
Conceptual Module Querying
for Software Reengineering

Elisa L. A. Baniassad and Gail C. Murphy
Department of Computer Science
University of British Columbia

201-2366 Main Mall
Vancouver B.C. Canada V6T 1Z4

{bani,murphy}@cs.ubc.ca

ABSTRACT
Many tools have been built to analyze source code. Most of
these tools do not adequately support reengineering
activities because they do not allow a software engineer to
simultaneously perform queries about both the existing and
the desired source structure.

This paper introduces the conceptual module approach that
overcomes this limitation. A conceptual module is a set of
lines of source that are treated as a logical unit. We show
how the approach simplifies the gathering of source
information for reengineering tasks, and describe how a
tool to support the approach was built as a front-end to
existing source analysis tools.

Keywords
Source code analysis, software reuse, code scavenge,
software structure, modularization, reverse engineering

1 INTRODUCTION
Many reengineering activities performed by software
engineers require reasoning about the source code for the
system. Part of the reengineering process, for instance,
may involve the identification and formation of new
software components from the existing code base.

A large number of tools have been built to help software
engineers analyze source code. These tools provide an
engineer with various views of the source. For instance,
cross-reference tools, such as Cscope [14] and CIA [3],
help the engineer identify and view parts of the source
relevant to specified program items, such as variables and
procedures. Program slicers allow an engineer to view an
executable subset of the source contributing to (or
emanating from) a particular program point [17]. Reverse

engineering tools help engineers identify and view higher-
level structure derived from the source [4].

Although these tools can help an engineer understand the
existing source code, the views they provide do not
adequately support many of the reengineering tasks an
engineer performs. Consider an engineer faced with the
task of restructuring a C code base. To plan and perform
this task, an engineer needs to determine the components to
form, the interaction of the components with the remaining
source code, and the interactions between the newly formed
components. Existing program understanding tools
unnecessarily complicate these investigations in one of two
ways. Tools that provide fine-grained information about the
existing source, such as the use sites of particular
variables, do not allow an engineer to query this
information in terms of the desired reengineered structure.
Tools that support the expression of reengineered structure
restrict the queries that an engineer can perform about the
interactions between the new components and the existing
source. The engineer can thus not query the source in terms
of both the existing and desired structure.

In this paper, we describe an approach that overcomes this
limitation by allowing software engineers to analyze
existing source in terms of conceptual modules. We define
a conceptual module as a set of lines of source code that are
to be treated as a logical unit. When a conceptual module
is defined, an initial analysis is performed to determine the
interface and internal structure of the unit. This analyzed
information may be used to simplify subsequent queries
about the conceptual module. The approach is supported by
a tool that allows engineers to iteratively define conceptual
modules for an existing code base, and to analyze data- and
control-flow interactions both between a particular
conceptual module and the existing source and between one
or more conceptual modules. The tool provides two
interfaces: a menu-driver interface simplifies the formation
of conceptual modules and provides access to pre-coded
queries; a programmatic interface supports task-specific
analysis of conceptual modules.

Since our work focuses on the formation of conceptual
modules and subsequent queries involving the modules, we 1998 IEEE. Personal use of this material is permitted.

However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work in
other works must be obtained from the IEEE.

Figure 1 Lines of Source Contributing to Desired
Input Pipe Component

have architected our tool as a front-end to different kinds of
source code analyzers. To date, we have connected the tool
to various C source code analyzers, such as Field [12], and
tools built on the SUIF [18] compiler framework.

Our approach provides two benefits. First, the approach
simplifies the gathering of source information for many
tasks by removing the burden from software engineers of
correlating and summarizing the results of multiple low-
level queries. Second, the approach demonstrates how
support for queries about conceptual structural information
can be layered onto existing source code analysis tools.

We begin with a description of the activities performed
during a sample reengineering activitythe formation of a
new software component (Section 2). We then describe the
conceptual module approach and tool (Section 3). Next, we
show how the approach can greatly simplify the analysis of
source for various reengineering activities, and describe the
role it has played in some reengineering scenarios (Section
4). Section 5 discusses the role of context when performing
queries during reengineering activities, and discusses
design choices we made in the definition of our approach.
A comparison of the approach to related work (Section 6)
follows. We conclude with a summary of the paper and an
outline of future work (Section 7).

2 A SAMPLE REENGINEERING ACTIVITY
To clarify some of the information needs of a software
engineer trying to extract a software component, we
consider the task of isolating and forming an input filter
component from a system built in the Unix pipe-and-filter
style, the GNU sort program.1 This program comprises
about 5100 lines of C code split across 29 files. The
majority of the code specific to the sort functionality
resides in a 1700-line file called sort.c .

An engineer may wish to form and extract an input pipe
component to help build a new program in the same
architectural style. The target input pipe component would
consist of a set of procedures acting on variables
representing the state of the pipe.2 Sometimes, the code that
is to be extracted into a procedure of the target component
is a set of contiguous lines. In these cases, the formation of
the procedure is relatively straightforward, and specialized
tools can be applied to automate the task [6]. Other times,
the code lines to be included in the new procedure are split
across existing procedure boundaries.

1 The sort program used was from the 1.21 version of the
GNU textutils distribution.
2 Although it may seem trivial to build an input filter, a
number of subtleties can arise. The source for GNU sort ,
for instance, deals with cases in which the input and output
filenames providing data to the pipes are the same.

In sort , for instance, the engineer determines, based on a
perusal of the code, that the fp variable declared and used
in the 351-line main function contributes to the
initialization of the input pipe functionality. By tracing the
use of the fp variable and the uses of variables
contributing to fp 's value, the software engineer
determines that code from the sort function also
contributes to the desired initialization procedure of the
target input pipe component. Figure 1 shows a snippet of
the relevant code from the main and sort procedures.
This code is spread across multiple, non-contiguous, lines
of source code.

When the target procedure crosses existing structural
boundaries, automated support to form the component is
not available. Instead, the engineer must analyze the
identified lines of code to determine the interface to the
desired procedure, and any additional source lines that must
be included to provide the desired computation.
Determining this information requires the engineer to
analyze the lines of code for two kinds of interactions:
interactions within the lines of code representing the new
structure, and interactions between the new structure and
the remaining system.

3 CONCEPTUAL MODULES
The conceptual module approach and tool provides direct
support for analyzing the interface of a desired component
by allowing a software engineer to explicitly describe the
target structure of interest before performing queries on the
source. Figure 2 illustrates the approach. The engineer first
uses a tool to extract informationa source modelfrom
the source code. The engineer then describes the target

main()
 for (i=0; i< nfiles; i++) {
 char buf[8192];
 FILE *fp;
 int cc;

 fp=fopen(files[i], "r");
 tmp=tempname();
 ofp=xtmpfopen(tmp);

 sort(files, nfiles, ofp);

sort(char **files, int nfiles, FILE *ofp) {
 fp=xfopen(files, "r");
 while (fillbuf(&buf, fp)) {
 findlines(&buf, &lines)

 if (feof (fp)) && !nfiles...
 tfp=ofp;
 else
 ++n_temp_files

Figure 2 Process of Using the Conceptual Module Tool

structure as one or more conceptual modules where each
conceptual module consists of a set of source lines. As each
conceptual module is defined, the tool performs analysis to
determine the module’s interface and structure. The
engineer may view the results of this analysis. The engineer
may also perform queries about the relationship between
the conceptual module and the existing source, and about
the relationships between conceptual modules. The steps of
defining a conceptual module and performing subsequent
queries are performed iteratively by an engineer.

In the case of sort , for example, the engineer describes
the lines of code in the existing source that contribute to the
functionality of the desired input pipe initialization
procedure.3 The tool responds with the analyzed
information shown in Figure 3. Based on this information,
the software engineer may decide to alter the lines of code
contributing to the conceptual module, causing the tool to
re-analyze the module with the altered information.

We describe our approach and tools in more detail in the
next two sections. First, we describe the source model on
which the analysis is based. Then, in Section 3.2, we
describe the query language. In Section 3.3, we describe the
tools built to support the approach.

3.1 Source Model
The model extracted from existing source code is targeted
at a procedural language and consists of three relations:

• a variable dependence relation that describes uses ,
defs , or use-def pairs for a variable.4 The use and
def sites are described by source line numbers.

3 The following lines were included in the module: 228,
239, 245-249, 1741, 1796, 2071, 2073-4, 2041, 2081, 2796,
2098, 2104, 2107, 2111, 2124, 2131, 2137, 2146, 2148, and
2796.
4 A use-def pair describes a reaching definition for a
specific use of a variable.

• a control transfer relation that identifies the source line
numbers containing call sites and, in each case, the
procedure called.

• a procedure relation that describes the source line
number on which the definition of each procedure starts.

3.2 Query Language
The query language supports the definition of conceptual
modules (Section 3.2.1) and the investigation of
interactions involving conceptual modules (Section 3.2.2).

3.2.1 Forming a Conceptual Module

A conceptual module is formed by stating a name for the
module and by stating a set of lines of existing code
contributing to that module. A software engineer may
specify lines of code to include in a conceptual module in
two ways: by specifying particular lines of code, or by
specifying pieces of logical structure in the existing code
that are then automatically converted into lines of code. For
example, in sort , an engineer may choose to include the
fp variable in a conceptual module formed to represent the
target input pipe initialization procedure. The tool will scan
the source model to determine the lines of code where the
variable is either used or defined; the tool will then use
these lines as part of the definition of the conceptual
module. The engineer may also add a procedure to a
conceptual module. In this case, all of the lines of code
deemed to be inside the procedure, based on the procedure
relation, are included in the conceptual module.

Given the lines of code, the tool determines the input
variables, local variables, and output variables of the
conceptual module, and the calls made from the conceptual
module to procedures in the existing source. For example,
Figure 3 shows that the ofp variable from the main
procedure is an input variable to the newly formed input
pipe initialization component. The figure also shows that
the module includes code on line 2124 of sort.c that
calls the xfopen function. The analysis used to determine
this information is performed in two phases. The first
phase assumes that the source model provides complete

Input variables:
sortalloc, main.ofp, main.minus, main.i, main.tmp, sort.buf, main.outfile, errno,
sort.nfiles, main.argv, main.argc

Output variables:
main.mergeonly, sort.ofp, sortalloc, main.ofp, main.checkonly, main.minus, instat,
sort.buf, errno, sort.nfiles, fp, sort.fp

Local variables:
main.files, main.nfiles, sort.files

Control transfers from Input_Pipe_Init module:
xmalloc at sort.c 1796, check at sort.c 2081, exit at sort.c 2081,
strcmp at sort.c 2104, fstat at sort.c 2107, stat at sort.c 2107, strcmp at sort.c 2107
error at sort.c 2111, xfopen at sort.c 2124, error at sort.c 2131, merge at sort.c 2146
sort at sort.c 2148, initbuf at sort.c 239, xfopen at sort.c 247, fillbuf at sort.c 248

Figure 3 Output from Construction of Conceptual Module

information, meaning that the variable dependence
information includes use-def pairs. A second phase of
analysis, called inferred analysis, is used when only use or
def information is provided. Table 1 describes the rules
applied during both phases of the analysis.

3.2.2 Querying with Conceptual Modules
The information presented to a software engineer based on
the formation of a conceptual module summarizes the
direct interaction of a conceptual module with the existing
source. As the engineer builds up the conceptual structure,
there is also a need to support queries between conceptual
modules. We have found four types of queries useful when
applying the tool to some reengineering scenarios.

We refer to the first type of query as a direct relationship
query. This query checks whether one conceptual module,
A, provides a definition for a variable which is used in a
second conceptual module, B. If so, we say there is a direct
relationship from A to B. This query is based on, and

requires, use-def pair information.

The second type of query checks for an indirect
relationship. This query forms chains of use-def
information from the use-def pairs contained in the variable
dependence relation to determine all definition points of
variables in a particular conceptual module, B. If a
definition point is contained within another conceptual
module, A, we say there is an indirect relationship from A
to B.

The last two queries allow the software engineer to check
definitional relationships about the conceptual modules.
The overlapped query determines if two conceptual
modules share any lines of code. The contains query
determines if the source lines comprising one conceptual
module are a subset of the source lines comprising another
conceptual module.

Simply determining the presence of a relationship between
two conceptual modules is generally not sufficient to help a

Table 1: Conceptual Module Analysis Rules

Rule Description

Local Variable A local variable is identified in two phases. In the first phase, the use-def tuples of the
variable dependence relation pertaining to the lines in the conceptual module are considered.
Variables for which all of the use and def sites are in the conceptual module become local
variables. The second phase deals with variable dependence tuples describing only use or
only def sites. It considers all such tuples involving input and output variables of the
conceptual module previously identified. If all known use and def sites of a variable are
on lines included in the conceptual module, the variable becomes a local variable.

Input Variable An input variable is one that is used on a line contained inside the conceptual module, but
for which there exists a definition on a line that is not contained in the module.

Output Variable An output variable is one that is defined on a line contained inside the conceptual module,
but for which there exists a use on a line that is not contained in the module.

Control Transfer A control transfer is a call to a procedure not included in the conceptual module for which a
call site is included in the conceptual module.

software engineer perform a reengineering task. Often, the
engineer needs to understand the particular program items,
for instance, variables involved in the relationship. To
provide the engineer flexibility in probing the details of a
relationship, we provide a program interface that provides a
software engineer access to

• input, output, and local variable names,

• definitions and uses of conceptual module variables,

• lines of code spanned by the module,

• calls made to and by code in the conceptual module, and

• relationship information between conceptual modules
including common line numbers, variables and calls [2].

Most of the primitives return an array of strings; this format
allows the results of one query to be easily used in
subsequent queries. An example of the use the program
interface appears in Section 4.2.

3.3 Tool Support
A tool to support the formation and querying of conceptual
modules has been implemented in Java [1] and Perl [16].
As described earlier, this tool provides both a menu-driven
interface and an interface programmable in Java.

We have also built a source model extraction tool upon the
SUIF compiler framework [18]. This framework provides
access to an intermediate representation of a multi-file
software system. Similar to other SUIF tools, the
components of the extractor tool act as filters on the SUIF
intermediate representation. Four filters were built: one
filter transforms line information about loops to support
extraction, a second extracts control transfer information, a
third performs points-to analysis using Steensgaard's
algorithm [13], and a fourth, which uses the sharlit data-
flow analysis framework [15], extracts variable use-def
information and records information about the definition of
procedures.

Scripts were also written to transform the output of the
Field cross-reference database [12] for use with the
conceptual module query tool. These scripts support the
formation of two kinds of source models. The first kind of
source model includes information about uses and some
defs , but no use -def pairs. The second kind of source
model includes the cross-product of all use and def
points for a given variable.

4 USING CONCEPTUAL MODULES
 To evaluate the effectiveness of our approach, we
compared the use of our tool to several existing tools in the
context of two reengineering scenarios. We have also
conducted a case study that investigated the use of our tool
in an actual reengineering task.

 For the comparison scenarios, we applied four program
understanding tools representing different technologies to
two tasks. In addition to our conceptual module tool, we
applied the Unravel slicing tool [8], the Lackwit tool that is

based on type-inferencing [11], and the cross-reference
database tool, xrefdb, that is distributed as part of the Field
programming environment [12]. The task for the first
scenario considered the component formation and
extraction outlined in Section 2, namely the creation of an
input pipe component from the GNU sort program. The
second scenario considered a restructuring task: the re-
modularization of a legacy C program, adventure . A
different source model extractor was used to provide data
to the conceptual module tool for each task. The source
model for the first task was extracted using the tool we
built on the SUIF framework. The source model for the
second task was extracted using Field and was post-
processed to include the cross-product of use -def pairs.

 For the case study, the tool was used to help a graduate
student identify and remove unwanted code in a binary
decision diagram package consisting of over 45,000 lines
of C code. The student was removing the code to help
parallelize the package.

4.1 Scenario #1: Extracting a Component from sort
 As described in Section 2, the sort program is built as a
pipe-and-filter system. The task in this scenario consisted
of identifying the existing source lines that should be
included as part of an initialization function for a desired
input pipe component. We applied the tools to this task
after identifying, based on a perusal of the source, a modest
number of source lines, less than ten, that should be
included in the component.

 The Unravel tool supports the computation of backward
slices given a variable name and a program point (line of
code). For this task, we wanted to compute backward
slices on variables from the pre-identified lines of code.
The slices we computed in this way were large. In all cases,
because the slice computations took several hours, we
interrupted the computation and viewed partial slices. Each
of the partial slices was over 750 nodes in size. Qualitative
inspection of these slices revealed some procedures of
interest, however, most of the source lines were not
relevant to the input pipe component. For example, most
lines in the sortlines procedure were included in one of
the slices; these lines contribute to the sort filter, not the
input pipe, functionality.

 With Lackwit, we computed and viewed graphs showing
the procedures affecting the values of particular variables.
These graphs were useful in determining the procedures in
which potentially relevant code might be located, but they
did not provide specific information about relevant source
lines. A graph we computed for the buf variable in the
fillbuf procedure, for instance, included 23 procedures.
As indicated by the graph, all but one of these procedures
could potentially alter the value of the variable. A
qualitative evaluation of these procedures identified 5 of
the procedures as containing code relevant to the task at
hand.

 In the case of the Field xrefdb tool, we queried for the lines
comprising all references and all declarations of variables
identified of interest. With these queries, we identified 126
lines of source code for qualitative assessment. 30% of
these lines were assessed to be relevant to the task.

 As described earlier in the paper, we applied the conceptual
module tool to this task by forming a module comprised of
the pre-identified lines of source. The analysis of these
lines performed by the conceptual module tool was then
used to drive further investigation of the source. For
example, we visited the definition points reported in the
analysis for the input variable, sort.buf , and found
additional lines of source to include in the module. To form
the desired procedure, we iterated through this process
approximately six times.

 We found it straightforward to apply the conceptual module
tool to this task because, at any point, we were considering
only limited information about the source, such as the
definition points of input variables or use points of output
variables. This information was determined and provided in
the context of the desired structure. The conceptual module
tool performed the filtering that we had to do manually
when using the other techniques.

 Although the conceptual module tool provided support for
many aspects of the task, it sometimes includes information
in the analyzed interface that does not help the user perform
the task. For instance, a variable that is not relevant to the
task may be listed as an output variable because it appears
as one of the arguments to a procedure call that is on a line
included in the conceptual module. It would be helpful to
selectively elide this information at various points during
the tool's use.

4.2 Scenario #2: Restructuring adventure
 The adventure program is an exploration game that has
been distributed as part of the Unix operating system for
many years.5 The game was originally written in Fortran
and was later converted to C. The source now consists of
approximately 8,000 lines of C code distributed across 13
files.6

 A substantial amount of the functionality of the game
resides in a 525-line main procedure where control-flow
between labels is used to move a player through the game.
The restructuring task was to form procedures to
encapsulate different states of the game. We began by
trying to encapsulate three labeled areas of the main

 5 Version 6 of adventure was used in this analysis.

 6 We slightly modified the distributed version of the source
to permit analysis. For example, as distributed, the source
contains multiple declarations for global variables. These
declarations were restructured. No substantive changes
were made to the main function.

function as procedures. We then wanted to understand how
the desired procedures interact through state information.
For instance, we wanted to determine variable definitions
shared by all of these procedures.

 It was difficult to apply a slicing tool to this problem
because many variables were of interest. Essentially, we
wanted to compute the intersection of backward slices on
each variable mentioned in each target procedure. For the
target procedures in adventure, this would have involved
computing 38 slices. As the Unravel tool was only able to
compute pairwise intersections of slices, we computed only
a few sample slices. As was the case for sort , the slices
were large, making it difficult to wade through the reported
information to determine the program points of interest.

 It was also difficult to apply the Lackwit tool to this task
because of the granularity of the information reported. The
graphical view used for sort that reports on the affect of
procedures on the values of variables was not useful in this
case because the vast majority of the functionality was
included in the one main procedure. The Lackwit tool also
provides the capability to report a list of variables sharing
values with the variable of interest. For adventure , the
results from these queries were difficult to interpret and to
filter because they returned a significant amount of
information. For instance, querying on the wzdark
variable of one of the desired procedures returned 231
related variables.

 The xrefdb tool was also not well-suited for the task. Since
the tool reports cross-reference information extracted from
a syntactic parse of the source, the tool is unable to report
information about interactions between different variables.

 We applied our tool by forming conceptual modules for
each of the desired procedures consisting of the identified
source lines. We then wrote a user-defined form of indirect
query to determine if there were common definition points
for the target procedure. Figure 5 shows the query. For each
conceptual module, this query computes the use -def
chains of the input and local variables of the module, and
intersects all resultant chains to produce a list of variables
and definition points common to all the conceptual
modules. Local variables are considered to handle cases of
module overlap. By allowing the engineer to focus on use -
def chains of collections of variables encapsulated by the
module, the tool provided a direct way to access the
information of interest.

4.3 Case Study : Extracting a Subset of CUDD
 The CU Decision Diagram Package (CUDD)7 provides
functions to manipulate multiple forms of decision
diagrams. The system is comprised of 47,796 lines of
commented C code. A Computer Science graduate student

7 CUDD was written by Fabio Somenzi (University of
Colorado, Boulder); the version used was Release 2.1.2.

SET common = new SET(); // Create a new vector of strings
// Get the first conceptual module in the list of modules of interest
Module first = (Module)Module.ModuleTable.elementAt(0);
// Get the use-def chains for all input and local variables of that module
common=DefUse.GetFullUseDefChain(first);
// For the rest of the modules…
for(int i=1; i<Module.ModuleTable.size(); i++) {

 // Get the use-def chains for the next module
 Module current = (Module)Module.ModuleTable.elementAt(i);

 SET curr_chain = DefUse.GetFullDefUseChain(current);
 // Interect the chains to determine common definition points (variable name and line numbers)
 common = DefUse.INTERSECTION(common, curr_chain);

}
common.print(); // Print out the common definition points

Figure 5 Query for Common Definition Points of Multiple Conceptual Modules

wanted to extract one form of diagramthe ZDD
diagramfrom the package while leaving anotherthe
BDD diagram functionalityunaffected as a step in
creating a parallel version of the package.

 A search for the string “Zdd” indicated that at least 2000
lines must be considered as part of this task. The student’s
initial approach was to examine each line of code returned
by the search. Using this approach, the student spent twenty
hours removing 1000 lines of code. To speed the task, we
helped the student use our tool to construct two conceptual
modules: the first comprised the ZDD-related code targeted
for deletion; the other contained the BDD functionality to
be preserved. We then used direct and indirect relationship
queries, and queries about the calls between the two
conceptual modules to determine if there were any
dependences from the BDD to the ZDD functionality. The
queries reported just under 200 such dependences. An
examination of the code causing the dependences found
that all the lines could safely be moved from the BDD
module to the ZDD module as the lines represented non-
BDD functionality. We then repeated the queries to
validate that all dependences had indeed been severed. The
queries took 7 minutes to run on a SUN Sparc 5 (SunOS 5)
with 64Mb of memory.

 After removing the 2200 lines of code in the ZDD
conceptual module, regression testing was performed on
the remaining code. This testing did not find any affect on
the BDD functionality from the removal. The student used
our tool for a total of four hours and was able to finish the
extraction of the remaining 1200 lines of code in six hours,
resulting in a significant time-savings over the original
approach.

5 DISCUSSION
 The reengineering scenarios highlight some of the effects
the context and form of specifying a query, and the format
for reporting results from a query can have on the usability
of a tool to support reengineering tasks. We discuss each of
these aspects in relation to our tool. In this section, we also

consider our design choices of using line numbers as a
basis for the tool, and the format of the source model.

5.1 Query Context
 Many existing tools do not allow the software engineer to
adequately express the context of the query being
performed. Context is expressed in two parts. First, it can
be beneficial for a software engineer to identify the region
of the program over which the query is being made. For
instance, a slicing tool typically allows a user to specify a
particular program point of interest, and then to determine
the directionforward or backwardof the slice. In a
similar way, the conceptual module tool provides an
engineer control in specifying this aspect of context since a
conceptual module is defined in terms of particular lines in
the source. In contrast, type inferencing tools like Lackwit
are based on the analysis of the use of variables over the
entire program. A consequence of a lack of context
specification in query formation can be the return of a large
number of false positives with respect to the task. This
situation arose when applying Lackwit to the task on sort .

 Second, it can be beneficial to a software engineer to
restrict the region of the program over which query results
are reported. An engineer, for instance, may not be able to
efficiently interpret slices comprised of hundreds of nodes;
the set of statements contributing to the slice that are within
a certain distance from the program point may be sufficient.
The conceptual module tool provides some control to the
user over this aspect of context by reporting localized
results of the analysis of the lines of code contributing to
the module. If information about the interaction between
the conceptual module and the rest of the code or other
conceptual modules is needed, the software engineer may
perform further queries based on the definition of that
module. The local analysis performed on the conceptual
module can also help in these situations by reducing the
number of subsequent queries that need be performed. For
example, an engineer tracing all variables affecting the
input variables to a module may ignore the local and output
variables of the module.

5.2 Query Form
 Often, when performing a reengineering task, there is a
need to perform queries over groups of structural items
such as all of the procedures, calls or variables in a chosen
portion of code. For instance when restructuring
adventure , we needed to perform a query about all of
the variables referenced within a block of code. None of the
tools we used as part of the scenario, and none of which we
are aware, provide support for this type of grouped query.
Instead, the user must perform a series of queries, and
combine the results, manually.

 The conceptual module approach demonstrates how
support for grouped queries can be added as a front-end to
an existing tool. In the sort scenario, the use of
conceptual modules over information extracted from the
xrefdb database eliminated the need for the multiple queries
applied when directly using xrefdb.

5.3 Query Report Format
 The Lackwit tool is characteristic of a number of program
understanding tools that report results in terms of the
existing source structure, such as describing the procedures
affecting the value of a variable. There is an underlying
assumption with these tools that the existing structure will
be sufficient to help an engineer interpret the results.
However, when applied to systems like adventure that
have little structure, the results are either meaningless, as
was the case in the computed variable graphs, or they are
overwhelming, as when perusing the textual lists of
variable dependences.

 The conceptual module tool addresses this problem by
reporting query results in terms of the target, rather than the
existing, structure. The engineer may thus choose the
appropriate structure in which to view the results.

5.4 The Use of Line Numbers
 We chose to base our conceptual module tool on line
numbers for two reasons. One reason is that a user of the
tool can use existing text editors and analysis tools like
grep to easily identify source to map to a conceptual
module. The use of line numbers in the source model also
enhances the flexibility of the tool, making it possible to
connect the tool to different source model extractors;
different extractors can agree on line numbers whereas they
may differ in interpretations of abstract representations
such as abstract-syntax trees.

 To date, any imprecision resulting from the use of line
numbers to identify source of interest has not hindered us in
completing our desired tasks. Further investigation is
needed to determine if this is true for a wider range of
reengineering tasks.

5.5 Role of the Source Model
Our approach supports a range of source models: a source
model may comprise either use-def pair information, or

uncorrelated use and def information. We use the
analysis function of our tool to “smooth-out” these
differing forms of source model information. We believe
the combination of the use of a source model, as opposed to
directly analyzing the source, and an analysis capability to
smooth differences in the source models, provides a
software engineer with significant flexibility. An engineer
can choose a source model extractor suitable for the system
being studied, and can interpret the results of applying our
tool to that source model in a consistent manner.

 The conceptual module tool is dependent on the relations
comprising the source model. Currently, these relations are
oriented at representing systems implemented in a
procedural language. Extensions to relations in the source
model and the analysis performed in the tool would be
necessary to apply the tool to reengineer systems written in
other kinds of languages.

6 RELATED WORK
In the presentation of the reengineering scenarios and the
discussion, we have compared our approach to a number of
existing technologies, including program databases,
program slicers, and type inferencing tools. In this section,
we consider the relationship of our approach to particular
program database and slicing approaches that are aimed at
overcoming the limitations described earlier. We also
compare our approach to reverse engineering tools.

Consens et al. introduced the GraphLog query language to
ease the investigation of complex relationships between
elements of a software system [5]. In GraphLog, a query is
expressed as a graph, easing the expression of queries
involving transitive closure. Given a query, the system
determines all instances of the given pattern existing in the
database. Similar to other database approaches we have
discussed, GraphLog does not provide any direct support
for expressing a desired reengineering structure; an
engineer must manually track how the results of queries
map to a desired structure. GraphLog, however, could be
incorporated into the conceptual module tool as a
replacement for the existing programmable query language.
The use of GraphLog might simplify the investigation of
how conceptual modules relate to each other and to the
existing source.

Chopping, a generalization of slicing, addresses the
difficulty of expressing query context when slicing. A chop
identifies a subset of the statements of a program that
account for all influences of a given set of definitions
(source) on a given set of uses (sink) [7]. Although
chopping does not provide any direct support for
expressing desired components and analyzing their
interface and internal structure, chopping could be used to
investigate relationships between components by
performing chops on code assigned to each component.
Since chops include control dependence information that is

not currently included in the source models used by the
conceptual module tool, chopping may identify
relationships not indicated by the use of the conceptual
module tool. Chopping could thus be used to extend the
analysis functionality of the conceptual module tool.

Reverse engineering tools, similar to the conceptual module
approach, help a software engineer analyze and understand
structural aspects of a software system. The analysis
performed by reverse engineering tools is intended to help
an engineer abstract structural information gathered from
source so as to better understand the existing software
structure. In contrast, our approach helps an engineer
overlay a fine-grained structure onto the existing source
and then ask questions about how the new, overlayed
structure interacts with the existing structure. Two reverse
engineering approaches that do provide some support for
investigating the interaction between the two structures are
the Rigi system [9] and the MITRE Software Architecture
Recovery Tool (ManSART) [19].

The Rigi system is a semi-automated reverse engineering
technique in which a user repeatedly determines criteria to
cluster elements from a displayed graph of structural
information. The criteria may be based on characteristics of
the graph or on features of the source, such as naming
conventions. In the Rigi environment, a user may perform
pre-defined queries on the interactions between two
clustered elements. For instance, a user may request an
"exact interface" report on a node that provides information
similar to the analysis we perform on a conceptual module.
However, in contrast to the conceptual module tool, the
Rigi environment does not provide any capability for the
user to use this information in subsequent queries about the
interaction of the node with other nodes or with the existing
system.

The ManSART environment provides support to recover
semi-automatically architectural descriptions from a
system's code base. Similar to Rigi, ManSART displays
graphical views of recovered structure to an engineer.
These views are created by recognizers that extract and
analyze information from an abstract-syntax tree of the
system. The views include links back to the source
contributing to a component or connector in the view. To
facilitate the use of the views created, a set of view
manipulation operators have been defined that can, among
other things, merge views and build hierarchies. These
manipulation operators allow a user to access the source
information through a pre-defined set of tests called
containment analysis. Similar to the containment and
overlap queries in our approach, these tests determine when
an element of a view contains or overlaps another based on
the underlying source information. It is only through these
pre-defined sets, however, that an engineer can query the
relationship between the abstracted and existing structure.

In providing a mechanism to view existing structure in
terms of a new structure, the conceptual module approach
is also similar to the software reflexion model

technique [10]. The reflexion model technique summarizes
information extracted from the source in terms of a high-
level box-and-arrow diagram of the system specified by the
engineer. An important feature of the technique is its
mapping language. This language eases the specification of
the association between the source and the high-level
model. These two techniques are complementary. The
reflexion model technique may be used to determine a
coarse-grained mapping between the source and the target
structure. The queries supported by the conceptual module
approach may then be used to investigate and refine the
boundaries of the new target components. These queries
require the conceptual module tool to have knowledge of
the semantics of the source model; in contrast, the reflexion
model tools process the source and high-level models in a
syntactic manner.

7 SUMMARY AND FUTURE WORK
A software engineer performing a reengineering activity
must typically understand and manage three forms of
information:

• the structure of the existing source,

• the structure of the desired reengineering source, and

• the relationship between the reengineered and existing
structures.

Existing source code analysis and reverse engineering tools
do not provide adequate support to the engineer in all of
these dimensions.

In this paper, we have described the conceptual module
approach and tool. This approach allows a software
engineer to express a desired reengineered structure in
terms of the existing source, and to then perform queries
about the existing source in terms of the reengineered
structure. We have shown how the approach can simplify
the gathering of information from source during
reengineering activities. This simplification is a result of
filtering applied by the tool based on the context of the
defined and analyzed conceptual modules. This approach
augments, rather than replaces, existing techniques and
tools for source analysis and program understanding. We
described, for instance, the use of the approach in
conjunction with information analyzed by the cross-
reference database tool distributed with the Field
programming environment.

In addition to providing support for reengineering, our
approach may provide a suitable framework on which to
perform architectural design conformance checks. For
example, the query language can be used to determine, for
a system built according to a pipe-and-filter architecture, if
an output pipe ever flows data back to an input pipe. Such a
flow may break the invariants of the architectural style.

ACKNOWLEDGMENTS
We thank Robert O’Callahan and Daniel Jackson for the
use of LackWit, Yvonne Coady for her participation in the
case study, and David Notkin for comments on an earlier

draft of this paper. We also thank the anonymous reviewers
for their helpful comments.

This research was funded in part by a Natural Sciences and
Engineering Research Council of Canada research grant,
and in part by funding from the University of British
Columbia.

REFERENCES
1. Arnold, K and Gosling, J. The Java Programming

Language, Addison-Wesley, 1996.

2. Baniassad, E.L.A. Conceptual modules: Expressing
desired structure for software reengineering, MSc.
Thesis, University of British Columbia, Vancouver,
December 1997.

3. Chen, Y.F., Nishimoto, M.Y. and Ramamoorthy, C.V.
The C information abstraction system. IEEE
Transactions on Software Engineering, 16(3): 225-
234, (March 1990).

4. Chikofsky, E.J. and Cross II, J.H. Reverse engineering
and design recovery: A taxonomy. IEEE Software,
7(1): 13-17, (1990).

5. Consens, M., Mendelzon, A. and Ryman, A.
Visualizing and querying software structures. In
Proceedings of the 14th International Conference on
Software Engineering, pages 138-156, May 1992.

6. Griswold, W.G. and Notkin, D. Automated assistance
for program restructuring. ACM Transactions on
Software Engineering and Methodology, 2(3): 228-
269, (July 1993).

7. Jackson, D and Rollins, E. A new model of program
dependences for reverse engineering. In Proceedings
of ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 2-10, New Orleans LA,
December 1994.

8. Lyle, J.R. and Binkley, D. Program slicing in the
presence of pointers. In Proceedings of the 1993
Software Engineering Research Forum, pages 255-
260, Orlando, FL, November 1993.

9. Muller, H.A. and Klashinsky, K. A system for
programming-in-the-large. In Proceedings of the 10th

International Conference on Software Engineering,
pages 80-86, April 1988.

10. Murphy, G.C., Notkin, D. and Sullivan, K. Software
reflexion models: Bridging the gap between source and
high-level models. In Proceedings of the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, pages 18-28, Washington, D.C., October
1995.

11. O’Callahan, R. and Jackson, D. Lackwit: A program
understanding tool based on type inference. In
Proceedings of the 19th International Conference on
Software Engineering, pages 338-348, Boston, MA,
May 1996.

12. Reiss, S. Connecting tools using message passing in
the Field program development environment. IEEE
Software, 7(4): 57-66, (1990).

13. Steensgaard, B. Points-to analysis in almost linear
time. In Proceedings of the 23rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 32-41, Petersburg
Beach, FL, January 1996.

14. Steffen, J.L. Interactive examination of a C program
with Cscope. In Proceedings of the USENIX Winter
Conference, pages 170-175, Berkeley, CA, January
1985.

15. Tjiang, S.W.K. and Hennessy, J.L. Sharlita tool for
building optimizers. In Proceedings of ACM the
SIGPLAN '92 Conference on Programming Language
Design and Implementation, pages 82-93, July 1992.

16. Wall, L. and Schwartz, R.L. Programming Perl,
O’Reilly & Associates Inc., 1991.

17. Weiser, M. Program slicing. IEEE Transactions on
Software Engineering, SE-10(4) 352-357, (July 1984).

18. Wilson, R.P., French, R.S., Wilson, C.S.,
Amarasinghe, S.P., Anderson, J.M., Tjiang, S.W.K.,
Liao, S.W., Tseng, C.W., Hall, M.W., Lam, M.S.M.
and Hennesy, J.L. SUIF: an infrastructure for research
on parallelizing and optimizing compilers. SIGPLAN
Notices, 29(12): 31-37, (December, 1994)

19. Yeh, A.S., Harris, D.R., and Chase, M.P. Manipulating
recovered software architecture views. In Proceedings
of the 19th International Conference on Software
Engineering, pages 184-194, Boston MA, May 1997.

