
The Structure of Features in Java Code:
An Exploratory Investigation

Albert Lai and Gail C. Murphy
Dept. of Computer Science

University of British Columbia
201-2366 Main Mall

Vancouver, BC V6T 1Z4 Canada
falai,murphyg@cs.ubc.ca

September 15, 1999

A Position Paper Submitted to the OOPSLA ’99 Work-
shop on Multi-dimensional Separation of Concerns

1 INTRODUCTION

Techniques to help software developers explicitly sep-
arate different concerns in their programs have been
gaining increasing attention in the last few years.
Three examples of such techniques are composition fil-
ters [ABV92], aspect-oriented programming [KLM+97],
and hyperspaces [TOHSJ99]. A central idea behind these
techniques is that software systems would be easier to
change if various design and programming decisions
were modularized separately and simultaneously.

But what is a concern? And how do different concerns
interact within a code base?

To gain some insight into these questions, we have con-
ducted an exploratory investigation of concerns in two ex-
isting Java [GJS96] packages: gnu.regexp,1 and jFTPd.2

Each of the packages was marked for concerns by each au-
thor of this positionpaper. We then compared the concerns
identified and analyzed how the concerns interacted with
each other and across the existing structure of the Java
package.

The results of this investigation provide:

1Written by Wes Biggs (Version 1.0.8)
2Written by Brian Nenninger (Version 1.3)

� examples of concerns (in our terminology, features)
that a software developer might want to explicitly
separate,

� examples of the interactions that occur between fea-
tures, and

� some insights into support that might help to identify
and consolidate features.

2 FINDING FEATURES

2.1 FEATURE SELECTION TOOL

To make it easier to conduct this study, we developed
a tool—Feature Selector—to help mark and ana-
lyze features in Java code. The Feature Selector
tool parses a defined set of Java files and allows a user
to highlight and tag segments of code as belonging to one
or more user-defined features. The tool does not provide
any automation mechanisms for marking code; all code is
marked manually by the user.

Figure 2.1 illustrates the use of the tool. A user has de-
fined several features (i.e., an error handling feature, a de-
bugging feature, etc.), and has assigned each feature a dif-
ferent highlighting color. The files available for brows-
ing and the features defined to date are visible in the left
frame of the tool’s interface. The user has determined that

1

The Structure of Features in Java Code: An Exploratory Investigation

Figure 1: Feature Selection Tool

a segment of code visible in the main frame is related to
debugging and has brought up a menu of the features cur-
rently defined. The user may select the debugging feature
and the code will be highlighted to indicate the tagging. A
segment of code may be highlighted as being part of more
than one feature. The user also has access to a query facil-
ity that will summarize all code belonging to a particular
feature or to a combination of features.

Since the Feature Selector tool parses the Java
code into an abstract syntax tree representation, we are
able to analyze the relationship of a set of features to the
existing code structure.

2.2 FEATURE SELECTION PROCESS

Before marking any code, we reviewed both packages to
gain an understanding of how the code works. This task
was necessary to support feature selection.

Feature selection was based on various criteria. Some
features were selected based on standards conformation.
Examples of features selected using this criterion include
the FTP protocol in jFTPd, and various regular expres-

sion syntaxes supported by gnu.regexp (e.g. Perl [Wal90],
grep, and awk [AKW79]).

Other features encapsulated a configuration of the soft-
ware package. As an example, the gnu.regexp package
supports various forms of input, including among others,
character arrays and strings. Each of these different forms
of input was designated as a feature as it is conceivable that
only a subset of the supported input data types may be nec-
essary for any given program.

Another criterion used was portions of the code that a
developer might want to change or remove. For instance,
one feature selected in gnu.regexp captured code related to
the matching of a regular expression over multiple lines in
a given input.

Table 2.2 summarizes the wide range of features se-
lected in each package by each marker.

Once a decision was made to identify a feature, we both
found it difficult to mark the code related to that feature.
There were two reasons why marking was a hard task.
First, it was difficult to ensure feature self-consistency:
that is, when marking, it was hard to ensure that an in-
stance of marked code followed the same “theme” as other

Submitted to the OOPSLA ‘99 Multi-d SOC Workshop 2 September 15, 1999

The Structure of Features in Java Code: An Exploratory Investigation

marked code belonging to the same feature. For example,
in some cases, it was possible to identify a central variable
involved in providing a feature: following all uses of that
variable was difficult without specific tool support. Sec-
ond, it was difficult to ensure feature completeness: that
is, it was difficult to ensure that all appropriate code was
captured by a given feature. Multiple passes through the
code were used to try to address these two issues.

3 FEATURES AND STRUCTURE

After marking the packages, we tried applying some sim-
ple metrics to determine whether we could characterize the
features, and whether the metric values would point us to-
wards interesting features to analyze further. We applied
three metrics to each of the features: spread, tangle and
density.3

spread(f) =
of �les containing feature f

total # of �les

tangle(f) =
of tokens marked with feature f and another

of tokens marked with feature f

density(f) =
of tokens marked with feature f

of tokens in �les marked with feature f

3.1 Spread

Features with low spread intersect fewer files: we as-
sumed that these features were already likely well mod-
ularized. As a result, we focused on features with high
spread values.

One feature in both packages with a high spread was de-
bugging. Debugging features consistently had a spread of
over 50%. Since, in most cases, we believe that the debug-
ging features can already be fairly well modularized using
mechanisms such as AspectJ, we did not analyze these fea-
tures further.

3The tangle and density metric relies on tokens. A token is defined
by the Java grammar provided by JavaCC (http://www.metamata.com).
For example, each keyword, variable, and comment is a token.

A feature with a high spread value (29%) that we did
analyze was the input types feature for gnu.regexp. Fur-
ther investigation quickly revealed that the high spread
was due to the representation of each input type by a class.
These classes made up a significant fraction of the total
classes in the package.

The input error handling feature in gnu.regexp also has
a high spread value (43%). This feature centered around
the definition and use of a static variable which repre-
sented an error code. Typically, this error code is com-
pared to the return value of a method. Thus, uses of this
error code tend to occur right after calls to a particular
method.

The timeout feature identified in jFTPd also had high
spread (36%). Analysis revealed that this feature was
poorly modularized. Knowledge of the timeout was
spread through several classes when it could have been
better encapsulated with the help of the Observer pat-
tern [GHJV94].

3.2 Tangle

Since we were interested in feature interactions, we fo-
cused our attention on features with high tangle values.
The features with the highest values were those that were
encapsulated by other features. For example, one feature
identified in jFTPd was GUI. This GUI feature was a sub-
set of the User Interface feature. The non-GUI code in the
User Interface feature managed the console. Other fea-
tures shared similar relationships and thus both markers
noticed a need for the concept of a sub-feature: a feature
that is a subset of another feature.

3.3 Density

High values (over 90%) for density indicated that the cor-
responding feature was well modularized. Low values
were harder to interpret. Low values could be caused by at
least two different, contradicting situations. The first sit-
uation is where several files each have a small number of
tokens marked with a feature. An example of this is the
logging feature in jFTPd with a density value of 4%. The
second situation is where a small number of tokens in a
single large file are marked. The version information fea-
ture from gnu.regexp provides a good example. It had a
density of 0.4%.

Submitted to the OOPSLA ‘99 Multi-d SOC Workshop 3 September 15, 1999

The Structure of Features in Java Code: An Exploratory Investigation

Table 1: Features Selected in gnu.regexp and jFTPd

No. Package Marker Feature Description
1 gnu.regexp #1 Version Information Software version tags in code
2 gnu.regexp #1 Input Data Types Various forms of input, e.g., strings
3 gnu.regexp #1 Error Handling
4 gnu.regexp #1 Debugging
5 gnu.regexp #1 String Substitution Replacing strings within matches
6 gnu.regexp #1 * various syntax flags * Features were selected for each syntax sup-

ported
7 gnu.regexp #1 REFilterInputStream For a given input stream, replace all regexp

with a specified string
8 gnu.regexp #2 Input Error Handling Handling of errors in input to match against
9 gnu.regexp #2 Pattern Error Handling Handling of errors in regexp pattern

10 gnu.regexp #2 Multiline Match Support Code supporting matches across lines
11 gnu.regexp #2 Newline Handling Code dealing with newlines
12 gnu.regexp #2 Variable Substitution Code supporting variable substitution during

matching
13 gnu.regexp #2 Matching Rules Code controlling matching process
14 gnu.regexp #2 RE Pattern Syntax Code related to multiple regexp syntaxes
15 jFTPd #1 Error Handling
16 jFTPd #1 Debugging
17 jFTPd #1 GUI
18 jFTPd #1 Protocol FTP RFC commands and completion codes
19 jFTPd #1 Networking Underlying network connection code
20 jFTPd #1 File System IO Code dealing with the server filesystem
21 jFTPd #1 Timeout Code related to command timeouts
22 jFTPd #1 Logging Code related to logging server commands
23 jFTPd #2 User Interface
24 jFTPd #2 GUI
25 jFTPd #2 Debugging
26 jFTPd #2 Logging Code related to logging server commands
27 jFTPd #2 Platform Specific Code dealing with specific platforms
28 jFTPd #2 Windows Specific Code dealing with the Wintel platform
29 jFTPd #2 Client Feedback Responses to client program
30 jFTPd #2 Client Interaction Commands from client
31 jFTPd #2 Directory Commands ftp commands related to directories
32 jFTPd #2 List Commands ftp commands related to listing files
33 jFTPd #2 Server File Manipulation ftp commands configuring server
34 jFTPd #2 Connection Commands ftp commands connecting to server

Submitted to the OOPSLA ‘99 Multi-d SOC Workshop 4 September 15, 1999

The Structure of Features in Java Code: An Exploratory Investigation

3.4 Summary

Overall, the values we computed for these metrics did
not show any obvious trends. One reason why the met-
rics were not very helpful might be that they were com-
puted at too fine of a granularity (i.e., token-level rather
than method-level). In general, given current technology
to support separation, some means of determining high-
spread, low-tangle features might be helpful in assessing
whether a feature is worth separating.

4 DISCUSSION

Our analysis reveals that only 20 to 25% of the tokens in
any given package were selected as part of any feature.
This begs the question of what the remaining code repre-
sented. For the most part, the approximately 80% of the
code left unmarked was code that was considered essential
to the package. Specifically, if the code was not present,
the package could not provide the most basic functional-
ity you would expect from a regular expression package or
an ftp daemon.

Though there were some similarities between the fea-
tures we selected, the majority of them differed. For
jFTPd, common features included debugging, logging and
GUI. For the other features, one of us chose mostly be-
havioural features: protocol, networking, fileSystemIO,
and timeout. The other chose a mixture of behavioural
(i.e., directory commands, list commands, server file ma-
nipulation, and connection commands), interactional (i.e.,
user interface, client feedback, and client interaction), and
code-based (i.e., platform specific and windows specific)
features. For gnu.regexp, error handling features and fea-
tures based on regular expression syntax were selected
by both markers. For the remainder of the features, one
marker selected more features based on configuration (in-
put data types, string substitution, and regular expression
filter input streams), while the other marker selected more
on behavioural grounds (i.e., newline handling, matching
rules, etc.).

The selection and analysis of these features clarifies and
identifies a number of issues surrounding separable fea-
tures in a source code base.

Sub-method Join Points Not surprisingly, when ana-
lyzing existing code for features, a need for sub-method
join points arises.4 Some of these sub-method join points
might be identifiable based on patterns in the code. For ex-
ample, when discussing the spread metric earlier, we de-
scribed that the input error handling feature tended to oc-
cur right after calls to a particular method. The join points
needed to separate (or combine) the input error handling
feature could be relatively easily named by specifying this
pattern.

Other sub-method join points are more difficult to
name. One particular case that arose during our analysis
related to the features encapsulating the various regular
expression syntaxes supported in the gnu.regexp package.
The syntax flags used to affect how regular expressions are
compiled are used in a single “while” loop in the regular
expression class constructor. This loopseems to have been
written this way to deliberately trade modularity for per-
formance. Ideally, the syntaxes supported by a regular ex-
pression package should be configurable without a loss in
performance. However, the join points for syntax flags lie
in the conditional parts of “if” statements. Succinctly stat-
ing which “if” construct should serve as a join point for a
particular syntax flag appears difficult.

Required Features As previously mentioned,
gnu.regexp supports various input data types. Sup-
port for each of these data types should be a user
configurable option. Thus each of the data types could be
considered a feature (or sub-feature). However, at least
one of these features must be present for the package
to function correctly. Any tool that is built to help a
developer separate and compose features needs to track
which features are required.

Feature Interaction Ideally, features should be encap-
sulated into reusable modules. However, various feature
interactions may hinder proper separation. Two such in-
teractions are overlap and order.

Overlap refers to one or more statements in the code
being associated with more than one feature. (Our tan-
gle metric measured overlap.) In the case of sub-features
(discussed in Section 3.2), overlap is expected and should

4A join point refers to a point in the code where a feature interacts
with the base code or with another feature.

Submitted to the OOPSLA ‘99 Multi-d SOC Workshop 5 September 15, 1999

The Structure of Features in Java Code: An Exploratory Investigation

be manageable in a straightforward way. Other forms of
overlap indicate a more subtle form of feature interac-
tion. For example, in jFTPd, overlap occurred between a
portion of code associated with an error handling feature
and code associated with the dispatching of commands.
In this case, the error handling code that overlapped with
the command dispatching formed a required part of the
command dispatching feature. Recognizing and describ-
ing such interactions may become an important piece of
managing feature interactions.

Order refers to whether or not there is a control- or data-
flow relationship between code in the same method re-
lated to two different features. In the code we marked,
two or more features are present in same method in ap-
proximately half of all code marked by any feature. In the
cases where two or more features are present, the number
of features present usually does not exceed three. How-
ever, both gnu.regexp and jFTPd have substantial blocks
of code where more than seven features are present. In
gnu.regexp, the regular expression class constructor in-
teracts with approximately fifteen features. In jFTPd, a
method for handling command lines interacts with eight
features.

In most cases that we analyzed, when two or more fea-
tures are present in the same method, the features are not
partially ordered. This is good news for those building
separation of concerns mechanisms because it may sim-
plify the combination of separated features. In those cases
where two features were partially ordered, very few were
ordered by data flow; the majority were ordered by con-
trol flow. For example, the error handling features in both
gnu.regexp and jFTPd tended to be partially ordered by
control flow. This is not such good news since it may
be more difficult to describe control-relationshipsbetween
features than data-relationships.

5 SUMMARY

Much recent work has focused on mechanisms for explic-
itly separating concerns in code. However, we still lack
a generally-accepted, precise definition of the concept of
a concern. To investigate the range of meaning of con-
cerns in source code, we undertook a small study focused
on identifyingconcerns in existing Java packages. The re-
sults of this study suggest that concerns can encapsulate

a variety of concepts such as standards, behaviours, user
interactions and configurations. An initial analysis into
the structure of the concerns identified suggests some is-
sues that may arise as separation of concerns mechanisms
evolve, namely a need for sub-concerns and a need for
specifying required concerns. Our analysis also confirms
that the task of modularizing and recombining features is
non-trivial given the interactions that exist between fea-
tures.

References

[ABV92] M. Aksit, L. Bergmans, and S. Vural. An
object-oriented language-database inte-
gration model: The composition-filters
approach. In Proceedings of ECOOP ’92,
pages 372–395, 1992.

[AKW79] A.V. Aho, B.W. Kernighan, and P.J. Wein-
berger. Awk – a pattern scanning and pro-
cessing language. Software—Practice and
Experience, 9(4):267–280, 1979.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and
J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software.
Addison Wesley, 1994.

[GJS96] J. Gosling, B. Joy, and G. Steele. The Java
Language Specification. Addison-Wesley,
1996.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar,
C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In
Proceedings of ECOOP’97, volume 1241 of
Lecture Notes in Computer Science, pages
220–242. Springer, June 1997.

[TOHSJ99] P. Tarr, H. Ossher, W. Harrison, and S.M.
Sutton Jr. n degrees of separation: Multi-
dimensional separation of concerns. In Pro-
ceedings of ICSE 21, pages 107–119. IEEE
Computer Society, 1999.

[Wal90] L. Wall. Programming Perl. O’Reilly & As-
sociates, 1990.

Submitted to the OOPSLA ‘99 Multi-d SOC Workshop 6 September 15, 1999

