
*Appears in Obj ect-Oriented Technology: ECOOP ’98 Workshop Reader, LNCS 1543

Assessing Aspect-Oriented Programming:

Preliminary Results

Robert J. Walker, Elisa L. A. Baniassad, and Gail C. Murphy

Department of Computer Science

University of British Columbia

201-2366 Main Mall, Vancouver B.C., Canada V6T 1Z4

fwalker, bani, murphyg@cs.ubc.ca

Abstract. The aspect-oriented programming approach claims to make

it easier to reason about, develop, and maintain certain kinds of applica-

tion code while maintaining highly e�cient code. To better understand

the usefulness and usability of the aspect-oriented approach, we have

been conducting a series of experiments. These experiments are designed

to investigate such characteristics of aspect-oriented development as the

creation and ease of debugging programs built in this style. This paper

provides an overview of the experiments we have conducted to date.

1 Introduction

Aspect-oriented programming[1] is in its infancy. The approach claims to make
it easier to reason about, develop and maintain certain kinds of application
code while maintaining highly e�cient code. To better understand the usefulness
and usability of the aspect-oriented approach, we are currently conducting three
\experiments"1: one to investigate the ease of creating aspect-oriented programs,
another to investigate the ease of debugging, and a third to investigate the ease
of change. The experiments investigate aspect-oriented design and programming
as represented in AspectJ2, an aspect-oriented variant of Java3 developed at
Xerox PARC.

We present here a brief overview of the �rst two experiments. For further
details, the reader is referred to a technical report [2].

2 Pilot Study

To understand how di�cult a problem we could realistically ask a participant
to tackle in a period of no more than four hours, we set-up the �rst experiment
as a pilot study. The experimental question was whether, in the context of As-
pectJ, the combination of JCore for component programming and COOL as a

1 To overcome constraints, such as a small participant pool, we set our experiments

up as semi-controlled empirical studies rather than statistically valid experiments.
2 AspectJ is a trademark of Xerox Corporation.
3 Java is a registered trademark of Sun Microsystems.

433



synchronization aspect language eases the creation of multi-threaded programs
compared to programming in the Java object-oriented language.

We had three programmers attempt a solution to a small programming prob-
lem with concurrency in Java; another three programmers attempted a solution
in AspectJ. We video-taped and later analyzed these programming sessions.

None of the six participants in the experiment were able to produce a solution
to the programming problem in the time provided, although two came close (one
Java, one AspectJ). The major impediment to the programmers seemed to be
that the task was more di�cult than we expected for the time available. We
used our experiences with the pilot study to re�ne our subsequent experiments.

3 Experiment 1: Ease of Debugging

The intent of the second experiment we conducted was to learn whether the com-
bination of JCore for component programming and COOL as a synchronization
aspect language eased the debugging of multi-threaded programs, compared to
the ability to debug the same program written in Java.

In this experiment, we had pairs of programmers attempt to �x three bugs
related to synchronization that we seeded into an approximately 600-line pro-
gram. Three of the pairs worked with AspectJ, three with Java. All of the pairs
were able to �nd and correct all three of the bugs.

We compared the performance of the pairs by comparing such factors as the
time it took them to �x each of the bugs and the number of times they examined
the semantics of the core program. Our analysis found that the AspectJ pairs
were able to complete debugging tasks with fewer instances of semantic analysis
which seemed to lead directly to less switching between �les, indirectly to fewer
builds, and ultimately to quicker completion times.

4 Acknowledgments

Thanks to the Xerox PARC Embedded Computation Area group, for their the
anonymous participants who took part in the sessions, and Robert Rekrutiak
and Paul Nalos for their work on experiment setup. Funding was provided by
Xerox Corporation, a UBC Graduate Fellowship, and NSERC.

References

1. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and

J. Irwin. Aspect-oriented programming. In ECOOP'97|Object-Oriented Program-

ming, 11th European Conference, LNCS 1241, pages 220{242, 1997.

2. R.J. Walker, E.L.A. Baniassad, and G.C. Murphy. An initial assessment of aspect-

oriented programming. Technical Report UBC-TR-98-12, Department of Computer

Science, University of British Columbia, 1998.

434


