
* Presented at the 1998 International Workshop on Aspect-Oriented Programming (Kyoto, Japan; April 20, 1998) held at the 20th
International Conference on Software Engineering.

Assessing Aspect-Oriented Programming and Design:
Preliminary Results

Robert J. Walker, Elisa L. A. Baniassad, Gail C. Murphy
fwalker, bani, murphyg@cs.ubc.ca

Department of Computer Science
University of British Columbia

Vancouver, B.C. V6T 1Z4 Canada

Technical Report TR-98-03

Abstract

Aspect-oriented programming is a new software design and
implementation technique proposed by researchers at Xerox
PARC. This project is assessing the claims of aspect-oriented
programming to improve the software development cycle for
particular kinds of applications. The project is divided into
three experiments, the first of which has been completed.
These experiments have been designed to investigate, sepa-
rately, such characteristics of aspect-oriented development as
the creation of new aspect-oriented programs and ease of de-
bugging aspect-oriented programs.

1 Introduction

Two of the most important and most difficult questions one can
ask about a new design or programming approach are whether
the approach is useful and whether the approach is usable.
One way to evaluate these questions is to make the design or
programming approach immediately accessible to the greater
community and to simply see whether the approach sinks or
swims. Although ultimately the goal is to positively affect the
greater community through the adoption of the approach, this
strategy has many pitfalls: useful techniques that are not quite
usable can be lost, and usable techniques that are not partic-
ularly useful can mask the adoption of other, perhaps more
powerful, techniques. Aspect-oriented programming is a new
software design and implementation technique proposed by re-
searchers at Xerox PARC[2].

This technique is in its infancy. The aspect-oriented ap-
proach claims to make it easier to reason about, develop and
maintain certain kinds of application code while maintaining
highly efficient code. To better understand the usefulness and
usability of the aspect-oriented approach, we are currently con-

ducting three experiments. These experiments are designed
to investigate such characteristics of aspect-oriented develop-
ment as the creation and ease of debugging programs built with
aspect-oriented design and programming. The experiments in-
vestigate aspect-oriented design and programming as repre-
sented in AspectJy, an aspect-oriented variant of Javaz devel-
oped at Xerox PARC.

In conducting software engineering experiments, we are
constrained by four factors: the pool of potential participants
available to us is very small, the amount of time each partic-
ipant can devote to an experiment is very short, especially in
comparison to typical development times of even tiny applica-
tions, the cost of running and analyzing experiments is high,
and since the evaluation of an aspect-oriented approach is com-
plex, some precision of measurement needs to be forfeited in
favour of realism[3]. As a result, our “experiments” were set
up as semi-controlled empirical studies rather than statistically
valid experiments.

This report describes the results of a pilot study and the first
experiment. The pre-study was used to test our experiment
design in the context of investigating whether aspect-oriented
programming eases the creation of correct program. The first
experiment studied the ease of debugging such a program. The
two experiments which have yet to begin are designed to inves-
tigate the ease of change of an existing program and the ease of
design and implementation of a new program.

2 Pilot Study

Before designing our set of experiments, it was necessary to
understand how difficult a problem we could realistically ask
a participant to tackle in a period of no more than four hours.

yAspectJ is a trademark of Xerox Corporation.
zJava is a registered trademark of Sun Microsystems.

1



We also used this pilot study to determine better methods of
training and questioning our participants.

The experimental question approached in the pilot study was
whether, in the context of AspectJ, the combination of JCore
for component programming and COOL as a synchroniza-
tion aspect language eases the creation of multi-threaded pro-
grams compared to programming in the Java object-oriented
language.

The basis of this experiment was to select a small program-
ming problem with concurrency, and then have several Java-
knowledgeable programmers attempt to produce a solution to
the problem, some working in Java, others in AspectJ. Since we
were working within a small community from which to draw
participants we ranked the participants and chose the least qual-
ified for this pilot study. We held the following questions in
mind while watching and annotating the video-tapes of the ses-
sions:

� Can programmers working with an aspect-oriented lan-
guage produce a “correct” program in less time than pro-
grammers working with an object-oriented language?x

� Do programs produced with an aspect-oriented program-
ming language have fewer bugs than programs created
with an object-oriented programming language?

2.1 Format

A pilot study session proceeded in stages. First, we required
that the experimental participant review materials on concur-
rent programming. If the participant was to use AspectJ, the
experimenter would introduce the concepts of aspect-oriented
programming and provide the participant with an opportunity
to become familiar with AspectJ; otherwise, they were given
material describing Java synchronization usage [1]. Partic-
ipants using AspectJ were required to examine an example
piece of code to ensure that they were familiar with the syntax
of the language. Finally, the participants were told the problem,
provided a programming environment, were given 1.5 hours
to complete the assigned task, and were asked to think aloud
while we video-taped their progress. Twice during each ses-
sion, the invigilator asked the participant a set of questions.

The programming problem chosen for the experiment was a
simple version of a non-audio karaoke machine in which text
at the bottom of a small window scrolls from right to left and a
ball bounces straight up and down above the text. The problem
was to synchronize the ball and the text such that the ball would
bounce on the start of each word. The text or the ball could
be paused to permit this to happen. The participants were pro-
vided with a skeleton program from which to begin that con-

xCorrect here is used to mean a program that meets the specification given
for the program.

tained the basic functionality to make the ball bounce and the
text scroll.

Six participants took part in the experiment, three used Java
to program their solution and three were given AspectJ.

2.2 Results

None of the six participants in the experiment were able to pro-
duce a solution to the programming problem in the time pro-
vided, although two came close (one Java, one AspectJ). We
analyzed this pilot study to learn how to conduct subsequent
studies; for this reason we did not go to great lengths to guar-
antee the abilities of our participants. In addition, the difficulty
of the task was greater than we had expected: aside from the ba-
sic point of encoding the necessary synchronization, the means
for completing the non-synchronized aspects of the program,
the semantics of the problem domain, and the functionality of
the existing code (written by someone else) needed to be un-
derstood first. One and a half hours was unreasonably short.

The following lessons are among those we were able to take
away from this pilot study:

� Participant training with and set-up of the programming
environment is necessary. It is impossible to test useful-
ness when usability is at a minimum. To address this, we
modified our experiment design by ensuring that all par-
ticipants were given a thorough lesson on how to use the
environment.

� All participants must be given lengthy exposure to the
synchronization mechanisms provided by the language
they are given to use. After this exposure they should be
tested to ensure they know the information necessary to
perform the experiment task. Subtle differences in syn-
chronization constructs can be a great hindrance to some-
one attempting to use a language in which they have not
frequently programmed synchronization, even if they are
otherwise familiar with synchronization concepts. In the
first experiment we ensured that all participants spent the
same amount of time reading the synchronization docu-
mentation, and asked them to describe the basic concepts
necessary for completion of the experiment task.

An interesting observation was that, among the participants,
only the two near-successful ones pursued a course of action
expressing a separation of concerns: get the code to work with-
out synchronization first, then add the synchronization.

2.3 Participants’ Comments

In general the participants that used AspectJ liked the method
even though they were unable to complete the problem. We
asked each of the AspectJ participants if they had any com-
ments about aspect-oriented programming in general.

2



“Well, [it was] just the way I imagined that [aspect-
oriented programming] would be used in a specific
program. I thought it was really cool, because I could
concentrate on what I was doing now, on the func-
tionality that it would have by itself, as opposed to
how to synch it up with the other object.”

“Ultimately, I guess the idea is that the objects could
be separated so you could change how the coordi-
nation was done without messing with the objects.
I always like that, changing one little thing without
touching what’s going on in the other place. It has a
really elegant nature to it.”

2.4 Pilot Study Critique

Problems involving concurrency are hard to solve. One inter-
pretation of the results of this experiment is that the support
for concurrency in AspectJ did not ease the difficulty of the
programming problem sufficiently such that it could be solved
with the aspect-oriented approach when it could not be solved
with the object-oriented (Java) approach. This result is not sur-
prising in that aspect-oriented programming is meant to ease
the expression of the solution to the problem rather than to nec-
essarily help the software engineer design the solution. From
the participants comments, it appears that many of them had
difficulty framing an appropriate solution in the time available.

The participant who made the most progress on the problem
was a participant using the aspect-oriented approach. Only a
few small changes were necessary to the coordinator code pro-
duced by this participant to produce a solution to the problem:
the changes were all of the same nature — an attempt to coor-
dinate on objects rather than classes.

Running Time

The participants were given 1.5 hours to program a solution to
the given problem. Given that no participant was able to solve
the problem, it is clear that either the problem was too com-
plex, or insufficient time was provided to the participants. We
had thought that 1.5 hours to solve the problem from a given
code base would be reasonable given that the initial solution
was coded, from scratch, in just over 2 hours; however, this did
not include the many hours spent discussing the semantics of
the karaoke machine synchronization during the design of the
pilot study.

This problem could be mitigated in two ways. First, addi-
tional dry-runs could be held to try and gauge if the experimen-
tal running time is reasonable. Second, the experimental pro-
cedure could have called for giving participants as much time
as they needed up to some (reasonably) large maximum such as
3 hours. However, given that only two of the six participants
were pursuing approaches likely to be successful, it is unclear

that additional time alone would necessarily lead to more con-
sistent (and interpretable) results. Alternatively, a more stan-
dard problem based on readers and writers might have been
chosen. One advantage of choosing a non-standard problem
like karaoke was that the participants could not simply provide
a ’textbook’ solution.

Code Skeleton

To focus the participants’ efforts on concurrency we provided
them with a code skeleton from which to start programming.
This code skeleton lacked any synchronization and also lacked
some of the functionality necessary so as to allow the partici-
pant some flexibility in pursuing a solution. In retrospect it is
clear we did not provide a sufficient overview of the existing
code or sufficient time for the participant to review the code
and ask questions. A specific period of time for review and
questions might have mitigated problems arising from a lack
of understanding of the given code skeleton.

Participant Selection

Since this was seen as a pilot study and we had a limited num-
ber of potential participants we put the programmers with less
experience in this study. All participants were asked prior to
selection whether they were familiar with the concepts of con-
currency and Java; however, since the aim of this pilot study
was mainly to gain experiment design information, stress was
not placed on the screening of participants. We relied on in-
terviewing and questioning of the participants on these topics
rather than on a specific pre-test.

More than one participant also spent a significant amount of
the experiment time trying to understand syntax errors, both
from Java and AspectJ. The latter have since been clarified via
improvements in the AspectJ weaver.

3 Experiment 1: Ease of Debugging

The intent of this experiment was to learn whether the separa-
tion of concerns provided in aspect-oriented programming en-
hanced users ability to find and fix functionality errors (bugs)
present in a multi-threaded program. In terms of AspectJ, the
question was whether the combination of JCore for the compo-
nent programming and COOL as a synchronization aspect lan-
guage eased the debugging of multi-threaded programs, com-
pared to the ability to debug the same program written in Java.

A 600 line, multi-threaded, program was created, and
three synchronization bugs were introduced. Then, pairs of
programmers, knowledgeable in multi-threaded programming
techniques and object-oriented programming, attempted to fix
the three bugs. Three of the pairs worked with AspectJ, three

3



with Java. The solutions to the program were compared in the
following ways:

� Can programmers working with an aspect-oriented pro-
gramming language debug a multi-threaded program in
less time than programmers working in an object-oriented
language?

� Are programmers debugging an aspect-oriented program-
ming language able to more quickly and easily identify
the cause of a bug in a multi-threaded program than in one
written in an object-oriented language?

3.1 Format

The program provided to the participants was a simple digital
library consisting of 6 classes, 3 of which required coordina-
tion. The library had two main actors: readers and libraries.
The readers would make requests to libraries for a particular
book. Libraries would search within their internal repositories
for the book, and also ask remote libraries to do the same. Each
reader could query one library, and each library could directly
query at least one other. Three synchronization bugs were in-
serted into the code.

The participants worked in pairs{. In each pair, one partici-
pant had control of the computer with the programming prob-
lem, and the other had access to a report describing the symp-
toms of the bugs, and on-line documentation. They were then
asked to fix each bug in turn,

The bugs were cascading, meaning that the symptoms of the
first hid the symptoms of the second, and the second hid those
of the third. In the first bug only one reader would make a re-
quest and then they system would halt. The participants had to
remove a per-class self-exclusive coordination on the run()
method of theReader class so that more than one reader could
run. In the second problem, two readers would make requests
and then the system would deadlock. The participants were re-
quired to determine that the deadlock occurred when two li-
braries each tried to do a remote-search on the other at the same
time. They then had to remove a per-object self-exclusive coor-
dination on the remoteSearch() method of the Library
class so that the system would no longer deadlock. The third
bug was that more than one reader was able to check out the
same book from the same library. For this problem, the partici-
pants had to add a per-object self-exclusive coordination on the
checkOut()method of the Library class so that only one
reader could check out a book at a particular library at a time.

To compare Java with AspectJ, a pair of synchronization
lock classes were built which were identical in functionality
with the woven output from AspectJ source code. This allowed
the true aspect-oriented properties of COOL, as opposed to

{Participants were graduate students in computer science, and an under-
graduate in computer engineering.

its library-like functionality, to be compared with non-aspect-
oriented Java code.

The experiment consisted of six pairs of participants, three
worked with Java and the others with AspectJ. All of the pairs
were given time to train to familiarize themselves with the lan-
guages they were to be using; 1.5 hours were allowed each pair
to code their solution. Each of the pairs were to be asked for re-
ports of their progress either after they had coded each of the
solutions, or at 1/2 hour intervals, whichever came first.

3.2 Results

In each the AspectJ and Java groups, all of the pairs of partic-
ipants were able to find and correct all three of the bugs. We
examined the performance of the pairs by comparing the time
it took them to fix each of the bugs, how many times they built
and ran the program, how many times they examined the se-
mantics of the core functionality of the program, if they mixed
synchronization and core functionality issues, if they searched
for a synchronization solution by modifying the core function-
ality, and also the number of times the pairs changed the file
they were examining while reaching their solution. We first
discuss each data element in isolation, and then correlate and
summarize the results.

Time

The completion times for each of the three bugs are shown
in Figure 1. The largest difference in completion times was
with respect to the first bug; the AspectJ teams clearly repaired
the bug faster than the Java ones. For the second and third
bugs, there was a smaller difference. When examining the
time information in isolation we are unable to draw any def-
inite conclusions. The quicker AspectJ time in the first bug
could be attributed to any number of factors, and could imply
that COOL is an easier language to quickly understand, or that
the bug was more obvious when using COOL than Java. In the
data correlation section the distribution of completion times is
discussed with relation to the amount of programming under-
standing necessary to complete the programming task.

1 403530252015105

Bug 1

Bug 2

Bug 3

minutes

AspectJ

Java

Figure 1: Completion times

4



Switching Between Files

We were interested in determining if, for bugs where more se-
mantic analysis was being performed on the code, users had to
switch between files more using AspectJ because of the need
for context of the synchronization code. For this reason, we
recorded the number of times the pairs switched the file they
were examining. Figure 2 shows that the AspectJ pairs made
fewer file switches than the Java group for bug 1, more for
bug 2 and slightly less for bug 3.

AspectJ

Java

Bug 3

Bug 2

Bug 1

0 1 2 3 4 5 6 87
file switches

Figure 2: Number of file switches

Instances of Semantic Analysis

The histograms shown in Figure 3 highlight the difference in
number of instances of semantic analysis over the nine ses-
sions. To determine the number of instances of semantic anal-
ysis we recorded the number of times participants said some-
thing to the effect of “let’s find out what this does...”. This in-
dicates that the Java pairs spent more time analyzing the actual
behaviour of the code than the AspectJ pairs did. In the AspectJ
session with the most instances of semantic analysis, the group
members openly disagreed as to how much semantic analysis
was necessary to solve the second bug:

A: ...we know it’s in the COOL file...
B: But we have to know what they do before chang-
ing anything.

AspectJ

JavaBug 1

Bug 2

Bug 3

0 81 2 3 4 5 76

instances of analysis

Figure 3: Instances of semantic analysis

Builds

For the first and third bugs, there was only one build per bug
with the exception of one Java pair for the first bug, who built
and executed five times, and one Java pair in the third bug,
who built and executed twice. There was no direct correlation
between builds and instances of semantic analysis; however,
there was a slight correlation between the number of builds per-
formed and the number of file switches.

Mixing Concurrency and Functionality Issues

In each of the AspectJ and Java groups, one group attempted to
solve the synchronization bug with a change to the core func-
tionality of the code.

Granularity Analysis

Since AspectJ synchronization is fixed at a method-level gran-
ularity, users of Java have an opportunity to think about the
granularity of locks that AspectJ users do not. To collect the
instances of this we noted when the users attempted to move
locks around within a method, hence implementing a finer
granularity of locking than the original method granularity.
Only one Java pair investigated locking granularity in the first
bug, one in the second, and two in the third. None of the As-
pectJ participants questioned the synchronization granularity
imposed by COOL.

Correlation of Data

When examined in isolation, the increase in number of file
switches made by the AspectJ pairs versus the less significant
increase for the Java pairs from the first to the second bug may
be explained by the fact that the Java groups had done exten-
sive initial file investigation in solving the first bug.

However, the AspectJ group spent less time performing se-
mantic analysis than the Java group did. This could explain
why the times for the Java pairs never caught up to those of
the AspectJ group. The Java group’s general lack of regard for
the granularity of locks removes this as an explanation for the
extra time spent. One other point must be clarified regarding
time: Both the AspectJ and Java pairs spent relatively equal
time in building and executing their program. The additional
time for weaving AspectJ was negligible.

The number of instances of semantic analysis somewhat ex-
plain the number of file switches made by the AspectJ pairs. In
the second bug (the bug with the highest average of semantic
analysis instances) the most file switching occurred. We be-
lieve that there were less file switches by AspectJ pairs than
Java pairs on bug 2 because less semantic analysis was per-
formed to solve the bug.

5



Participants’ Thoughts

We asked the AspectJ users what they thought about the sep-
aration of the synchronization code from the rest of the core.
Two of the three groups were enthusiastic and noted that they
did not want the code for the coordination in-line:

I’d much rather have it separated like this. I really
would. ... I would rather not look at the details

It meant that since [the problems] were just synchro-
nization problems we just had to look at the parts
that were related to synchronization. We could have
spent lots of time looking at the non-synchronization
parts, at one point we did look briefly, but it was
clear there was nothing about synchronization in that
code, and the only way to deal with synchronization
was to look in the COOL files.

The other group felt that COOL provided a handy way of
summarizing coordination of and between methods, but were
unhappy with the actual separating out of the coordination
code.

The only place I can see there could be an advan-
tage is if you know that you have some modules you
are working with that are tested and you are sure you
can limit the bugs to synchronization issues in which
case you don’t really have to understand the code.

They would have opted instead for the COOL code to have
been inserted in pertinent places throughout the code so that
the user could see in once glance both the coordination and the
method at the same time. Interestingly, this pair (the third As-
pectJ pair) switched less between files in total than any of the
Java pairs.

We asked the Java groups how they mentally separated
the synchronization code from the core code. One partici-
pant noted that when looking at Java synchronization code
they made no algorithmic differentiation between the synchro-
nization code and the core code. They continued by dis-
cussing the need for some abstraction of the synchronization
that was higher level than the locking available through Java.
”Some way of specifying that you have certain constraints be-
tween methods within classes or objects, instead of using this
scheme”. They noted that this shortcut for locking would save
both five lines of code and save you looking at the code itself.
We admit that this is speculative since the Java people had no
experience with the real separation.

4 Summary

With the first of our three experiments, we were able to obtain
interesting indications about the use of aspect-oriented pro-

gramming versus object-oriented programming. We noted that
users of the aspect-oriented programming language AspectJ
were able to complete debugging tasks with fewer instances of
semantic analysis which seemed to lead directly to less switch-
ing between files, indirectly to fewer builds, and ultimately to
quicker completion times.

We used a pilot study to gather a set of guidelines about the
design of further studies, and used those guidelines in design-
ing the first main experiment. The ability of one participant
to come close to an appropriate solution with a coordinator
demonstrates it is possible to learn the approach quickly and
apply it.

The first experiment highlighted the usefulness of being able
to easily express and understand synchronization code. We
learned that there are times at which it is useful for synchro-
nization code to be embedded in the core functionality, but that
at times work can be speeded considerably (as in bug 1) when
synchronization code is separated from the rest.

5 Acknowledgments

We would like to thank the Xerox Embedded Computation
Area group for their comments on the experiment concepts and
the use of the AspectJ weaver, the anonymous participants who
took part in the sessions, and Robert Rekrutiak and Paul Nalos
for their work on experiment setup.

Funding provided by Xerox Corporation and a UBC Gradu-
ate Fellowship.

References

[1] K. Arnold and J. Gosling. The JavaTM Programming Lan-
guage. Addison-Wesley, 1996.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, and J. Irwin. Aspect-oriented programming. In
ECOOP ’97 - Object-Oriented Programming. 11th Euro-
pean Conference Proceedings. Jyvaskyla, Finland, pages
220–242, June 1997.

[3] Joseph E. McGrath. Methodology matters: Doing re-
search in the behavioral and social sciences. In Ronald M.
Baecker, Jonathan S. Grudin, William A. S. Buxton, and
Saul Greenberg, editors, Readings in Human-Computer
Interaction: Toward the Year 2000, pages 152–169. Mor-
gan Kaufmann, San Francisco, 2nd edition, 1995.

6


