
Predicting Memory Use from a Class Diagram using Dynamic Information

Gail C. Murphy and Ekaterina Saenko
Department of Computer Science, University of British Columbia

201-2366 Main Mall, Vancouver B.C. Canada V6T 1Z4
{murphy,saenko}@cs.ubc.ca

ABSTRACT
Increasingly, new applications are being built by
composing existing software components rather than by
coding a system from scratch. Using this approach,
applications can be built quickly. Far too often, however,
these applications do not exhibit acceptable performance.
The benefits of construction through composition could be
more reliably achieved if a software engineer could assess
the performance impact of a component prior to its use. In
this paper, we present our experiences of taking a
straightforward approach to a piece of this problem:
predicting the memory use of an existing component for a
new application. The approach consists of annotating a
structural view a class diagram of an object-oriented
component with data gathered from sample existing uses of
the component. The annotated view is then used as a basis
for prediction. Our experience highlights several of the
difficulties software engineers face in not only predicting,
but also in analyzing, the space performance of existing
object-oriented components.

1. Introduction
Increasingly, new applications are being built by

composing existing software components rather than by
coding a system from scratch. This mode of development
can provide great benefits, including shorter development
cycles to deliver more functionality [1].

Development benefits, however, do not generally come
without an associated cost. When the components that are
being composed and used are object-oriented libraries and
frameworks, the cost is often increased space usage of the
resulting application. Version 1.0 of the Java Abstract
Window Toolkit (AWT), for example, mapped AWT
components to native windows, requiring native data
structures to be allocated in addition to the AWT structures.
Version 1.1 of the toolkit provides alternative lightweight
components to free applications from this restriction.

Generally, a software engineer is not able to assess the
performance impact of a library or framework until the
application is built. If the performance of the application is

not sufficient, the engineer must then take some typically
costly action, such as altering the use of or replacing the
component.1 To preserve the benefits intended from using
existing components, it would be desirable if a software
engineer was able to assess whether selected components
will provide acceptable performance prior to their
incorporation into a system.

In this paper, we present our experiences in addressing a
piece of this problem: predicting the performance of an
existing component in a new context. This problem has
arisen in part of one of the author's research that involves
the construction of source code analysis tools. Multiple
components were available to provide parsing and program
representation support. Since large applications were to be
analyzed, the memory profiles of the existing components
were an issue. Before committing to a choice of
component, it would have been desirable to predict the
memory usage for the types of input expected. Since no
tool support or documentation was available to reason
about this aspect of the components, a component, the
SUIF framework [2], was selected using other criteria and
the source analysis tools were implemented. The
implemented tools do not scale as desired partly because of
the memory usage of the chosen component.

To enable a better choice between components to be
made the next time, we wanted to investigate if a
straightforward approach based on gathering dynamic
information about a component, and then reasoning about
that data in terms of the component's structure might
support prediction and facilitate comparison. We were
interested in applying tools to support this approach that are
readily available to most practicing software engineers.

Given the particular problem of interest, our focus was
on a way to predict the maximum and average memory use
of an existing component when providing specific
behaviour. We assumed a situation in which the engineer
had access to both sample applications demonstrating the
use of the component, and the component's source code.
We chose to focus on the collection of dynamic
information about a component's memory use and chose to
use a class diagram as the structural basis since the

1Through the rest of this paper, we use the term component to refer to an
object-oriented library or framework.

Copyright © 1998 by the Association for Computing Machinery, Inc. Permission to make digital copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistributed to lists, requires prior specific
permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Preprint 1998 Workshop on Software and Performance

Preprint 2 1998 Workshop on Software and Performance

component of interest, the SUIF compiler framework, was
written in C++ [3]. Our early experiences with this
approach have helped identify a number of problems in
gathering and interpreting appropriate run-time information
for use in prediction.

We begin, in Section 2, by describing existing
approaches to analyzing and predicting the memory use of
components. In Section 3, we then outline our approach to
predicting memory usage through an annotated class
diagram. Section 4 evaluates the predictions we made using
our approach for the SUIF framework. In Section 5, we
discuss our experiences and suggest avenues for further
investigation to address the problems identified. Section 6
summarizes the paper.

2. Existing Approaches
Research in software performance modeling has largely

focused on execution speed rather than on memory
requirements [4]. Software developers who must consider
the potential memory use of an application under
development thus typically rely on ad-hoc methods applied
to design documentation. One such ad-hoc approach, where
the developer applies knowledge of the size and frequency
of design entities, is outlined in Section 3.2. When the
developer has extensive knowledge of the design, these ad-
hoc approaches can produce useful results. However, in the
case of interest in this paper, when the developer is making
use of unfamiliar existing code, it is generally impossible
for the developer to make reasonable estimates.

Consequently, when considering the reuse of
components, developers are most often reliant on
documentation provided with the component to assess
potential memory use. Sometimes, the documentation
explicitly addresses this issue. For example, the Booch data
structure components [5] discuss memory issues explicitly,
in part because the components include interfaces that
allow the developer to control memory use.

In most cases, however, memory use is not addressed in
the documentation. To gain a better understanding of a
component's memory requirements, a developer might run
sample applications with a self-selected set of test inputs. If
the sample applications use functionality from the
component similar to the desired application, this data may
provide a reasonable basis for prediction. However, since
sample applications are meant to demonstrate particular
features of a component, it is more common that a
developer must consider the execution of several sample
applications to understand how the component might
perform under the desired use. It is difficult to consolidate
this coarse data into a meaningful basis for prediction as
application overhead can be difficult to factor out.

Few tools to help an engineer analyze the memory use
of the existing component exist beyond the system
provided memory monitors, such as the Unix ps and top
commands. One category of tools an engineer might use is

the class of memory leak tools (e.g., mprof2, dmalloc3,
etc.). These tools can help assure the engineer that the
component is well-constructed, but they do not give the
engineer a deeper understanding of overall memory use.
Purify, a commonly used memory leak detector, provides
additional memory tracking functionality, including an
ability to describe all memory currently in use [6].
Although an engineer can use this feature to periodically
describe the memory state of an application during
execution, support to describe transient memory allocated
and deallocated within the period is not provided.

Another category of tools includes run-time monitoring
and tracing tools such as the Unix prof or pixie tools.
Similar to performance modeling techniques, these tools
focus on speed issues rather than on memory use.

Finally, an engineer might use a software visualization
tool for dynamic information to provide more insight tools
into the operation of an application than possible with the
monitoring tools. IBM Research’s Jinsight tool4, for
instance, displays information about the objects allocated
and deallocated in Java program. These displays can likely
help an engineer understand memory use in an existing
program, but it is unclear if the visualizations would
provide sufficient detail in an appropriate form to help an
engineer predict the memory required by a component in a
new context.

3. A Structural Approach
Existing approaches to help a software engineer assess

the memory use of a component are insufficient because
they do not provide a sufficiently detailed basis for
prediction. To investigate the kind of support required to
move towards a predictive basis, we tried applying a
straightforward approach to mapping execution data to
structural information. The structural information we chose
to use was a class diagram.

The class diagram plays a central role in most object-
oriented development. This structural view is part of all
popular object-oriented development methods and is
commonly used to describe an object-oriented system. For
instance, class diagrams are a major part of describing
many design patterns [7].

Because the memory use of an object-oriented system is
closely aligned with the structural information shown in a
class diagram, we wanted to be able to use this view to
reason about and predict space performance of a
component. More specifically, we wanted to be able to
break down a component's memory use in terms of the
class diagram view and to then roughly correlate how that
memory view corresponds to the input to the component.
Given a characterization of the expected input, we would

2 mprof was developed and is distributed by Ben Zorn.
3 Gray Watson developed and distributes dmalloc.
4 See http://www.alphaworks.ibm.com/formula/jinsight.

Preprint 3 1998 Workshop on Software and Performance

then be able to predict the memory use of different
components for the desired processing.

The approach we attempted to apply consists of three
steps. In the first step (Section 3.1), the software engineer
gathers data about a component's memory usage. Sample
applications distributed with a component can be used to
generate appropriate information. In the second step
(Section 3.2), the dynamic information is annotated onto
the class diagram. In the third step (Section 3.3), the
engineer designates a particular class to use as a basis for
projecting memory use. The engineer then uses this basis to
predict the memory use of the component in the context of
the desired application.

3.1. Gathering Data
We wanted to track every object allocation and

deallocation that occurred when a component was used.
We also wanted to know the size of each allocation and
deallocation. Conceptually, these questions seem
straightforward. In practice, this information was hard to
determine (see Section 5.1).

To gather the desired data for a C++ component, we
overloaded the C++ new and delete functions to track
the size, in bytes, of the allocations and deallocations. Since
we did not have access to type information within these
overloaded functions, we used lexical scripts to alter each
constructor and destructor to record the class of the object
being allocated or deallocated. With this approach, we
could gather an approximation of the execution information
of interest.

3.2. Annotating Structural Information

A class diagram can show many different relationships
between parts of a system. Two relations in particular that
are useful in reasoning about memory use are the
inheritance and association relations between classes [8].
Figure 1 shows a snippet of a class diagram with these
relations for part of a hypothetical windowing system
(based on [8], p.44). The figure shows that each panel in an
interface consists of a number of panel items that may be
buttons or text items.

Panel PanelItem

Button TextItem

1..n

Figure 1. Sample class diagram.

A software engineer might use this class diagram
information to reason about the eventual memory use of an
application built with these classes. For instance, the
average memory required for a panel might be calculated as
the size required to represent the panel object plus the
average number of buttons and text items in each panel
multiplied by the average size of each of these objects
respectively.

Predicting memory use in this manner requires the
engineer to have access to structural information, and to
approximate both the size and relative multiplicity of
objects of the classes. When the engineer is the developer
of both the component and the desired application, the
structural information is available, and it is reasonable for
the engineer to provide estimates of the values of interest.
However, when the engineer is unfamiliar with the
component, it is necessary to both determine the structural
information and to provide guidance on suitable values.

Determining the structural information is relatively
straightforward. Given the source code, it is reasonably
easy to reverse engineer a class diagram for a system. We
wrote a lexical script using the GNU awk program to
approximate a class diagram with the two relations of
interest for the SUIF framework.5 Figure 2 shows a
fragment of the extracted class diagram. The full diagram
includes 118 classes with 180 inheritance and association
links between the classes.

5We were considering primarily the base SUIF framework that is
comprised of approximately 37 000 lines of C++ code.

Instruction

in_cal

in_array

operand_dataonlyoperand

Figure 2. A fragment of the extracted SUIF
class diagram. Lines with arrowheads represent
inheritance. Lines without arrowheads
represent association.

Preprint 4 1998 Workshop on Software and Performance

Determining suitable values is more difficult. To ease
the engineer's task, we wanted to annotate the extracted
class diagram with dynamic information about the
execution of the component. Object size is associated easily
with the class diagram by computing the average and
maximum size of objects of each class across the execution
of sample applications with a variety of input.

Associating the relative numbers of objects of each class
with the diagram is more challenging. Our approach
divides this sub-problem into two parts. First, we extend
the data gathering process described in Section 3.1 to also
track limited information about the sample applications.
Second, we process the gathered data in the context of the
prediction of interest. We discuss the data gathering
extension next. Section 3.3 discusses the processing of the
data.

Since the memory use of an application changes across
its execution and we were primarily interested in specific
behaviours of the component, we had to take into account
the usage undulations when determining relative numbers
of objects. We accomplish this by asking the engineer to
divide the execution of each sample application into
different phases. Phases are chosen to isolate behaviours of
the component; for instance, one phase might represent
initialization of an abstract syntax tree, another phase might
represent a search through the tree.

The engineer designates entry into the different
execution pases by inserting print statements into the
application code. For each phase (of each sample
application's execution with each different input), we
calculate the maximum number of objects of each class
potentially active during the phase by ignoring all
deallocation information. We then consider the deallocation
information to calculate the number of objects of each
class active on exit from each phase. The information
gathered in each phase for each execution is referred to as a
data set. All data sets collected are passed to the third step
of our approach.

For SUIF, we collected the data of interest using two
example applications distributed with SUIF and two
different inputs (Section 4).

3.3. Using the Annotated Structure for Prediction

To support prediction, we wanted to allow the software
engineer to designate a class for which they could provide a
reasonable estimate of the number of objects at run-time.
We then wanted to automatically present the engineer with
a prediction of the maximum and average memory use of
the component. A class for which the engineer might be
able to provide a reasonable estimate is one that they
believe corresponds to some interface between the desired
application and the component.

The class for which an estimate will be given forms the
basis class for the prediction. Given this class, we can
process the data gathered about the maximum and average

number of active objects of each class. More precisely, we
determine, for each data set, the maximum and average
number of active objects for each class relative to the basis
class. We then compute, across all data sets, the maximum
and average number of active objects (relative to the basis
class).

For instance, in the case of the SUIF framework, we
perused the extracted class diagram and noted the classes
corresponding to different kinds of instructions in the SUIF
intermediate representation. One class, in_cal, represents
call statements in the analyzed program. We chose this
class as a basis class because we could provide reasonable
estimates on the number of call statements we expected in
input to our eventual application.

Given an estimate of active basis objects, we can
compute the average and maximum predicted size (in
bytes) of the component by applying the algorithm the
engineer might apply by hand, namely:
• scaling the average and maximum number of active

objects of each class by the number of estimated basis
objects,

• computing the bytes required to represent all active
objects of each class through the use of the
appropriate object size information, and then

• computing the sum of the bytes required to represent
all active objects in the component.

4. Applying the approach
To get a sense of whether the approach shows any

promise, we tried using it to predict the amount of memory
that the SUIF framework might require to support the
building of a call graph extractor for C code. We had
previously built such an extractor using SUIF and it was
available for comparison.

As described in Section 3, we modified the SUIF
framework to gather the appropriate memory use
information during execution and extracted the class
diagram shown in Figure 2. The next step in our approach
requires the gathering of data. A set of examples the
SUIF cookbook is available from the framework
developers. We chose three examples (i.e., prog1, prog2,
and prog5) from this set that used features of the
framework similar to the features that might be required by
the call graph extractor. We then inserted execution phase
statements into the example applications and gathered data
about the maximum and average object counts using two
sample inputs: the 8000 lines of source comprising the
Unix adventure program (Version 6) and the 5100 lines of
source comprising the GNU sort program (Version 1.21).6

6 All execution data was gathered on an Alpha running Digital Unix 3.2.
None of the applications reported memory leaks when run with purify on a
SPARC 5 running Solaris 2.5.

Preprint 5 1998 Workshop on Software and Performance

We wanted to predict if the SUIF framework might
scale to larger inputs when used for the call graph extractor.
Continuing our approach, we examined the extracted class
diagram and chose three different basis classes to try:
in_cal, tree_instr, and var_def. We chose
multiple basis classes because we wanted to investigate
how well our approach was working. We chose these
classes because we believe they represent items namely
calls, instructions, and variable definitions
respectively whose occurrence in the expected input we
could estimate reasonably. We then used our approach to
predict the memory use for inputs comprised of as many as
75 calls, 150 instructions, or 45 variable definitions in a
procedure. Table 1 shows the resulting predictions. The
predicted values are given per procedure since the chosen
execution phases were mostly based on the processing of
individual procedures.

 The predictions resulting from our approach varied
widely from several thousands of bytes to megabytes. For
comparison, Table 2 shows the maximum and average
memory gain per execution phase of the developed call
graph extractor application. The table reports data for the
two sample inputs as well as a represented desired input
(the 25,000 lines of C code GNU plot, Version 3.5). These
values were computed from data reported by the Unix ps
command.

Given the wide variance in predictions and the variance
from a rough comparison, does this approach show any
promise? We believe it does show some promise for two
reasons. First, the average values reported of several
hundreds of thousands of bytes are, albeit by a large
margin, within the actual range. In some cases, they are
within range because a perusal of the data showed that they
arise from cases where the projected size of the input
existed as a case in the input used to annotate the structure.
The values may also be within range simply by pure
chance. Two questions to ask are why are most (or all) of
the average values reported not within range and why are

the predicted ranges so broad? A perusal of the data used to
compute these values suggests it may be because we are
tracking only total counts of objects, rather than
determining the dependences between the objects. We
discuss this point further in Section 5.2. An evaluation of
the approach enhanced with association tracking would
allow a more careful assessment of whether the reasonable
values predicted were either because of being reported
actual occurrences or simply by chance.

A second reason to continue to investigate the approach
is that the predictions attempted here were based on
substantially approximate data (Section 5.3). Further
investigation using more accurate data would give a better
indication of the usefulness of the approach.

5. Experiences
The process of applying our approach identified a

number of problems that must be addressed to connect
gathered performance data with structural information for
the purpose of prediction.

5.1. Tracking Performance

The use of gathered performance data for prediction is
attractive because it ensures the effects of the component's
operating environment are considered appropriately.
Unfortunately, in some cases, such as memory tracking, it
is difficult to gather the desired performance data in the
context of the component. For example, for C++ code, we
had to alter each existing constructor and destructor.
Although the base allocation and deallocation functions can
be overridden, the engineer does not have access in these
functions to the appropriate context; for instance, one
cannot determine the constructor causing the call to the
allocation function.

Languages with reflective features, such as Smalltalk
[9], provide better support to address aspects of the data
gathering problem. With meta-class support, for instance,
it is typically possible to add tracing information into every

Input/
Prog.

adventure Sort gnuplot

Call Graph Extractor .60 (1.11) 0.19 (0.57) 0.52 (1.2)

Table 1. Predictions of memory use per SUIF-analyzed procedure for Call Graph Extractor. Average
value is first followed by maximum value in parentheses. All values are reported in megabytes.

Table 2. Memory use per SUIF-analyzed procedure as computed from Unix ps. Average value is
first followed by maximum value in parentheses. All values are reported in megabytes.

Basis Class/
Eg. Prog.

in_cal
(75)

tree_instr
(150)

var_def
(45)

adventure sort Adventure sort adventure sort
prog1 .52 (8.91) 2.79 (30.3) 3.88 (26.7) 1.36 (4.07) .08 (5.33) .11 (2.86)
prog2 .28 (8.93) 2.27 (3.04) 3.57 (26.7) 1.11 (4.07) .06 (5.33) .09 (2.87)
prog5 .75 (16.6) 3.53 (33.4) 4.37 (27.1) 1.62 (230) .10 (6.0) .14 (3.72)

Preprint 6 1998 Workshop on Software and Performance

constructor and destructor. Reflective language features,
however, do not solve the problem because they do not
generally provide any help in tracking operating
environment performance for the component. Garbage
collection, for example, is typically part of the run-time
operating environment, making it difficult to track memory
deallocations using reflective language features. Similarly,
reflective language features do not generally help an
engineer gather data on how the operating system is
affecting a component's performance.

Some existing tools do provide a degree of support for
reporting both application-level and run-time environment
information in the context of the application. The Unix prof
tool, for example, reports on the performance of both
system and application functions. One difficulty with
existing tools of this form is that the link between the
reported information and the source is either by name only
or by reference to a line number in an application. Forming
a correspondence between the reported data and the source
thus often requires additional sophisticated tools that
understand the semantics of the language.

Overcoming some of these difficulties may involve
combining reflective language-level support with new
interfaces into the operating environment. In addition, since
the source for a component of interest will not always be
available, methods for gathering and interpreting data from
binaries will also be needed.

5.2. Mapping Execution Information to Structure

Using structural information to reason about gathered
performance data requires mapping the execution
information to the structure. In the approach described in
this paper, the mapping is simple: performance data
reported in terms of classes is mapped to classes in the
structural information. This mapping provides some
approximate bounds on the relative multiplicity of objects
of varying classes. A more useful mapping would allow the
gathered execution data to be attributed not only to classes
in the design diagram, but also relations between the
classes. For instance, in terms of Figure 1, it would be
preferable to know how many PanelItem objects were
created and destroyed per Panel object rather than overall
during an execution phase. Supporting this mapping would
require the abstractions in the design to be correlated to the
source (e.g., where is the relation formed in the source) and
would require additional data to be gathered during
execution (e.g., the location in the source where a
constructor was invoked).

In the longer-term, software engineers may find it useful
to use, as a basis for prediction, structural information that
is more abstract from the source than a class diagram.
Software architectural information expressed in an
architectural description language, for instance, may
include components and connectors representing multiple
source-level modules or classes, or multiple distributed

pieces of code. Existing work in checking the conformance
of designs to implementations (e.g., [10] or [11]) and in
reverse engineering (e.g., [12] or [13]) may help address
some of the mapping problems. New approaches to
combine and summarize the gathered performance data
associated with the source entities may be required.

5.3. Accuracy

What accuracy of the data gathered for prediction is
necessary to be useful to a software engineer? The degree
of accuracy will certainly depend on the task the engineer
intends to perform based on the predicted values. If the
engineer is attempting to size a real-time application,
accurate data is likely needed. However, if the engineer is
attempting to compare two components, more approximate
data may suffice.

The data we gathered to use for the memory use
predictions was highly approximate. One source of
approximation was our use of lexical scripts to place trace
information into the component. Since our scripts did not
add any methods to a class, if a class did not have a
constructor or destructor, it would not report trace
information. An instantiation or deallocation may have
been counted multiple times as the result of the call chain
and limited filtering of the trace data. More accurate data
could be collected by using syntax-based tools to ensure all
component classes have appropriate trace information and
by additional computation over the trace data. We also
considered only dynamically allocated class memory in the
component, ignoring static and automatic allocations.
Incorporation of these values would also improve the data
used for prediction.

6. Summary
Predicting the performance of an application early in a

development cycle may help reduce development costs by
averting costly changes that can arise when a developed
application does not have acceptable performance.
Increasingly, application development is incorporating the
use of existing large components, such as object-oriented
frameworks for user-interface development. Performance
prediction methods that utilize knowledge of the execution
of these components could help developers choose
appropriate components to meet performance requirements.

In this paper, we have described our early experiences
with an approach that maps execution data gathered from
an existing component onto structural design information
which is then used as the basis for predicting a component's
memory use in a new context of use. Significant refinement
of this approach is needed before a detailed assessment of
its value can be undertaken. Even at this early stage, the
process of applying the approach has highlighted problems
that must be overcome to make the vision of predicting
performance in the context of design information viable.
These problems include difficulties in gathering and

Preprint 7 1998 Workshop on Software and Performance

reporting acceptably accurate performance data in the
context of the application, and appropriately mapping the
gathered data to entities in the design.

Acknowledgements
This work was funded in part by the Natural Sciences

and Engineering Research Council of Canada, and in part
by the University of British Columbia.

REFERENCES
[1] K. J. Sullivan and J. C. Knight Experience assessing an

architectural approach to large-scale systematic reuse
Proceedings of the 18th International Conference on Software
Engineering, pp. 220-229, 1996.

[2] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe ,
J. M. Anderson, S. W. K. Tjiang , S. W. Liao, C. W. Tseng, M.
W. Hall, M. S. M. Lam, and J. L. Hennesy SUIF: an
infrastructure for research and parallelizing and optimizing
compilers SIGPLAN Notices, vol. 29, pp. 31-37, 1994.

[3] B. Stroustrup, C++ Programming Language. Addison-
Wesley, 1986.

[4] C. Smith Software performance engineering: a case study
including performance comparison with design alternatives
IEEE Transactions on Software Engineering, vol. 19, pp. 720-
741, 1993.

[5] G. Booch and M. Vilot The design of the C++ Booch
components Proceedings of OOPSLA ECOOP '90
Conference on Object-Oriented Systems, Languages, and
Applications, pp. 1-11, 1990.

[6] R. Hastings and B. Joyce Purify: fast detection of memory
leaks and access errors Proceedings of the Winter 1992
USENIX Conference, pp. 125-136, 1991.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[8] J. Rumbaugh, M. Blaha, W. Premerlani , F. Eddy, and W.
Lorensen. Object-oriented Modeling and Design. Prentice
Hall, 1991.

[9] A. Goldberg and D. Robson. Smalltalk-80: The language and
its implementation. Addison-Wesley, 1983.

[10] G. C. Murphy, D. Notkin, and K. Sullivan Software
Reflexion Models: Bridging the Gap between Source and
High-level Models Proceedings of the SIGSOFT Symposium
on the Foundations of Software Engineering, pp. 18-28, 1995.

[11] M. Sefika, A. Sane, and R. H. Campbell Monitoring
compliance of a software system with its high-level design
models Proceedings of the 18th International Conference on
Software Engineering, pp. 387-396, 1996.

[12] H. A. Müller and K. Klashinsky A system for programming-
in-the-large Proceedings of the 10th International
Conference on Software Engineering, pp. 80-86, 1988.

[13] D. H. Hutchens and V. R. Basili System structure analysis:
Clustering with data bindings IEEE Transactions on
Software Engineering, pp. 749-757, 1985.

