubset of the supported i nput datatypes may benec-
essary for any given program.

Another criterion used was portions of the code that a
developer might want to change or remove. For instance,
onefeature sel ected ingnu.regexp captured coderel ated to
thematching of aregular expression over multiplelinesin
agiveninput.

Table 2.2 summarizes the wide range of features se-
lected in each package by each marker.

Once a decision was made to identify afeature, we both
found it difficult to mark the code related to that feature.
There were two reasons why marking was a hard task.
First, it was difficult to ensure feature self-consistency:
that is, when marking, it was hard to ensure that an in-
stance of marked codefollowed thesame “theme” as other

September 15, 1999

The Structure of Featuresin Java Code: An Exploratory Investigation

marked code bel onging to the same feature. For example,
in some cases, it was possibleto identify acentral variable
involved in providing a feature: following all uses of that
variable was difficult without specific tool support. Sec-
ond, it was difficult to ensure feature completeness. that
is, it was difficult to ensure that all appropriate code was
captured by a given feature. Multiple passes through the
code were used to try to address these two issues.

3 FEATURESAND STRUCTURE

After marking the packages, we tried applying some sim-
plemetricsto determinewhether we could characterize the
features, and whether the metric values would point usto-
wards interesting features to analyze further. We applied
three metrics to each of the features. spread, tangle and
density.®

__ ## of files containing feature f

spread(f) = total # of files

__ # of tokens marked with feature f and another

tangle(f) = # of tokens marked with feature f
d ty(f) # of tokens marked with feature f
enst =
Y # of tokens in files marked with feature f
3.1 Spread

Features with low spread intersect fewer files. we as-
sumed that these features were aready likely well mod-
ularized. As aresult, we focused on features with high
spread values.

Onefeaturein both packageswith ahigh spread was de-
bugging. Debugging features consistently had a spread of
over 50%. Since, in most cases, we believethat thedebug-
ging features can aready befairly well modularized using
mechani sms such as AspectJ, wedid not analyzethesefea-
turesfurther.

3The tangle and density metric relies on tokens. A token is defined
by the Java grammar provided by JavaCC (http://www.metamata.com).
For example, each keyword, variable, and comment is a token.

Submitted to the OOPSLA ‘99 Multi-d SOC Workshop 3

A festure with a high spread value (29%) that we did
analyze was the input types feature for gnu.regexp. Fur-
ther investigation quickly revealed that the high spread
was dueto therepresentation of each input typeby aclass.
These classes made up a significant fraction of the total
classes in the package.

Theinput error handling feature in gnu.regexp also has
a high spread value (43%). This feature centered around
the definition and use of a static variable which repre-
sented an error code. Typicaly, this error code is com-
pared to the return value of a method. Thus, uses of this
error code tend to occur right after calls to a particular
method.

The timeout feature identified in jFTPd aso had high
spread (36%). Analysis reveded that this festure was
poorly modularized. Knowledge of the timeout was
spread through severa classes when it could have been
better encapsulated with the help of the Observer pat-
tern [GHJIV 94].

3.2 Tangle

Since we were interested in feature interactions, we fo-
cused our attention on features with high tangle values.
The features with the highest values were those that were
encapsulated by other features. For example, one feature
identified in jFTPd was GUI. This GUI feature was asub-
set of theUser Interface feature. The non-GUI codeinthe
User Interface feature managed the console. Other fea
tures shared similar relationships and thus both markers
noticed a need for the concept of a sub-feature: afeature
that is asubset of another feature.

3.3 Densty

High values (over 90%) for density indicated that the cor-
responding feature was well modularized. Low values
were harder tointerpret. Low vaues could be caused by at
least two different, contradicting situations. The first sit-
uation iswhere severa files each have a small number of
tokens marked with afeature. An example of thisisthe
logging feature in jFTPd with adensity value of 4%. The
second situation is where a small number of tokensin a
singlelarge file are marked. The versioninformation fea-
ture from gnu.regexp provides a good example. It had a
density of 0.4%.

September 15, 1999

The Structure of Featuresin Java Code: An Exploratory Investigation

No. Package

1 gnu.regexp
2 gnu.regexp
3 gnu.regexp
4 gnu.regexp
5 gnu.regexp
6 gnu.regexp
7 gnu.regexp
8 gnu.regexp
9 gnu.regexp

10 gnu.regexp

11 gnu.regexp

12 gnu.regexp

13 gnu.regexp

14 gnu.regexp

15 jFTPRd

16 jFTPd

17 jFTPRd

18 jFTPd

19 jFTPRd

20 jFTRd

21 jFTRd

22 jFTRd

23 jFTRd

24 jFTRd

25 jFTRd

26 jFTRd

27 jFTRd

28 jFTRd

29 jFTRd

30 jFTRd

31 jFTRd

32 jFTRd

33 jFTRd

34 jFTRd

Submitted to the OOPSLA ‘99 Multi-d SOC Workshop 4

Marker Feature

#1
#1
#1
#1
#1
#1

#1

#2
#2
#2
#2
#2

#2
#2
#1
#1
#1
#1
#1
#1
#1
#1
#2
#2
#2
#2
#2
#2
#2
#2
#2
#2
#2
#2

Version Information
Input Data Types

Error Handling
Debugging

String Substitution

* various syntax flags *

REFilterlnputStream

Input Error Handling
Pattern Error Handling
Multiline Match Support
Newline Handling
Variable Substitution

Matching Rules

RE Pattern Syntax
Error Handling
Debugging

GUI

Protocol

Networking

File System 10
Timeout

Logging

User Interface

GUI

Debugging

Logging

Platform Specific
Windows Specific
Client Feedback
Client Interaction
Directory Commands
List Commands
Server File Manipulation
Connection Commands

Table 1: Features Selected in gnu.regexp and jFTPd

Description
Software version tags in code
Various forms of input, e.g., strings

Replacing strings within matches

Features were selected for each syntax sup-
ported

For a given input stream, replace al regexp
with a specified string

Handling of errorsininput to match against
Handling of errorsin regexp pattern

Code supporting matches across lines

Code dealing with newlines

Code supporting variable substitution during
matching

Code controlling matching process

Code related to multipleregexp syntaxes

FTP RFC commands and compl etion codes
Underlying network connection code

Code dealing with the server filesystem
Code related to command timeouts

Code related to logging server commands

Code related to logging server commands
Code dedling with specific platforms
Code dealing with the Wintel platform
Responses to client program

Commands from client

ftp commands related to directories

ftp commands related to listing files

ftp commands configuring server

ftp commands connecting to server

September 15, 1999

The Structure of Featuresin Java Code: An Exploratory Investigation

34 Summary

Overdl, the values we computed for these metrics did
not show any obvious trends. One reason why the met-
rics were not very helpful might be that they were com-
puted at too fine of a granularity (i.e., token-level rather
than method-level). In general, given current technology
to support separation, some means of determining high-
spread, low-tangle features might be helpful in assessing
whether a feature is worth separating.

4 DISCUSSION

Our analysisreveds that only 20 to 25% of the tokensin
any given package were selected as part of any feature.
This begs the question of what the remaining code repre-
sented. For the most part, the approximately 80% of the
codeleft unmarked was code that was considered essential
to the package. Specifically, if the code was not present,
the package could not provide the most basic functional -
ity youwould expect from aregular expression package or
an ftp daemon.

Though there were some similarities between the fea-
tures we selected, the mgjority of them differed. For
jFTPd, common featuresincluded debugging, logging and
GUI. For the other features, one of us chose mostly be-
havioural features: protocol, networking, fileSystemlO,
and timeout. The other chose a mixture of behavioura
(i.e., directory commands, list commands, server file ma-
ni pul ation, and connection commands), interactional (i.e.,
user interface, client feedback, and client interaction), and
code-based (i.e., platform specific and windows specific)
features. For gnu.regexp, error handling features and fea-
tures based on regular expression syntax were selected
by both markers. For the remainder of the features, one
marker selected more features based on configuration (in-
put data types, string substitution, and regular expression
filter input streams), while the other marker selected more
on behavioura grounds (i.e., newline handling, matching
rules, etc.).

The selection and analysis of thesefeaturesclarifies and

identifies a number of issues surrounding separable fea-
turesin a source code base.

Submitted to the OOPSLA ‘99 Multi-d SOC Workshop 5

Sub-method Join Points Not surprisingly, when ana
lyzing existing code for features, a need for sub-method
join pointsarises* Some of these sub-method join points
might beidentifiablebased on patternsin thecode. For ex-
ample, when discussing the spread metric earlier, we de-
scribed that the input error handling feature tended to oc-
cur right after callsto a particular method. The join points
needed to separate (or combine) the input error handling
feature could berelatively easily named by specifyingthis
pattern.

Other sub-method join points are more difficult to
name. One particular case that arose during our analysis
related to the festures encapsulating the various regular
expression syntaxes supported in the gnu.regexp package.
The syntax flagsused to affect how regular expressionsare
compiled are used in asingle “whil€”’ loop in the regular
expression classconstructor. Thisloop seemstohavebeen
written this way to deliberately trade modularity for per-
formance. Ideally, the syntaxes supported by aregul ar ex-
pression package should be configurable without alossin
performance. However, thejoin pointsfor syntax flagslie
inthe conditiona partsof “if” statements. Succinctly stat-
ing which “if” construct should serve asajoin point for a
particular syntax flag appears difficult.

Required Features As previoudy mentioned,
gnu.regexp supports various input data types. Sup-
port for each of these data types should be a user
configurable option. Thus each of the datatypes could be
considered a feature (or sub-feature). However, at least
one of these features must be present for the package
to function correctly. Any tool that is built to help a
developer separate and compose features needs to track
which features are required.

Feature Interaction I|dedly, features should be encap-
sulated into reusable modules. However, various feature
interactions may hinder proper separation. Two such in-
teractions are overlap and order.

Overlap refers to one or more statements in the code
being associated with more than one feature. (Our tan-
gle metric measured overlap.) In the case of sub-features
(discussed in Section 3.2), overlap is expected and should

4A join point refers to a point in the code where a feature interacts
with the base code or with another feature.

September 15, 1999

The Structure of Featuresin Java Code: An Exploratory Investigation

be manageable in a straightforward way. Other forms of
overlap indicate a more subtle form of feature interac-
tion. For example, in jFTPd, overlap occurred between a
portion of code associated with an error handling feature
and code associated with the dispatching of commands.
In this case, the error handling code that overlapped with
the command dispatching formed a required part of the
command dispatching feature. Recognizing and describ-
ing such interactions may become an important piece of
managing festure interactions.

Order refersto whether or not thereisacontrol - or data-
flow relationship between code in the same method re-
lated to two different features. In the code we marked,
two or more features are present in same method in ap-
proximately half of al code marked by any feature. Inthe
cases where two or more features are present, the number
of features present usually does not exceed three. How-
ever, both gnu.regexp and jFTPd have substantial blocks
of code where more than seven features are present. In
gnu.regexp, the regular expression class constructor in-
teracts with approximately fifteen features. In jFTPd, a
method for handling command lines interacts with eight
features.

In most cases that we analyzed, when two or more fea
tures are present in the same method, the features are not
partially ordered. This is good news for those building
separation of concerns mechanisms because it may sim-
plify the combination of separated features. |n those cases
where two features were partially ordered, very few were
ordered by data flow; the majority were ordered by con-
trol flow. For example, the error handling featuresin both
gnu.regexp and jFTPd tended to be partially ordered by
control flow. This is not such good news since it may
be more difficult to describe control -rel ati onshi psbetween
features than data-rel ationships.

5 SUMMARY

Much recent work has focused on mechanisms for explic-
itly separating concerns in code. However, we still lack
a generally-accepted, precise definition of the concept of
a concern. To investigate the range of meaning of con-
cerns in source code, we undertook a small study focused
on identifying concernsin existing Java packages. There-
sults of this study suggest that concerns can encapsulate

Submitted to the OOPSLA ‘99 Multi-d SOC Workshop 6

avariety of concepts such as standards, behaviours, user
interactions and configurations. An initia analysis into
the structure of the concerns identified suggests some is-
sues that may arise as separation of concerns mechanisms
evolve, namely a need for sub-concerns and a need for
specifying required concerns. Our analysis aso confirms
that the task of modularizing and recombining featuresis
non-trivia given the interactions that exist between fea-
tures.

References

[ABV92] M. Aksit, L. Bergmans, and S. Vurd. An
object-oriented language-database inte-
gration modd: The composition-filters
approach. In Proceedings of ECOOP '92,

pages 372-395, 1992.

[AKW79] A.V. Aho, B.W. Kernighan, and PJ. Wein-
berger. Awk — a pattern scanning and pro-
cessing language. Software—Practice and

Experience, 9(4):267—280, 1979.

[GHIV94] E. Gamma, R. Hdm, R. Johnson, and
J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software.

Addison Wedley, 1994.

[GIS96] J. Godling, B. Joy, and G. Stedle. The Java
Language Specification. Addison-Wesley,

1996.

[KLMt+97] G. Kiczdes, J. Lamping, A. Mendhekar,
C. Meeda, C. Lopes, J-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In
Proceedings of ECOOP’ 97, volume 1241 of
Lecture Notes in Computer Science, pages

220-242. Springer, June 1997.

[TOHSI99] P Tarr, H. Ossher, W. Harrison, and S.M.
Sutton Jr. n degrees of separation: Multi-
dimensional separation of concerns. In Pro-
ceedings of ICSE 21, pages 107-119. |[EEE

Computer Society, 1999.

[Wal90] L. Wall. Programming Perl. O'Reilly & As-

sociates, 1990.

September 15, 1999

