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Abstract
This paper identifies reusable interactions and presents

them as an important construct for the development and
reuse of software for computer animation. A reusable in-
teraction manages the flow of information among software
components. They are first-class entities that are easy to
adapt, to organize hierarchically, and to operate dynam-
ically. In computer animation and other time-dependent
systems, communications among components evolves as
(simulated) time advances. With reusable interactions,
developers carefully identify and control this evolution.
A novel approach for computer animation that employs
reusable interactions is presented in the form of the RASP
toolkit. The toolkit provides tools to manage and to orga-
nize hierarchically interactions over time. The hierarchical
organization of the tools promote multiple levels of reuse.
Each level introduces greater means to coordinate the inter-
actions and to reuse them appropriately.

1 Introduction
Software reuse is a growing concern in the computer

graphics community. Many graphical applications share
similar approaches to describe and to visualize animated
scenes. Reusing existing code and design improves the
quality of new applications and reduces the effort it takes
to develop them. Similar to the tools of many other dis-
ciplines, tools for graphics, such as INVENTOR [23] and
GRAPHICS GEMS [6], consist of collections of com-
ponents that represent basic data structures and routines.
Common graphics elements include geometric models, sur-
face shaders, and interactive techniques. Developers select
useful components and then create additional code to inte-
grate them. The code establishes relations among the com-
ponents and permits the components to interact.
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Developmental tools for computer graphics address
three main research areas: shape modeling, image synthe-
sis, and scene animation. Tools for the first two areas enjoy
moderate success. The tools work well because the general
process of shape modeling and image synthesis is reason-
ably well-defined and widely accepted. As advocates of do-
main modeling have discovered in other disciplines [19, 5],
a well-established process decomposes into a set of well-
defined components. The components are well-defined for
reuse because their relations and interactions with others is
understood.

Tools for scene animation, however, enjoy only limited
success. Most tools are not well-suited to create and to con-
trol the wide variety of relations that can exist among com-
ponents. Scene animation, unlike shape modeling and im-
age synthesis, is more than just components with fixed in-
teractions. It is the interaction between components over
time. When and how these interactions form is the essence
of computer animation. Components represent the state of
an animation while the interactions control the changing re-
lations within the animation. As simulated time advances,
many different animation processes can arise which form
varying types of interactions among components. Each
new interaction forms a new, short-term relation that causes
components to send and to receive information. The man-
agement of component interactions in relation to time is an
extremely important concept for computer animation and
other time-varying systems, such as distributed simulation.
Components alter state as they interact dynamically.

Currently, there are no tools for computer animation
that successfully promote a general approach to control-
ing interactions that animate time-varying properties and to
reusing the code that produces the animation. Instead of
moderating and reusing interactions, most tools for scene
animation address a specific animation process. The tools
decompose the process into components with fixed rela-
tions. This approach limits the way the tools animate and
often permit the tools to animate only a subset of a compo-
nent’s properties. For many of these tools, software reuse
is less of a concern than is the development of rapid proto-



types. Most tightly couple a component’s properties to the
methods that change their values. It is difficult to partition
the two and reuse them separately.

It is the aim of this paper to identify reusable interac-
tions and to present them as an important construct for the
development of software for computer animation. Devised
as first-class abstractions, software interactions advance a
variety of benefits towards software modeling and reuse.
They encourage hierarchical approaches to assess and to
adapt software for reuse. A novel approach for computer
animation is presented in the form of the RASP toolkit. The
toolkit supplies tools to organize and to control interactions
hierarchically. Each level of the organization introduces
greater means to coordinate the interactions over time and
to reuse them appropriately.

This paper is divided into eight sections. Section two
defines a software interaction and identifies important vari-
ations. It analyzes current techniques for interaction,
enumerates their drawbacks for animation, and describes
interaction-based programming. Sections three and four
discuss the RASP toolkit. They present a short overview of
RASP’s features and identify those that build interactions
hierarchically. Section five identifies three levels of reuse
as encouraged by the toolkit’s design. Each level of reuse
fosters alternative methods to comprehend and to adapt the
temporal properties of time-varying interactions. Sections
six and seven assess the toolkit’s approach towards reuse
and animation. They analyze its usefulness and relate it
to previous works in graphics and software engineering.
Section eight presents the conclusion and describes future
work.

2 Definitions
2.1 Software Interaction

A software interaction occurs when software compo-
nents communicate to exchange information. The interac-
tion is direct if the components mediate their own commu-
nications. They establish when and how a communication
occurs. If external sources mediate communications, the
interactions is indirect. Of the two interaction types, the
latter interactionencourages separate conception and repre-
sentation of relations among components. It is easy to find
and update interactions because the code and data to pro-
duce interactions is distinct from the code and data of the
interacting participants. Once established, an interaction is
instantaneous if it occurs immediately. However, if it oc-
curs in the future, the interaction is delayed. Animation re-
quires delayed interactions because not all interactions in a
dynamical system occur immediately after they are created.
Most interactions remain inactive until important times or
states arise.

Conditioned to employ standard programming tech-
niques, most programmers form instantaneous, direct in-

teractions between communicating components. As noted
by Sullivan [24], they create interactions by having compo-
nents communicate through implicit or explicit invocations.
With explicit invocations, components call each other di-
rectly. They maintain references to their peers so they may
exchange information. With implicit invocations, compo-
nents register callback events. They inform their peers to
provide them with information when certain conditions or
events arise. By themselves, both invocation techniques
produce immediate results. Components immediately ex-
change information or register callbacks after the invoca-
tions occur. To modify either invocation technique to pro-
duce a delayed interaction, it is necessary to either delay the
original invocation from occurring or alter the way the in-
vocations operate. Either way, it is necessary to intermix
additional code with the original calls.

Both implicit and explicit invocations hinder reuse be-
cause they produce static dependencies. Components store
references to peers or to receivers of callback events. Alter-
ing these reference during development is manageable, but
sometimes troublesome. However, run-time manipulation
is almost always arduous. To design components that dy-
namically refer to and interface with many types of compo-
nents requires significant effort. In addition, the complexity
of components increases as the components interact with
greater numbers of peers. This produces larger components
that are harder to interpret and, eventually, to reuse.

2.2 Reusable Interaction
A reusable interaction is a first-class abstraction that

forms a basic, indirect interaction among components. It is
an identifiable element that mediates interactions between
two or more communicating components. An interaction’s
type determines how many components it manipulates, and
the manner it facilitates communication. Typically small in
size, every interaction type produces a specific effect that
is easy to comprehend and relatively easy to adapt. Com-
mon changes modify interactions to interconnect new com-
ponents, to reconfigure existing relations, and to monitor
new flows of information.

The primary benefit of a reusable interaction is its abil-
ity to mediate interactions among multiple kinds of compo-
nents in multiple types of settings. Neither the components
nor the setting affects the interaction’s behavior. The inter-
action is neither a primary component of a system nor a pri-
mary client of a component. It is the glue that binds com-
ponents to communicate. An interaction structures a pro-
gram as a collection of components interacting under ex-
ternal controls.

A reusable interaction produces the greatest impact
when collections of them, forming a behavior, are reused
as a whole. Reusing an entire set of interactions, or only a
subset of them, creates new sets of similarly acting behav-



iors. Rearranging the relative order of interactions, an es-
sential process for animation, also produces new behaviors.
Swapping or parallelizing two previously tandem interac-
tions creates subtle variations of original behaviors. Se-
quence, an uncommon theme in software reuse, is a vital
concern in animation. The order that components interact
affects the state and outcome of all dynamical systems.

2.3 Time-Varying Interaction
A time-varying interaction augments a reusable interac-

tion with temporal attributes. The attributes specify when,
how often, and under what conditions the interaction oc-
curs. The attributes work best with an interaction that de-
lays its operation. The interaction establishes a relation-
ship between components for the attributes to control. For
animation and other dynamical systems, reuse of tempo-
ral attributes is equally important as the reuse of interac-
tions. The temporal attributes of an interaction characterize
the nature of a scene as much as its composition of com-
ponents does. Overlaying interactions with previously de-
fined attributes produces differing scenes with similar tem-
poral characteristics. Likewise, modifying the attributes of
existing interactions produces similar scenes with differing
temporal characteristics.

2.4 Interaction-Based Programming
Interaction-based programming employs first-class in-

teractions to organize the structure of a program into com-
ponents and interactions. Components send data to and re-
ceive data from the interactions. The interactions main-
tain references to the components they link. Interaction-
based programs are evaluated by a standard programming
language compiler and by a run-time evaluator. The com-
piler ensures that the interaction-based program follows the
proper language syntax. The evaluator analyzes and veri-
fies the program’s interactions. It examines the interactions
to verify that they are formed properly and to understand
when and how they operate. The analysis enables the eval-
uator to execute parallel interactions, to optimize run-time
performance, and to flag run-time errors.

Interaction-based programming encourages separate de-
velopment and representation of algorithms for computa-
tion and algorithms for coordination. Algorithms for com-
putation decide the state of components while algorithms
for coordination decide the state of communications be-
tween components. The separate representations introduce
a form of modularity that does not naturally develop with
standard programming practices. As programs grow large
and more complex, this separation provides great benefits.
It permits rapid identification and manipulation of the at-
tributes that control when and why an interaction occurs,
who an interaction manages, and in what manner the inter-
action operates.

In an interaction-based program, both components and

interactions are potentially reusable. Each may be adapted
separately to accept new parameters and to work in vary-
ing contexts. Completely different approaches may be im-
plemented to reuse each effectively. Compositional tech-
niques towards reuse, such as [3, 11], may be applied to
components only, and hierarchical schemes, such as the one
described in this paper, may be applied strictly to interac-
tions. A robust scheme to manipulate time-varying inter-
actions is essential for animation and critical for high-level
reuse. The scheme affects how interactions form behaviors,
accept temporal attributes, and prompt reuse.

3 The RASP Toolkit
3.1 Overview

RASP [15, 16] is an experimental toolkit for computer
animation that promotes interaction-based programming.
It consists of tools to compose, render, and animate ge-
ometric models. The toolkit promotes reuse by support-
ing reusable, time-varying interactions. It employs hier-
archical structures to interconnect components systemati-
cally over time. From the organization of the structures, it
is easy to determine what components are interacting, and
when and how often they interact.

The toolkit endorses a three-phase approach to applica-
tion development. In the first phase, model specification,
developers design components for animation. In the sec-
ond phase, dynamic specification, developers adapt and se-
quence reusable interactions. In the final phase, temporal
specification, developers assign temporal attributes to the
interactions of phase two. Collectively, the three phases
form a script that progressively moderates sequences of in-
teractions among many components.

To integrate existing applications, developers reuse and
intermix phase elements. The primary reusable elements
are the components of phase one, the interactions of phase
two, and the temporal script of phase three. Elements from
the last two phases form RASP’s primitive hierarchy. Four
levels deep, this hierarchy identifies interactions and aug-
ments them with temporal attributes. Each level orders and
controls the elements of the previous level, and promotes an
alternative approach to reuse. Higher levels enlist abstract
ways to describe and to adapt the collective effects of mul-
tiple interactions.
3.2 Primitive Hierarchy

As shown in Figure 1, the primitive hierarchy consists
of events, activities, timingActs, and processions.1 Events
manage single interactions. They form temporary bind-
ings among communicating components. Activities orga-
nize interactions to form behaviors. They delimit an inter-
val of time that controls how often and in what order inter-

1The hierarchy also contains additional primitives to manipulate pro-
cesses. They have been omitted intentionally because of their irrelevance
to this paper’s subject.
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Figure 1: Primitive hierarchy

actions occur. TimingActs and processions collate behav-
iors to form temporal scripts. The scripts determine how
behaviors relate and when behaviors occur.

4 Primitives
4.1 Events

Events are first-class abstractions that establish delayed,
indirect interactions. Lowest in the primitive hierarchy,
they produce reusable interactions by manipulating the
ports of interacting components. Ports provide events with
bindings to access the structures and functions of com-
ponents. Ports, too, are first-class abstractions that send
and receive information. The events communicate with
the ports to produce interactions. Communication between
events and ports occurs when the events receive notification
from higher level primitives. The higher level primitives,
not the events themselves, determine when an interaction
occurs.

4.1.1 Programming with Ports

From an object-oriented perspective, components with
ports are objects with objects as member functions. The
member functions, being objects, possess state and accept
messages. To communicate with a component, callers in-
teract with the component’s ports. Ports breach the bar-
rier between components and their environments. When
ports provide information from the component, they are
outports; when they accept information for the component,
they are inports. Ports return and accept values by ac-
cessing the data structures and functions of their associ-
ated components2. Like regular functions, they may in-
voke many methods, perform many computations, or ac-
cess many data structures before they produce or consume
information for the events.

2From a strict definition of an object-oriented system, ports violate the
rules of encapsulation. They access information directly from the com-
ponent which stores them as data members. However, ports are special
objects that are elemental units of components. They, similar to stan-
dard member functions, help components encapsulate information and
behavior.

Method 1 - Events Only
Event evt1( A!outPos(), C!inVal1() );
Event evt2( B!outPos(), C!inVal2() );
Event evt3( C!outSum(), D!inPos() );

Method 2 - With Virtual Ports
VPort *sum = *A!outPos() + *B!outPos();
Event evt( sum, D!inPosition() );

Figure 2: Sets D’s position to the sum of A’s and B’s posi-
tion

void Event::update()
f

verify that ports are compatible
if (outPort!getTypeId() == inPort!getTypeId())

verify that inPort is ready to accept data
if (inPort!getState() == TRUE)

send data from inport to output
inPort!doHandler( outPort!getValue() )

g

Figure 3: Update routine for sample event

To parameterize events, developers obtain ports from
components using normal object-oriented method invoca-
tions. They invoke methods that appear by name to pro-
duce results or to return values, but in reality return refer-
ences to ports. This scheme permits developers to program
interactions as though they were applying normal object-
oriented techniques. They need not learn a new program-
ming paradigm or radically change their mindset. They
need only realize that their invocations produce references,
not immediate results or actions. For example, the code in
method one of Table 2 parameterizes three events. Each
event produces an interaction between an outport and an
inport. When activated, the events communicate with the
ports to move data from one port to the next. Collectively,
the three events indicate that D’s position is equivalent to
the sum of A’s and B’s position. The component C accepts
values from A and B to compute their sum. The events con-
trol the interactions which developers describe by invoking
methods that return references to ports.

4.1.2 Event Types

An event’s type determines what type of arguments it ac-
cepts and what type of interaction it produces. In other
words, it determines how events manipulate the ports of its
interacting components. The code in Figure 3 defines the
“update” routine for a sample event that simply passes in-
formation from an outport to an inport, both declared pre-



Kind Type

Simple Event; StateEvent; CallEvent
Time TimeEvent; StepEvent; DurationEvent;

TimeStepEvent;
Logical BoolEvent; CondEvent; BiCondEvent;
Group ToggleEvent; ChainEvent; SwitchEvent;

Table 1: Kinds of event types

viously in the event’s constructor (not shown in figure). At
run-time, the event passes information between two ports
after it verifies that the two communicating ports are com-
patible and that the inport is ready to receive data.

Table 1 identifies four kinds of events currently supplied
by RASP. Simple events apply basic techniques to manage
inports and outports. They either monitor them, pass data
between them, or instruct them to invoke commands. Time
events disseminate temporal information. They provide in-
ports with timing values, such as current time, expected du-
ration, and future time step. The states of components ad-
vance as they receive timing values from their inports. Log-
ical events relate ports to logical flags and conditions. The
state of the logical conditions determines how higher level
primitives interpret the events. Group events contain other
events. They selectively toggle, chain, or order events to
bind them closely.

4.1.3 Port Types

Outports further divide into two outgoing port types, gen-
eral and virtual. General ports associate with compo-
nents. They represent first-class member functions. Virtual
ports create associations, similar to one-way constraints,
between other outports. They express symbolically com-
plex relationships among components. They form mathe-
matical expressions with outports as variables. The expres-
sions provide events with formulas to derive complex inter-
actions. The formulas evaluate when the virtual ports re-
ceive requests from events to provide values. The initial
specification identifies a delayed interaction. All events,
as described in section 4.1.2, freely accept virtual ports
as though they were general ports. The virtual ports sim-
ply employ alternative means to provide out-going values.
With virtual ports, the previous example of section 4.1.1 ap-
pears as method two of Table 2. The event evt employs
the virtual port sum to compute the sum of A’s and B’s po-
sitions.

4.2 Activities
Activities manage collections of events. They sequence

and partition events into groups to form behaviors. Groups
determine when and how often events produce interactions.

Activity* chase( Object *A, Object *B )
f

produces sequences of values
(1) Interpolator *ip = new Interpolator();

events to parameterize interpolator
(2) DurationEvent *dEvt = new DurationEvent( ip!inDurationVal() );
(3) Event *bEvt = new Event( A!outPosition(), ip!inBeginVal() );
(4) Event *fEvt = new Event( B!outPosition(), ip!inFinishVal() );

events to compute new position
(5) TimeEvent *tEvt = new TimeEvent( ip!inCalcValue() );
(6) Event *eEvt = new Event( ip!outCurVal(), A!inPosition() );

add events to activity
(7) Activity *act = new Activity;
(8) act!addInitEvent( dEvt, bEvt );
(9) act!addActEvent( fEvt, tEvt, eEvt );

(10) return act;
g

Figure 4: Chasing activity

Interactions may occur throughout an activity’s lifetime or
only when the activity begins or ends. Higher level prim-
itives determine when activities start and stop. Activities
continually induce events to produce interactions until they
receive notice to terminate. Most often, termination occurs
when specific run-time conditionsarise or an activity’s life-
time expires.

Simultaneously active activities produce concurrent be-
haviors. Interactions occur in parallel as simulation time
progresses. Concurrency, an essential element of anima-
tion, is difficult to specify with conventional programming
practices. One must explicitly use co-routines or intertwine
operations with semaphores to adequately ensure concur-
rent execution. As proponents of aspect-oriented program-
ming can attest [13], both approaches produce code seg-
ments that are unwieldy to manage and hard to reuse. De-
velopers address issues of concurrency and design simulta-
neously. It is difficult to rapidly identify, extract, and reuse
only design operations. Fortunately, RASP’s primitive hi-
erarchy isolates developers from this difficulty. Develop-
ers focus their efforts on constructing activities with events.
The activities and higher level primitives manage concur-
rency.

The code in Figure 4 defines the activity chase. Con-
sisting of one interpolator and five events, chase moves
object A to follow object B. The interpolator produces a se-
quence of intermediate values that the activity uses to con-
trol A’s position. The five events produce five interactions
that pass data and temporal values to and from the objects
and the interpolator. The first three events (lines 2-4) pa-
rameterize the interpolator with a starting value, an ending
value, and a temporal duration. The two values, each set
to the positions of one object, notifies the interpolator what
sequence of values to produce. The last two (lines 5-6) ob-
tain an intermediate value from the interpolator to calculate



� Relation � Inactive � Active �
Stops N/A stops
Starts starts restarts
ReStarts N/A restarts
InStarts starts N/A
Delimits starts & stops starts & stops
ReDelimits N/A starts & stops
InDelimits starts & stops N/A
Meets starts restarts
ReMeets N/A restarts
InMeets starts N/A

Table 2: The effects of temporal relations on active and in-
active timingActs. TimingActs are active if they are ac-
tively producing interactions when a relation comes into ef-
fect.

A’s time-varying position. The activity groups two of the
five events as initial events (line 8), and the remainder, as
acting events (line 9). Initial events trigger once while act-
ing events trigger continually. The acting event fEvt up-
dates continuously the final value of the interpolator with
the position of B. As B moves, the interactions between the
objects and the interpolator produces a new sequence of in-
termediate values that accurately moves A after B.
4.3 TimingActs & Processions

TimingActs assign temporal attributes to activities.
They associate activities with absolute timing values or rel-
ative temporal relations. Timing values delimit explicit in-
tervals of time. They specify the times that activities be-
gin and end. Temporal relations establish time-based re-
lationships between activities. They relate the lifetimes of
activities to other activities or important states. The rela-
tions, shown in Table 2, initiate and terminate activities si-
multaneously, create tandem sequences, and order activi-
ties conditionally. The effects on activities vary accord-
ing to state values and run-time conditions. For example,
InDelimits only delimits the lifetimes of inactive activ-
ities. Those that are active when the timingAct acts remain
untouched.

Collections of timingActs form temporal scripts. Man-
aged by processions, the temporal scripts sequence timing-
Acts. They describe when and why collections of interac-
tions occur. It is the responsibility of the activities of the
timingActs to determine “who” interacts and “what” the
interactions produce. Since scripts organize only timing-
Acts, timingActs and activities may be formed indepen-
dently. Reassigning new activities to existing timingActs
produces a new animation with similar temporal character-
istics. The outcome of the interactions may differ, but the
relative order of the interactions is always the same.

Figure 5 shows the temporal script that forms the time
line (see section 5.3) of Figure 9. The script assigns explicit

(1) B!setRel( MEETS, C );
(2) C!setRel( MEETS, F );
(3) C!setRel( DELIMITS, E );
(4) C!setTrueRel( STARTS, D );
(5) F!setRel( STOPS, D );

add timingActs to procession
(6) Procession *proc = new Procession();
(7) proc!addTimingAct( A, 1, 10 );
(8) proc!addTimingAct( B, 30, 40 );

Figure 5: Temporal script of Figure 9

timing values to timingActs A and B (lines 7-8) and tem-
poral relations to C, D, E, and F (lines 1-5). The relations
indicate that C occurs after B, F occurs after C, and C and
E occur simultaneously. The fourth relation indicates that
C starts D if a specific condition within C occurs. The last
relation indicates that F stops D when F begins.

5 Levels of Reuse
Each level of the primitive hierarchy promotes a differ-

ent approach to software reuse. To access, to understand,
and to adapt code for reuse, developers apply either fine-
grain, medium-grain, or coarse-grain reuse. Fine-grain
reuse pertains to events, while medium-grain and coarse-
grain reuse pertain to activities and temporal scripts. Each
level of reuse supports a different abstraction level to ma-
nipulate time-varying interactions.
5.1 Fine-Grain Reuse

When developers reuse individual events, they exer-
cise fine-grain reuse. They choose, understand, and adapt
quickly the event that most closely performs a desired inter-
action. Developers access and understand events by their
kind (see section 4.1.2) and type. Together, the two iden-
tifiers outline the purpose and describe the general param-
eters for every event. Developers adapt events in one of
two ways. They either use the events as is or they mod-
ify the events to produce a new interaction. The former ap-
proach modifies an event’s arguments while the latter ap-
proach modifies an event’s code segment.

Reuse is uncomplicated because events are small and
specialized. Modifications to events range from changing
an event’s parameter list to altering an event’s means of
passing information. In general terms, event modifications
alter “who” interacts or “how” interactions occur. For ex-
ample, the code in Figure 6 adapts the sample event of Fig-
ure 3 to forward the greater value from two outports to an
inport. The augmented event accepts an extra outport and
performs an additional logical operation.
5.2 Medium-Grain Reuse

Developers exercise medium-grain reuse when they
reuse activities. They choose, understand, and adapt ac-
tivities to form similar, yet slightly differing behaviors. To



void Event::update()
f

verify that all ports are compatible
if (outPort!getTypeId() == inPort!getTypeId() &&

(outPort2!getTypeId() == inPort!getTypeId())
verify that inPort is ready to accept data

if (inPort!getState() == TRUE)
compare values from both outputs

if (outPort!getValue()>outPort2!getValue())
inPort!doHandler( outPort!getValue() )

else
inPort!doHandler( outPort2!getValue() )

g

Figure 6: Update routine for sample event

Descriptor

� ObjectA chases ObjectB

Component List (ports)

� ObjectA (in Point3, out Point3)

� ObjectB (out Point3)

� Interpolator (in double, out Point3)

Interaction Table
1. DurationEvent: Interpolator receives durational value.
2. Event: Interpolator receives Point3 (position) from ObjectA.
3. Event: Interpolator receives Point3 (position) from ObjectB.
4. TimeEvent: Interpolator receives timing value.
5. Event: Interpolator computes a Point3 (new position) for ObjectA.

Figure 7: Behavioral description

select appropriate activities, developers peruse behavioral
descriptions. Behavioral descriptions outline the goals of
activities by enumerating main components and general in-
teractions. For each component, the descriptions express
its purpose and identify its ports. For each interaction, the
description identify its event type and its participants.

The behavioral description of activity chase is shown
in Figure 7. It consists of three parts: a descriptor, a compo-
nent list, and an interaction table. The descriptor identifies
the goal of the activity: objectA chases objectB. The
component list identifies components and ports. The activ-
ity consists of two objects and one interpolator. Port infor-
mation identifies what type of data the interactions of the
activity manipulate. Often, this information is more use-
ful than is the identification of components. The activity
produces interactions among ports, not components. So,
any component that provides the same type of port works
equally well. The interaction table highlights important in-
teractions among components. It indicates that interpolator
interacts with objectB after it receives positional infor-
mation and temporal data.

Once relevant activities have been selected, develop-
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Figure 8: Medium-Grain Reuse

ers assess the activities by their events. They mentally
sequence through the events to observe how data flows
from component to component. The resultant dataflow de-
termines how developers partition activities into reusable
parts and extract critical sequences of events. For exam-
ple, the diagram in Figure 8 illustrates the partitioning and
reuse of two activities to form a third. The third combines
elements from the first two with additional events to form a
new behavior. The resultant activity customizes the events
with new parameters, and reorders them, if necessary, to
form the proper interactions.
5.3 Coarse-Grain Reuse

Coarse-level reuse occurs when developers reuse the
timingActs of temporal scripts. They find and adapt the
script(s) that closely match a desired temporal sequence.
Reuse of sequence, not interactions or behavior, is the goal
of coarse-level reuse. To access appropriate scripts, devel-
opers scan temporal descriptions. Similar to behavioral de-
scriptions, yet differing in content, temporal descriptions
describe visually the relative order of timingActs over time.
The visual representation depicts a time line with timing-
Acts dispersed temporally. The time line identifies relation-
ships between timingActs with conditions and relations,
not with explicit values of time.

Meets Meets

Delimits

D

C

E

FA

Starts Stops

BTime

Figure 9: Timeline: (1) Timing values separate A and B; (2)
F follows C which follows B; (3) C delimits E; (4) F stops
D which C conditionally starts.

A sample visualization, shown in Figure 9, identifies a
timeline with six generic timingActs and six relations. The



placement of timingActs indicates sequence while the la-
bels on arrows identify relations. The stippled arrow iden-
tifies a conditional relationship between C and D. C starts D
if and only if special states arise. The generic labels on the
timingActs indicate that the timeline is not dependent upon
specific interactions or behaviors. Any timingAct substi-
tutes freely.
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Figure 10: Coarse-Grain Reuse

Once a script is chosen, developers partition scripts se-
quentially and extract the useful sequences. Afterwards,
they either parameterize the sequences with new behaviors,
or modify the sequences with the original activities of each
timingAct intact. The former action produces animations
that are temporally equivalent, while the latter produces an-
imations that are behaviorally equivalent. For example, the
illustration in Figure 10 blends elements from two scripts
to form a third. The resultant script employs both the script
and timingActs of the first, but only the script of the second.

6 Discussion
6.1 Application Development

Numerous animation sequences have been successfully
built with the RASP toolkit. As can been seen by browsing
the Rasp webpage3 or reviewing the illustrative examples
of [16], the interaction-based approach applies well to pop-
ular animation techniques, such as key-framing, behavioral
modeling, and physically-based motion. Interactions coor-
dinate communications among the objects in a scene and
the algorithmic components that modify them. Introduc-
ing variations to an animation often requires only changing
the interactions, not the components. A wide variety of ef-
fects occur when interactions filter, reorder, or alter data as
it flows between components.

From the author’s experience, initial reuse with RASP
is medium-grain. Activities and their behaviors provide
the most benefits. Animators (developers) typically think
of behaviors before they think of individual interactions
or scripts. The behaviors control the most important ele-
ments of an animation - they determine how states change.
After appropriate behaviors have been selected, the next

3www.cs.ubc.ca/spider/gslee/Rasp/rasp.html

phase of reuse is either fine-grain or coarse-grain. Fine-
grain reuse occurs first if the behaviors necessitate amend-
ments. Otherwise, the animator may choose initially to re-
fine the scripts before she updates the individual interac-
tions.
6.2 Drawbacks

Developing reusable applications with RASP entails
three drawbacks. First, RASP requires developers to fa-
miliarize themselves with interaction-based programming.
Interactions, not functions calls, establish the structure of
communications within an application. The order and the
attributes of interactions determine when and how often
communications occur. Second, RASP requires develop-
ers to build time-invariant components with ports. Time-
invariant components always receive information from
their environments to change state. Components that au-
tomatically change state over time are difficult to manage.
The tools of the primitive hierarchy are not designed to in-
terface with components that maintain their own notion of
time. Third, RASP requires developers to augment their
code with two descriptions, behavioral and temporal. The
current version of RASP provides few guidelines to create
these descriptions. No process exists to determine if a de-
scription adequately presents information that is proper and
useful.

7 Related Work
7.1 Software Engineering

Much work in software reusability attempts to identify,
assess, and construct reusable components, not reusable in-
teractions. Popular research topics involving components
include complexity measurement [18], compositional de-
velopment [3], and domain engineering [19, 5]. Integrating
components with interactions shares many commonalities
with entity-relationship (ER) data modeling and software
architecture design. Both methods distinguish between el-
ements that compute and elements that interconnect.

ER data modeling methods, such as those proposed by
Chen [4], Rumbaugh [21], Sullivan [24], and Helm et
al [10], employ “relations” to identify interactions between
independentlycomputing components and processes. They
establish behavioral relationships that are easy to assess and
to use without modifying components. Although similar
to the interactions of this paper, relations of ER methods
are typically more complex and not as adaptable. To ex-
press complex relationships, such as triggers, the primitives
intermix control statements with logical expressions. The
logical expressions produce changes to variables that are
difficult to observe and to coordinate globally; thus, they
are not well suited for animation. Except for Helm et al’s
work, the ER methods do not readily produce generic rela-
tionships between components. Relations are often bound
tightly to a specific component. This makes them harder to



adapt and difficult to reuse. Helm et al’s work emphasizes
genericity of relationships, but does not provide a medium
to implement them. Their work is intended for specifica-
tion, not implementation.

Software architecture specification methods, such as
DARWIN [17] and UNICON [22], employ architectural
connections to connect components and mediate interac-
tions. The connections - first-class, high-level abstractions
- regulate data flow, data access, and resource allocation
within a program. The specification methods employ port-
like structures and advanced compilers to ensure the con-
nections are generic. To create animations with these meth-
ods requires great work. The methods neither control in-
teractions dynamically nor organize connections hierarchi-
cally. There exist few structures to sequence interactions
and to reuse collections of interactions efficiently. The goal
of these specification methods is to integrate components,
not to govern them over time.

7.2 Computer Graphics
Most tools for computer graphics employ standard pro-

gramming techniques, such as explicit invocation and data
abstraction, to aid in application development. They con-
sist of components and functions that developers orga-
nize and invoke. For modeling and rendering, these tools
have proven useful and have widespread use. With pop-
ular component-based tools, such as INVENTOR [23]
and QUICKDRAW-3D [1], developers freely exchange
and rehash existing applications. However, for anima-
tion, these tools have provided limited success. The most
common component for animation stores collections of
“time,value” pairs, commonly referred to as keyframes. Al-
though useful, this approach, as employed by TWIXT [8]
and SWAMP [2], constrains developers to specify anima-
tion at one, very low-level of abstraction.

Most tools for animation, such as those proffered by
GROOP [14] and ASAS [20], consist of components that
encapsulate geometry, time-varying behaviors, and tempo-
ral progression techniques. The tools manage the inter-
connections among the components implicitly, or they re-
quire developers to manage the connections explicitly. Ei-
ther way, the tools emphasize the reuse of computation,
not interaction. To reuse existing behaviors, developers ei-
ther modify components and preserve interactions, or mod-
ify interactions and preserve components. The former ap-
proach encourages the reuse of algorithms - a difficult pro-
cess that is not fully understood. The latter approach re-
quires developers to overlay components with structures
for communication. Without proper tools that manage
these communications, the results are difficult to manage
and hard to re-employ.

Few tools in computer graphics organize interactions.
Of the few that do, such as Conman [9], Condor [12], and

Bramble [7], none are designed for animation. They inter-
connect components to compose formulas and algorithms.
Few primitives exist to control the interactions dynamically
or to manage the interactions hierarchically. The interac-
tion are neither first-class nor separate from the components
they interconnect; thus, they are difficult to identify and to
extract for reuse.

8 Conclusion
Computer animation is the interaction of components

over time. The components establish the state of an ani-
mation while the interactions change the state of the com-
ponents. Thus, the interactions that occur in animation are
equally important as the components of the animation. For
applications that animate, they establish structure and iden-
tify relations. Interactions which are first-class and trans-
ferable are reusable. Reusable interactions mediate com-
munications among multiple kinds of components in multi-
ple types of settings. They are easy to organize and to con-
trol hierarchically. They operate instantaneously or delay
until needed. Interactions accepting temporal attributes are
time-varying. They operate as simulation time progresses.
Time-varying, delayed interactions interact well with op-
erations that sequence communications. Sequence, an un-
common theme in software engineering, but vital to ani-
mation, orders the operation of interactions. It determines
which interactions occur in parallel and which occur in suc-
cession.

RASP, an experimental toolkit for computer animation,
employs reusable interactions to animate the states of soft-
ware components. A primitive hierarchy, composed of
events, activities, timingActs, and processions, organizes
the interactions and controls their execution. Events form
interactions which activities order. Activities form be-
haviors which timingActs and processions manage. Alto-
gether, the primitives form scripts that produce dynamic in-
teractions. As time flows, interactions occur. The hierarchy
promotes three approaches towards software reuse. De-
velopers apply either fine-grain, medium-grain, or coarse-
grain reuse to assess and to adapt existing scripts. They
choose primitives by examining a parameter’s parameters,
type and accompanying description. The description iden-
tifies the order, intent, and timing properties of the interac-
tions within the script.
8.1 Future Directions

More work is required to enhance RASP’s usefulness.
Better guidelines must exist to inform developers how
to create descriptions for behaviors and temporal scripts.
Techniques to retrieve and to assess a description gener-
ally work better when the informationconforms to an estab-
lished pattern or standard. Preliminary results indicate that
a semi-automated process may help create and compare de-
scriptions for developers. This would increase productivity



and maintain minimal standards.
Future versions of RASP will include higher-level

events and constraints. Higher-level events, such as pipes,
queues, and remote-procedure calls, help developers cre-
ate a wider variety of applications. RASP’s current set of
events provides no support to develop distributed anima-
tions or resource-based simulations. Constraints are neces-
sary to update automatically relations among components.
Virtual ports establish one-way relations that update only
on command. An automated process with additional fea-
tures, such as bi-directional relations or a cyclic solver,
would reduce the number of events developers must spec-
ify to create complex interactions.
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