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Figure 1: Staggered Projections resolves frictional contact between a wide range of rigid and deformable models at rates suitable for (a) interactive haptic
simulations, as well as accurate animations that capture important frictional contact phenomena such as: (b) large-deformation frictional contact with
reduced StVK models, (c) large-scale, frictional stacking and jamming of large numbers of objects without constraint drift, (d) and long term stable simulation
of difficult, frictionally dependent structures.

Abstract

We present a new discrete velocity-level formulation of frictional
contact dynamics that reduces to a pair of coupled projections and
introduce a simple fixed-point property of this coupled system. This
allows us to construct a novel algorithm for accurate frictional con-
tact resolution based on a simple staggered sequence of projections.
The algorithm accelerates performance using warm starts to lever-
age the potentially high temporal coherence between contact states
and provides users with direct control over frictional accuracy. Ap-
plying this algorithm to rigid and deformable systems, we obtain
robust and accurate simulations of frictional contact behavior not
previously possible, at rates suitable for interactive haptic simula-
tions, as well as large-scale animations. By construction, the pro-
posed algorithm guarantees exact, velocity-level contact constraint
enforcement and obtains long-term stable and robust integration.
Examples are given to illustrate the performance, plausibility and
accuracy of the obtained solutions.

CR Categories: I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation, I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Physically based model-
ing, I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Virtual Reality
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1 Introduction
Frictional contact and deformation are two of the most challeng-
ing physical phenomena to simulate in a computer animation. They
are also essential for physical realism, and therefore both phenom-
ena have been extensively investigated in computer graphics. While
deformation modeling is now well understood and friction model-
ing is becoming more so, existing methods for simulating realistic
frictional contact still often fail for many interesting and important
examples.

No previous system can accurately, robustly and efficiently sim-
ulate the complex behaviors created by frictional contact between
large deformation models at rates suitable for both haptic simula-
tion and computer animation. Likewise, it has not been previously
possible to stably and accurately simulate large-scale frictionally
dependent structures and composites.

Floating frame deformable models [Terzopoulos and Witkin
1988] and rigid body models explicitly include rigid degrees of
freedom (DoFs) and are popular in graphics because of the com-
pact representation and resulting speedup they offer. However,
these models present extra difficulties for contact algorithms be-
cause of the large potential interaction between friction and contact
impulses [Erdmann 1994; Kaufman et al. 2005] (see §4). Because
of this, many algorithms customized for resolving frictional contact
between finite element models (FEM) and/or other mesh and node
based models are not applicable for systems with rigid DoFs.

In practical applications, however, there is a critical need to sim-
ulate hybrid models that combine many different models, including
rigid and deformable objects, in frictional contact, without resorting
to complicated software glue.

Finally, we note that friction is often added on to contact algo-
rithms as an afterthought. Generally, little or no facility is provided
to analyze and/or control the accuracy of the friction model applied.
It would be useful if instead the cost of frictional accuracy could
easily be adjusted according to the needs of a particular simulation.

Contributions In this paper we address these issues with an effi-
cient and robust frictional contact algorithm (§7.1), suitable for the
accurate simulation of complex contacting systems, composed of
many different models, including reduced deformable bodies, rigid
bodies, and jointed mechanical systems.



We propose a new discrete velocity-level formulation of fric-
tional contact (§5) that reduces to a pair of coupled projections (§6),
and show how this essential coupling makes most non-trivial fric-
tional contact problems NP-hard (§5.3). We introduce a simple
fixed-point property of the projections (§6.1) and an associated ge-
ometric interpretation that allows us to, despite the NP-hard classi-
fication, construct a novel algorithm for accurate contact resolution
based on a simple staggered sequence of projections. A related ap-
proach [Anitescu and Hart 2004] is discussed in §2.

The resulting algorithm guarantees velocity-level, contact con-
straint satisfaction (§7). This guarantee is obtained immediately,
from the first applied projection, while further projections increase
the accuracy of the frictional behavior. Frictional accuracy can then
be controlled by a user supplied tolerance while, for time-critical
applications, the algorithm supports graceful degradation (§7). Fi-
nally, the algorithm utilizes warm starts to leverage the potentially
high temporal coherence between time steps in contacting sys-
tems (§6.4).

While we do not guarantee convergence, we show that the algo-
rithm obtains robust, stable and accurate solutions for many diffi-
cult contacting systems that were not previously possible to solve.
In particular, in our validation examples (§8), we focus on rigid and
reduced deformable bodies with rigid modes since, as discussed
above and also covered in §4, systems with rigid DoFs present
unique difficulties for frictional contact algorithms.

2 Related Work
Rigid bodies are one of the most common physical models used
in graphics and engineering, while the simulation of deformable
systems is also a well studied area. We refer the reader to the sur-
veys of Nealen et al. [2005] and Gibson and Mirtich [1997]. In our
examples we leverage linear modal analysis and modal derivative
methods [Barbič and James 2005] to obtain small but representa-
tive deformation bases.

The accurate modeling of contact for continuum mechanics has
long been an active area of research [Hertz 1882]. Contact me-
chanics has been broadly covered, with varying degrees of formal-
ism [Johnson 1985; Kikuchi and Oden 1988; Brogliato 1999; Wrig-
gers 2002]. Yet resolving multiple contacts with friction for both
rigid and deformable bodies is still challenging [Stewart 2000]. In
particular, flexible multibody systems have received increased at-
tention in the last decade [Wasfy and Noor 2003], but fast and re-
liable algorithms for impact and friction remain open problems.
Also, existing algorithms tend to support either rigid or flexible
multibody systems, but rarely work for the hybrid cases desired in
practice. Finally, we note that, although contacting configurations
often maintain high temporal coherence over time, to the best of
our knowledge, current contact resolution methods do not support
the reuse of earlier solutions via warm starts.

Penalty-based methods, well known in mechanics [Kikuchi and
Oden 1988], first introduced contact resolution problems to the
graphics community [Hahn 1988; Bridson et al. 2002; Hauser et al.
2003], but suffer from stiffness and stability issues despite recent
advances [Spillmann et al. 2007]. Optimization-based approaches
in graphics [Baraff 1989; Baraff 1991; Baraff 1994; Redon et al.
2002; Raghupathi and Faure 2006], which are generally equivalent
to Linear Complementarity Programming (LCP) formulations, in-
troduced improved accuracy in exchange for greater computational
cost and motivated several extensions using approximations of fric-
tion [Milenkovic and Schmidl 2001; Kaufman et al. 2005]. In some
cases the frictional contact problem has been simplified by reducing
the contact inequality constraints to equalities [Irving et al. 2007;
Harmon et al. 2008]; in others it is mollified by treating individ-
ual constraints sequentially rather than simultaneously [Moore and
Wilhelms 1988; Mirtich and Canny 1995; Cirak and West 2005].

In general, with the exception of LCP-based approaches, which

we will discuss further below, existing methods for frictional con-
tact resolution generally suffer from instabilities, often exhibited by
unnatural vibrations at contacts, constraint drift (i.e., elements sink-
ing into one another over time), popping artifacts (created by stabi-
lization methods applied to combat drift), energy gain (although
contact resolution should be dissipative) and other issues which
have so far made the accurate simulation of many frictional con-
tact phenomena out of reach. In the following discussion, as well
as above, we use the term “robustness” to denote that these prob-
lems do not manifest, regardless of the accuracy of the obtained
solution. In §4 we will discuss and motivate reasons why accurate
frictional contact modeling has proven so difficult, while here, in
the remaining part of this section, we will focus on a brief discus-
sion of LCP methods and other approaches related to our proposed
method.

Restricting the frictional contact problem to rigid body mod-
els opened the development of acceleration-level LCP solu-
tions [Lötstedt 1984; Baraff 1991; Baraff 1994; Trinkle et al. 1995].
Baraff [1993] noted that these acceleration formulations were not
guaranteed to always have a solution and used these inconsisten-
cies to show that the acceleration LCP is NP-hard. This observation
led to more recent velocity-level LCP methods [Stewart and Trinkle
1996; Anitescu and Potra 1997]. While velocity-level LCPs can be
shown to always have a solution, Anitescu and Hart [2004] demon-
strate examples where the solution set is non-convex and, based
on this observation, suggest that velocity-level LCPs may be diffi-
cult, in general, to solve. LCP approaches have also been extended
to quasi-rigid [Song and Kumar 2003; Pauly et al. 2004], linear
modal [Stewart 2001; Hauser et al. 2003] and FEM models [Klar-
bring 1986; Baraff and Witkin 1992; Jourdan et al. 1998; Duriez
et al. 2006; Otaduy et al. 2007].

Recent attention in graphics has been focused on iterative LCP
solution methods [Murty 1988] customized for contacting sys-
tems [Guendelman et al. 2003; Duriez et al. 2006; Erleben 2007].
Although potentially fast, these approaches require, in practice,
an exponentially large number of iterations to converge to both
accurate contact constraint enforcement and accurate friction re-
sponse [Erleben 2007]. The inherent lack of accuracy, stability
and robustness this causes generally requires hand tuning and large
amounts of non-physical constraint stabilization [Erleben 2007] to
make multibody simulations work. Effectively, iterative LCP meth-
ods often reintroduce many of the same errors and artifacts, dis-
cussed above, that LCP methods were designed to avoid in the first
place.

At the other end of the spectrum, it has been widely assumed
that, when fully accurate and robust simulations were desired, direct
LCP solvers could be applied, provided enough computation time
was available. It has been recently noted, however, that direct LCP
solvers do not, in practice, scale. They are not, in fact, currently
able to return solutions for non-trivial contacting problems beyond
relatively small-scale examples [Anitescu and Hart 2004; Erleben
2007].

Our proposed approach provides robust and accurate solutions
for complex rigid and deformable contacting systems where both
direct and iterative LCP solvers fail. It is most closely related to the
velocity-based, fixed-point method for rigid body frictional con-
tact introduced by Anitescu and Hart [2004]. Their method, how-
ever, is constructed by symmetrizing the LCP formulation. Con-
tact and friction constraints are folded together, which effectively
moves the contact constraint directions away from the surface nor-
mals, as the coefficients of friction increase. This results in a pair
of minimizations quite different from the ones we propose. While
their approach is convergent for very small coefficients of friction
(µ ' 0.05), the authors report that it fails for coefficient values
where frictional behavior becomes pronounced, e.g., µ = 0.2.



3 Background on Contacting Systems
In this section we provide a general framework for handling fric-
tional contact between many classes of models. We define the as-
sumptions we make about these models, construct generalized con-
straints, and discuss other associated machinery needed to imple-
ment the Staggered Projections frictional contact algorithm given
in §7.1.

In the following we consider systems of bodies with a general-
ized coordinate representation given by q, a corresponding gener-
alized velocity1, q̇ , and a mass matrix denoted by M. The world-
space position of a point i is then presumed to be given by a func-
tion2 xi(q). Finally, we obtain point velocities, ẋi, using the Ja-
cobian, ∇xi(q), by left multiplying with the generalized velocity,
ẋi = ∇xi q̇.

3.1 Multibody Systems

For the accurate simulation of contact between multiple bodies we
adopt a multibody formulation in which we use generalized coordi-
nates to represent the entire system’s state as a single vector. Gen-
eralized terms are formed by the concatenation of all bodies’ cor-
responding coordinate vectors. Thus the generalized velocity is a
large vector constructed by the concatenation of all velocities. Gen-
eralized forces and configurations follow in the same manner, while
the full system mass matrix is just the large sparse block diagonal
matrix formed by the individual mass matrices that correspond to
their respective entries in the subcomponents of the generalized ve-
locity. Finally, the generalized Jacobians, ∇xi, should perform the
same task as the single body version described above. Now, how-
ever, they will be large and sparse with just a 3 by |q̇bodyi

| nonzero
block submatrix that functions as a stencil to extract the velocity of
a point i from the correct subcomponent of the generalized velocity.
In an actual implementation, simple optimizations can be made to
account for the sparsity of these terms. Here, however, it’s helpful
to use this structure so that in the following sections our results ap-
ply equally well to a single body experiencing self-contact or to a
large system composed of many bodies that are in contact with one
another.

3.2 Frictional Contact Constraints and Impulses

Here we’ll briefly describe the velocity-level constraints that are
imposed on contacting systems and the impulses they can induce.
Duality between these constraints and their associated impulses al-
low us, in §5, to derive discrete minimization principles for the in-
tegration of contacting systems.

Pairwise Point Contacts A discrete system of contacts can be
described by a set, C , of point contacts. Here, each contact k ∈ C
is between two points, indexed by i and j, and occurs at a location,
xk ∈ R3. Contacts are also presumed to be between two surfaces
having a common tangent plane at xk with an associated unit length
normal given by nk ∈R3. Finally, in the following, we define each
nk so that it points outward from i towards j.

To simplify the following, we define
x

x

i

j

i
j

n
the relative velocity Jacobian for con-
tact k as

Γk
def=
(
∇xi−∇x j

)
. (1)

Then, if y ∈ R3 is a unit length vector,
yT Γk q̇ gives the magnitude, in the di-

rection of y, of the relative velocity between i and j. Similarly, if
y is now an impulse applied to point i and an equal but opposite
impulse is applied to point j, then ΓT

k y is the resulting generalized
impulse.

Contact Constraints If we ignore friction for a moment, the
chief concern for a contacting system is the constraint that all points

1Note that q and q̇ do not necessarily have the same dimensions here,
and different rotation representations are commonly used for pedagogical
and implementation convenience [Shabana 2005].

2The form of this function depends on the type of physical model.

in contact should not interpenetrate [Baraff 1989]. To prevent in-
terpenetration at a contact k, the relative velocity between the two
contacting points alongnk must be non-negative. This is equivalent
to enforcing the contact constraint nT

k Γkq̇≥ 0.
Defining generalized normals as

nk
def= ΓT

k nk, (2)

we denote the subspace of generalized normal directions by

N
def= (n1...n|C |). (3)

The nonpenetration inequality constraint, for all points of contact
simultaneously, is then given by the global contact constraint

NT q̇≥ 0. (4)

Contact Impulses If a contacting system has a negative relative
velocity along contact k’s normal, we can prevent interpenetration
at k by applying equal and opposite impulses at xk, along the con-
tact normal. Thus generalized normals have a useful dual interpre-
tation, serving both as potential generalized contact impulse direc-
tions and as generalized coordinate representations of the velocity
constraints imposed by contacts k between points i and j.

In the following, the magnitude of each contact impulse, applied
along a corresponding normal, nk, is given by αk, while the set of all
contact impulse magnitudes, corresponding to the contact normals
in N, is given by the vector

α = (α1...α|C |)
T . (5)

Friction Impulses A friction impulse, applied at a contact point,
lies in the tangent plane orthogonal to the contact normal.

At each contact k we uniformly sam- n

x

k

k
tk3

tk1

tk4

tk2

ple a symmetric set of unit length vec-
tors from the tangent plane. The matrix
composed column-wise of these sam-
ples is given by T k so that a friction
impulse, f k ∈ R3, applied at a contact
k, will lie in the span of T k.

Coulomb Constraints An isotropic Coulomb constraint then re-
stricts the magnitude of this friction impulse by the inequality

‖ f k ‖≤ µkαk, (6)

where µk is the coefficient of friction and αk is the normal (contact)
impulse magnitude at k. This restricts the friction impulse to lie
within a disk in the tangent plane with a radius of µkαk.

To linearize the Coulomb constraint, we can set f k = T kβk,
where βk is the vector of impulse magnitudes along each direc-
tion spanned by T k, and then approximate the friction disk with an
inscribed polygon [Stewart 2000] using the constraints

eTβk ≤ µkαk, βk ≥ 0, (7)

where e= (1....1)T .
For multiple points of contact we can concatenate all of the re-

spective µk values into a single vector µ and correspondingly define
a vector that concatenates the friction impulse magnitudes for all of
the contacts

β = (βT
1 ...βT

|C |)
T . (8)

Then the linearized Coulomb constraint, for all contacts, is

ETβ ≤ diag(µ)α, β ≥ 0. (9)

Here diag(µ) constructs the diagonal matrix composed of the µk
values along the diagonal and zeros elsewhere. The matrix E cor-
responds to the vector β such that each column k of E has ones in
rows that correspond to entries in the subvector βk ∈ β and zeros in
all other rows.



4 Frictional Contact Challenges
Much of the difficulty in frictional contact algorithms comes from
the feedback between friction impulses and contact (nonpenetra-
tion) impulses. Many contact resolution algorithms in graphics pro-
pose a two pass strategy in which contact constraints are processed
in a first pass, followed by a second pass in which friction impulses
are applied. For deformable models, with low stiffness, this can
often work reasonably well. As stiffness increases, however, fric-
tion impulses can begin to apply significant global changes in the
system’s velocity that, in turn, can create new contact constraint vi-
olations. In a similar way, contact correction impulses can effect
global changes in the system’s sliding velocities and the Coulomb
constraints, which must affect friction impulse calculations.

An applied 
friction impulse

induces a 
torque 

causing negative 
normal velocity

Figure 2: Rigid Card House: Constraints and friction impulse coupling.

Rigid body systems, which are essentially deformable bodies
with infinite stiffness, pose an extreme version of this problem.
Consider the card house example where the structure is composed
of thin, rigid planks. A tangential friction impulse applied at the
base of a card, to oppose outward sliding, will also induce a torque
on the card. The torque, in turn, will cause a negative velocity along
the normal at the same point where the friction impulse was origi-
nally applied. Similarly, a normal impulse, applied at the same con-
tact point, would generate a faster outward sliding velocity (see Fig-
ure 2). These effects are related to the Painlevé Paradox [Painlevé
1895], and the observation by Erdmann [1994] that generalized nor-
mal and friction impulses, for rigid bodies, are not, in general, or-
thogonal. They can, in fact, oppose or even reinforce one another.
We also note that, while this effect is most marked for rigid bodies,
we can extend the same observations to deformable models.

There has recently been a focus on stable structured stacking
in gaming and graphics [Erleben 2007]. While these examples
require accurate contact constraint enforcement they require very
little accuracy from friction. Structures like the rigid card house
in Figure 1, masonry arches without adhesives (see supplemental
video), or woven elastic-frictional composites (see Figure 5), on
the other hand, depend on very accurate coupling between friction
and contact impulse calculations. Non-orthogonal friction and con-
tact impulses must be accurately balanced, at each active contact
point, to prevent incremental errors from crashing or breaking apart
the structures. Because of this, inaccuracies imposed by two-pass,
penalty, iterative LCP, and other methods have previously made the
stable simulation of such frictionally dependent structures imprac-
tical.

Accurate coupling between friction, contact impulses and defor-
mation is also extremely important when taking large step sizes.
Contact algorithms generally impose large impulses to contacting
bodies. When inaccurate, they can cause system instabilities.

5 A Coupled Potential Formulation
In this section we show that discrete frictional contact dynamics can
be described by a pair of discrete, coupled variational principles.
These coupled principles are obtained by a numerical discretization
of contacting systems that employs a novel generalization of the

frictional maximal dissipation principle.
This results in a predictor-corrector method that first generates

a predictor velocity, q̇p, by integrating the conservative portion of
the contacting system forward using an arbitrary numerical integra-
tion method. A corrector step then handles the dissipative portion
of the system, implicitly, by minimizing two separate, but depen-
dent, functions corresponding to the optimality conditions of the
two associated variational principles.

5.1 Discrete Euler-Lagrange Equations for Contact

We first define a velocity-level, predictor-corrector form of the dis-
crete Euler-Lagrange equations (DEL) of motion for integrating the
contacting system from time t to t +1, with a step-size of h,

M
(

q̇t+1− q̇t
)

= hg(qp, q̇p)+hf p
ext + rt+1 (10)

Here fext is a specified external force, rt+1 is the frictional contact
response impulse, and the generalized force is

g(q, q̇) = −∇V (q)+
(
−Ṁq̇+∇qK(q, q̇)

)
= −∇V (q)+gqv,

(11)
where V and K are the potential 3 and kinetic energies of the system
respectively, and gqv is the so-called quadratic velocity vector that
provides Coriolis and centrifugal forces in multibody systems [Sha-
bana 2005].

Predictor Depending on specific animation needs and the physi-
cal models in use, we select an appropriate integration method and
use it to integrate only the terms indexed by p in (10). This amounts
to solving the system

M
(

q̇p− q̇t
)

= hg(qp, q̇p)+hf p
ext (12)

and generates the predictor velocity, q̇p.

Corrector Then, by subtracting (12) from (10), the remaining un-
known, rt+1, is determined by

M
(

q̇t+1− q̇p
)

= rt+1. (13)

5.2 Coupled Potentials

While rt+1 is a purely dissipative term, similar to a damping force,
it can not, unlike many damping forces, be obtained from the min-
imization of a single potential function. Instead, rt+1 must be par-
titioned into two components, a friction impulse, ft+1, and a con-
tact impulse, ct+1, each of which is given by the minimization of
a separate but coupled function. In this context, we can treat each
of these functions as a discrete dissipative potential. Because of
the coupling between them, however, the minimizations of each of
these potentials can not, in general, be obtained independently. As
we discussed in §4 and will show in §5.3, this is the root cause of
difficulty in the simulation of contacting systems with friction.

In the following discussion the two discrete contact potentials
could be introduced explicitly using a differential inclusion formu-
lation or variational inequalities. In this setting, however, we will
introduce the contact potentials implicitly, using an equivalent for-
mulation that uses complementarity and minimization forms that
will be more familiar to the graphics community.

3This could simply describe a gravity potential, while for a hyperelastic
deformable body this should also include internal strain energy.
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Figure 3: Staggered Projection Sequence: A simplified example of a few steps in a possible staggered sequence is shown above. (a) We start the staggered
sequence with the negative momentum predicted by (12) and depicted above by the point x. We also start with the set of all possible contact normal directions,
in this case composed of only a single vector, and depicted above as the green arrow C. Finally, we also initialize the unscaled friction set, F, depicted above as
a red line segment. Note that, in this example, we show the likely case where the friction set and the contact normal directions are not orthogonal. (b) Starting
with f0 = 0, for the initial (warm start) estimate of the friction impulse, we project (x− f0) onto C to obtain the first contact impulse estimate, c1. (c) We then
scale F by α1 = |c1| and project (x− c1) onto it, to get the first friction impulse estimate f1. This completes the first subsequence of the staggered projection
sequence. Steps (d) and (e) then repeat the process for the second subsequence, which will converge, in this simple example, after two more subsequences are
completed, to the optimal solution shown in Figure 4.

Signorini-Fichera Condition In order to formulate the con-
tact potential, we first apply an impulse-level discretization of the
Signorini-Fichera Condition (SFC) [Signorini 1933; Fichera 1964].
This approach directly enforces nonlinear boundary conditions be-
tween final velocities at contact points and the corrective contact
impulses applied at those points,

0≤ NT q̇t+1 ⊥ α
t+1 ≥ 0. (14)

The left-hand side of this complementarity condition is simply the
contact constraint inequality 4 discussed above in §3.2, while the
right-hand side requires all contact impulses to be non-negative
along the normals; i.e., no adhesive impulses are allowed. Note
that, as discussed above, the full contact impulse is given by ct+1 =
Nαt+1. Finally, the complementarity condition itself ensures that
contact impulses are only applied at points where the body is not
moving away from the contacting surface.

Maximal Dissipation Principle Moreau [1973] introduced the
application of a Maximal Dissipation Principle (MDP) for single-
point frictional contact conditions. Letting f k denote a frictional
force applied at a sliding contact point, xk, MDP requires that fric-
tion maximize the rate of negative work at the contact, given by
−fT

k ẋk. Combined with a suitable friction constraint, as described
in §3.2, this simply provides a variational interpretation of the more
familiar Coulomb friction.

To extend the MDP to generalized coordinates we enforce it si-
multaneously at all contact points to obtain

max
f k

∑
k∈C

(
−fT

k ẋk
)

= min
f k

[
∑

k∈C
fT

k Γk

]
q̇ = min

f
fT q̇. (15)

This, in turn, requires that the total generalized friction impulse is
given by f = ∑k∈C ΓT

k f k.
Then, using the above identity and remembering our earlier def-

inition of the friction impulse magnitude vector, β, from §3.2, the
generalized friction impulse at each contact is fk = ΓT

k T kβk. Note
that, by construction, friction now appropriately applies an equal
and opposite impulse at each point of contact.

For convenience we can then define a generalized basis for fric-
tion impulses at contact k,

Dk
def= ΓT

k T k, (16)

4For rigid body systems we can include a Newtonian restitution model
by modifying the contact constraints to nT

k

(
q̇t+1 + eq̇t)≥ 0. Here the coef-

ficient of restitution is given by e ∈ [0,1].

and the corresponding subspace of all generalized friction impulses,

D = (D1...D|C |). (17)

Now, given this basis, at each time step, the final friction impulse is
ft+1 = Dβ t+1.

Finally, by applying an implicit discretization to (15), and using
the linearized Coulomb constraint from §3.2, we obtain a discrete
generalized maximal dissipation principle,

βt+1 = argmin
β

(
βT DT q̇t+1 : ETβ ≤ diag(µ)αt+1, β ≥ 0

)
.

(18)

Discrete Hamilton’s Principle The full frictional contact re-
sponse impulse is now given by 5

rt+1 = ct+1 + ft+1 = Nα
t+1 +Dβt+1. (19)

Equation (19) together with (13) and (14) now form the KKT
conditions for a second minimization [Moreau 1966; Boyd and
Vandenberghe 2004]:

q̇t+1 = argmin
v

(1
2

vT Mv−vT (Mq̇p +Dβt+1) : NT v ≥ 0
)
.

(20)

This minimization implicitly solves for the contact impulse,
ct+1, and, when combined with (10), can be interpreted as a dis-
crete analog of Hamilton’s Stationarity Principle.

5.3 Discussion: NP-Hardness

While each of the above minimizations, (18) and (20), is separately
convex, and thus individually solvable utilizing available robust al-
gorithms and solvers [Boyd and Vandenberghe 2004], the solution
to the frictional contact problem is given by obtaining a solution
that satisfies both minimizations simultaneously. At each time step,
to solve the velocity minimization (20), we need the friction im-
pulse given by the solution to the discrete MDP minimization (18).
To solve (18), however, we conversely require the optimality con-
ditions given by (20). Thus, as discussed in §5.2, to resolve the
frictional contact problem we need to solve a system composed of
two minimizations that are coupled, and so can not be solved inde-
pendently. This coupled minimization problem is much harder.

5Note that because rt+1, by construction, only opposes relative sliding
and relative normal velocities, it will conserve the linear and angular mo-
mentum of the contacting system it is applied to.



In particular, the problem of finding the solution of the coupled
problem is equivalent to finding the global minimum of a non-
convex QP that can exhibit multiple distinct global minima for its
solutions. In general, the solution of non-convex QPs is an NP-hard
problem in global optimization [Murty and Kabadi 1987].

A natural approach to try is to instead find a local minimum
of the non-convex QP, using Sequential QP or other efficient lo-
cal minimization methods. Unfortunately, local minima will not,
in general, satisfy SFC and/or MDP. We have experimentally veri-
fied this with an implementation of Sequential QP. In the following
sections, we’ll introduce an algorithm for obtaining accurate ap-
proximations of the global minimum to this problem.

6 Staggered Projections
The solution to the corrector step is then given by an optimal pair,
q̇t+1 and βt+1, that satisfy both (18) and (20); finding it is, as dis-
cussed above, an NP-hard problem. However, a simple geometric
interpretation, and transformation, of the minimizations introduced
in §5, leads to a projective fixed-point property that allows us to
construct an algorithm for accurately resolving the coupled prob-
lem.

The resulting algorithm leverages the particular structure and
properties of the discrete formulation to quickly converge to numer-
ically close approximations of true coupled solutions. Additionally,
we are able to do this in a way that strongly facilitates warm starts
to reuse computations from earlier steps.

In the following we will reinterpret both of the above minimiza-
tions as projections in impulse space, using the kinetic metric. We
define these projections, so that, given an arbitrary convex set A,
the projection of some z onto A is given by

PA(z) def= argmin
y∈A

(y− z)T M−1(y− z). (21)

6.1 A Fixed-Point Projective Property

If the generalized velocity, q̇, has n DoFs, the set of possible nor-
mal impulse directions, given by N, forms a polyhedral cone in Rn,
while the Coulomb constraint, (7), similarly defines a more com-
plex scaled, convex subset of Rn.

More rigorously we can define the polyhedral cone of all possi-
ble contact impulses as

C
def= {Nα : α ≥ 0}, (22)

the polyhedral, scaled, convex set of possible friction impulses as

F(α) def= {Dβ : ETβ ≤ diag(µ)α, β ≥ 0}, (23)

and then, to simplify the discussion, we also let x =−Mq̇P denote
the negative momentum of the predictor velocity.

Using these definitions, the coupled solution of the minimiza-
tions, (18) and (20), is equivalent to the two coupled projections

ft+1 = PF(α t+1)(x− ct+1), (24)

ct+1 = PC(x− ft+1). (25)

See Figure 4 (left) for a simplified geometric example of the cou-
pled relationship. Then, by substituting (24) into (25), we obtain the
fixed-point property that characterizes all solutions of the coupled
contact problem:

Nα
t+1 = PC

(
x−PF(α t+1)(x−Nα

t+1)
)
. (26)

By construction, any fixed-point solution of (26), together with
the resulting friction response given by (24), then satisfies the opti-
mality conditions of both (18) and (20), and thus, correspondingly,

defines a global minimum for the non-convex optimization problem
discussed in §5.3.

Because the right-hand side of the above mapping is com-
posed of a concatenation of projections, which are generally non-
expansive, and because, for many cases, this map generates a con-
traction near solutions, we propose applying a staggered sequence
of the two projections (see Figure 3), to obtain the solution to the
corrector step. Each subsequence is then defined so that we obtain
the i+1 solution estimate by applying

f i+1← PF(α i)(x−Nα
i),

Nα
i+1← PC(x− f i+1).

(27)

Below we further motivate the Staggered Projection method and
then explain additional properties and structures that this approach
allows us to take advantage of. This will then lead to our proposed
algorithm (presented in §7.1).

6.2 Closest Point Geometry

We describe the proposed approach as a staggered projec-
tion method to differentiate it from alternating projection meth-
ods [Bauschke 2000] which superficially resemble our approach,
but have very different properties. Effectively, the staggered pro-
jection sequence maintains the unchanging point x which is repeat-
edly projected, in a staggered order, onto a pair of converging sets,
{F(α)+Nα} and {C+ f}. Geometrically, convergence is satisfied
when the closest points to x, in both sets, are the same (see Fig-
ure 4, right). This type of minimum property can not be satisfied
by alternating projection methods which can only apply to finding
arbitrary feasible points in set intersections.

The staggered sequence of projections is thus essentially a self-
correcting process, alternating between two changing sets. The
output of each successive projection onto one set corrects for any
change it might impose on the current predicted solution. From
a physical standpoint these modifications account for the effect of
changes in a friction (or contact) impulse, just obtained from the
last projection, may have on the next projection. For instance, af-
ter subsequence i, a projection onto C, offset by the current friction
impulse estimate, f i, will generate a new contact impulse that takes
into account any possible changes in constraint status that could be
caused by applying f i.

6.3 Subproblem Dimensions and Complexity

Both of the projections in (27) can be implemented as convex QP
solves. Roughly speaking the cost of each successive QP solve will
be polynomial in its dimension, and linear in the number of con-
straints. In practice, in our implementations, for QPs with dimen-
sion n we’ve found this to be approximately O(n3).

For systems and complex contacting scenarios where we expect
the system’s DoFs to be much smaller than the number of contacts,
i.e., |q̇| � |C |, both of the minimizations can be formulated as QP
solves with a dimension proportional to the system’s DoFs rather
than the number of contacts. Alternately for systems where we ex-
pect |q̇| � |C | we can instead apply the dual formulation of the
minimizations using QP solves with a dimension proportional to
the number of contacts.

6.4 Warm Start

The structure of the staggered projection formulation also encour-
ages the reuse of computations. Because of the fixed-point property
in (26), initializing a staggered projection algorithm with either an
optimal contact impulse or an optimal friction impulse brings the
system to convergence after a single projection. Similarly, we find
that initializing the algorithm with a close to optimal impulse dra-
matically speeds up convergence. Because most steps of contact-
ing simulations maintain a reasonable degree of coherence, we can
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Figure 4: Geometric Optimality: The optimal solution at time t + 1 is
given by the pair ct+1 and ft+1. A simplified example of an optimal ge-
ometry characterizing this solution is depicted above. Left: A pair, c and
f, are optimal if and only if the projection of (x− f) onto the contact cone,
here depicted by the larger green arrow, C, returns c, and if the projection
of (x−c) onto the scaled friction set, here depicted by the red line segment,
F(α), similarly returns f. If this is true, then the sum of c and f gives rt+1, an
optimal frictional-contact response. Right: Equivalently, c and f are opti-
mal when the projection of x onto both of the sets, {F(α)+c} (with |c|= α)
and {C+ f}, return the same point. If this is true, then this projection point
is rt+1, an optimal frictional-contact response.

leverage this warm start property to accelerate contact resolution
solves. In particular, many of the most difficult frictional-contact
configurations, such as those maintaining complex but stable stick-
ing behavior, exhibit very high temporal coherence that allows for
the reuse of solutions over many time steps. Overall we typically
observe up to two orders of magnitude speed-up when applying
warm starts (see §8).

7 Staggered Projections in Practice
Sequence Ordering Because storing and reusing prior contact
correction impulses requires more overhead, it is simpler, and more
efficient, to warm start using friction impulses. We thus begin each
staggered projection sequence with a contact projection that applies
the friction impulse obtained from the prior step, in order to encour-
age rapid convergence.

Graceful Degradation Each staggered projection sequence fin-
ishes its sequence with a final contact projection. Ordering the se-
quences in this way guarantees that the final solution obtained will
satisfy both the DEL and the Signorini-Fichera boundary conditions
and so will generate robust behavior, regardless of whether conver-
gence has been obtained. For time-critical applications, where hard
time limits may require setting a fixed upper bound on the maxi-
mum number of iterations, this allows for graceful degradation in
case of early exits from the projective sequence.

Convergence Criteria Given the staggered sequence ordering,
we determine numerical convergence at the end of subsequence i,
to a fixed-point solution of (26), using the relative, kinetic metric
error,

rel err =
(f i− f i−1)T M−1(f i− f i−1)

f i−1T
M−1f i−1

, (28)

and a user supplied friction error threshold.

Non-Monotonicity While generally monotone, the staggered
projection sequences often exhibit local non-monotone behavior.
Thus, for time-critical applications we can cache and update cur-
rent best solutions, based on residual values, for applications where

early exiting may be necessary. Here a useful residual, at the end of
subsequence i, is given by the sum,

residual = ∑
k∈C

∣∣α i
knT

k (q̇p +M−1Nαi +M−1Dβi)
∣∣. (29)

7.1 Algorithm

Once an acceptable friction error tolerance, ε , is selected, the Stag-
gered Projection algorithm for stepping a contacting system from
time t to t +1 is given in Algorithm 1. As in the preceding sections,
we continue to use the superscripts t and t + 1 to indicate discrete
time increments and reserve the superscripts i and i + 1 to denote
subsequence numbers within a single time step.

Algorithm 1 Staggered Projections.

1: q̇p← solve: Mq̈p = g(qp, q̇p)+ f p
ext

2: f0← ft // warm start
3: i← 1, min res← ∞, rel err← ∞

4: while rel err > ε and i < max iters do
5: Nα i← PC(−Mq̇p− f i−1)
6: f i← PF(α i)(−Mq̇p−Nα i)
7: compute rel err // Equation (28)
8: compute residual // Equation (29)
9: if residual < min res then

10: min res← residual
11: f∗← f i // cache best solution
12: end if
13: i← i+1
14: end while
15: ft+1← f∗

16: ct+1← Nαt+1← PC(−Mq̇p− ft+1)
17: q̇t+1← q̇p +M−1(ct+1 + ft+1)

8 Results
We instrumented several examples to examine both the behavior of
our algorithm and the performance of our implementation. Please
see the accompanying video and Table 2. All timings were mea-
sured on a PC with a 3 GHz Intel Pentium D processor, 2G RAM.
We used Java (JDK 1.6) for our implementation. Note that while
faster timings could be obtained via parallelization (§8.2) all simu-
lations were run single threaded to get accurate timings.

In the following examples we simulate contacting systems com-
posed of large-deformation reduced St.Venant-Kirchhoff (StVK)
models [Barbič and James 2005] and/or linear modal models, both
augmented with a floating frame [Shabana 2005]. We also include
rigid bodies. In our implementation, narrow-phase collision de-
tection is performed using a sphere-based Bounded Deformation
Tree (BD-Tree) [James and Pai 2004] for reduced deformable bod-
ies, a customized bounding-sphere hierarchy for rigid bodies, and a
uniform subdivision for broad-phase culling. No stabilization was
employed. Contact samples are generated by sampling the base
geometries of deformable bodies, and the zero level set of pre-
computed distance fields of rigid bodies. To facilitate comparison
with existing packages, we wrote a Java wrapper for ODE’s [Smith
2006] box/box implementation. We use this to compute narrow-
phase collision detection and contact sampling between box-based
rigid body geometries.

A variety of numerical integrators can be used to both advance
the unconstrained state and to generate predictor velocities during
contact. In our implementation, we use a hybrid implicit-explicit
(IMEX) integration scheme that is explicit in rigid motion and the
quadratic velocity forces gqv, but implicit in the internal deforma-
tion forces (and damping). For the latter, we use the semi-implicit
Newmark subspace integrator of Barbič and James [2005].



All QP solves were implemented using QL [Schittkowski 2005],
a robust implementation of the dual active set algorithm of Gold-
farb and Idnani [1983]. QL is a dense solver so speedups could
potentially be obtained with sparse solvers.

8.1 Validation Tests

We tested our algorithm on a wide range of difficult contact scenar-
ios to verify that we obtain plausible behavior.

Figure 5: Hanging woven elastic-frictional composites (left): We increase
stiffness (bottom to top) and the coefficient of friction (right to left). The
woven composites come apart for all cases where the combined friction
and stiffness are insufficient to resist gravity. Stick-slip instability (right):
Plastic chair legs chatter while sliding on an inclined surface due to fiction-
ally induced oscillations. This behavior is obtained from accurate solutions
of the coupled friction, contact and deformation modes.

Elastic-Frictional Composites We wove flattened strands of a
stiff rubbery material into frictional composites. These structures
demonstrate the importance of tight coupling between friction and
deformation. In our first experiment we hang a grid of composites
on pegs. We vary µ , the coefficient of friction, right to left, with the
increasing values 0.1,0.3 and 0.5, and increase stiffness slightly
for the upper row. On the top row the two leftmost composites
stay cohered, due to a combined high friction and stiffness, while
the right hand composite comes apart due to low friction. On the
bottom row the two rightmost composites come apart quickly due
to a combined low friction and stiffness, while the left composite
slowly creeps apart due to low stiffness but high friction. See Figure
5, left. In our second example we throw stiff composites, with µ =
0.5, at a peg board. The composite’s cohesive behavior varies with
the type of the impact, in some cases deforming as a whole, while
for other impacts coming apart quickly.

Stick-Slip Instability Stick-slip oscillation is an important fric-
tionally induced instability in deformation dynamics. High friction
during sliding creates a buildup of elastic energy in contacting sys-
tems. This energy is partially stored in the global deformation of
the system, but also builds up at contacting interfaces. Elastic en-
ergy is then released suddenly when the magnitude of the friction
force, opposing sliding contact, is exceeded by the tangential stiff-
ness at the contact. This interaction between the friction forces and
the sliding velocities is generally periodic, and so can induce self-
excited oscillations that involve the buildup and dissipation of sig-
nificant amounts of energy. In this example we show that accurate
solutions of the coupled friction, contact and deformation modes in
our algorithm capture the stick slip induced instability behavior in
the chattering legs of plastic chairs sliding on an inclining surface
(see Figure 5, right).

Jamming Another behavior that arises due to deformation and
friction is jamming. Stable deformable jamming is another diffi-
cult frictional phenomenon to simulate. We dropped deformable
and rigid objects into tight tubes with varying coefficients of fric-
tion, obtaining stable and plausible changes in jamming behavior
as µ decreases. We also demonstrate robust and stable deformable
frictional jamming at real-time rates in our haptics example.

scene solve (s) contacts iters. DoFs time-step (s) models

composites 0.56 921 6.4 192  3e-3 modal
chairs 0.72 9,025 2.9 1,766  1e-2 modal
catenary arch 1.2 2,042 5.6 162  1e-2 rigid
card house 4.7 528 3.2 348 1e-3 rigid
dinosaurs 0.61 4,690 2.7 315 1e-2 StVK
haptic 0.0032 117 2.4 72 1e-2 modal & rigid

Table 1: Performance Evaluation: This table summarizes the average
solve time, number of contacts and iterations, per simulation step, for the
validation examples. The tangent sample size was 8 for all friction solves.

Friction-Dependent Masonry For suitably high coefficients of
friction, complex masonry structures, such as arches, can be con-
structed without adhesives. Difficulties in accurately simulating
such structures are discussed in §4. We stably simulate a catenary
arch using rigid blocks with µ = 0.6. We first drop blocks onto the
arch’s keystone (the most stable point in the arch) and note that the
structure deforms globally but does not fall apart; instead it finds a
new stable equilibrium. We then throw blocks at one of the arch’s
legs (a less stable point) and the arch falls apart.

Rigid Card House In this example, a stable house of cards is
made out of rigid cards with high friction. We use e = 0.1 and
µ = 0.8 for all cards. The card house stands stably long term and
then, under successive impacts from small blocks, it repeatedly has
sections fall down and then regains equilibrium (see Figure 7). Dif-
ficulties in accurately simulating these behaviors are also discussed
in §4.

Large Deformation Frictional Contact In these examples we
simulate large deformation frictional contact using reduced StVK
models. In the first example dinosaurs are thrown together under-
going fast impacts with µ = 0.5 (see Figure 1 (b)). In a second
example we drop two groups of bunnies, with differing coefficients
of friction, onto a ramp and then into collision with semi-circular
arches composed of rigid blocks. The red bunnies use µ = 0.4, blue
bunnies, µ = 0.1 and the rigid arch blocks, µ = 0.5 (see Figure 6).
The bunnies exhibit differing sticking, and stick-slip sliding behav-
iors depending on the incidence of impact and µ . In both examples
the models end the simulation in stable piles.

8.2 Algorithm Behavior and Comparison

Stability and Long Term Integration To test long term inte-
gration and stability properties, all of the above validation examples
were stepped for 10 minutes of simulation time. All simulations
ran without blow-up, or constraint drift other than possibly initial
(small) penetrations sometimes caused by the collision of sharp as-
perities (bunny ears, cow horns, etc.) during the fast phases of im-
pacts.

Comparison with LCP Solvers To compare our algorithm with
direct LCP solvers we also implemented our base collision and con-
tact sampling code with the Stewart-Trinkle [Stewart and Trinkle
1996] velocity-level LCP using the PATH solver [Ferris and Mun-
son 1998]. PATH supports sparse LCP solves and is the most
broadly referenced direct LCP solver in the frictional contact lit-
erature. We also tested examples with the Gauss-Seidel iterative
LCP solvers in the ODE [Smith 2006] and the Open-Tissue [Er-
leben 2007] packages. In these examples, all methods employ semi-
implicit Euler for non-contacting integration. For collision detec-
tion and contact sampling direct LCP, Staggered Projections and
ODE apply ODE’s box/box implementation; Open-Tissue applies a
box/box variant.

Stacking: Both the ODE and Open-Tissue iterative solvers gen-
erate sidewise sliding errors for simple rigid stacking block exam-
ples. While these errors build more slowly in Open-Tissue, for both
systems this results in stacks falling over after a few seconds. We



find that this occurs even when large iteration counts (100) and
very small step sizes (10−4) are applied. If we make the influ-
ence of dynamics negligible in Open-Tissue, however, by setting
Open-Tissue’s fraction parameter to∼ 0.002, and thus make Open-
Tissue’s stabilization method, shock-propagation, almost entirely
dominant, we can obtain stable stacks of blocks. The direct LCP
slowly generates stable stacking for small numbers of blocks (≤ 15)
but can not scale, and begins failing for larger problems. This is
consistent with the results reported in Anitescu and Hart [2004].
Finally, the Staggered Projections implementation generates long
term stable stacking 6 for both rigid and deformable bodies.

Rigid Card House: We also attempted to duplicate the card
house example from the validation tests using both direct and it-
erative LCP methods. Direct LCP generates, very slowly, a stable
solution for a small, two-level card house, but again, does not scale
and fails on card house examples of larger sizes. ODE’s iterative
solver fails for card houses at all sizes. Again this is caused by a
sidewise sliding error, no matter how high we set friction. Open-
Tissue’s iterative solver fails similarly. If we, in addition, also apply
Open-Tissue’s shock-propagation based stabilization, some of the
sliding error is reduced. However, vibratory artifacts induced by
the stabilization method still cause the Open-Tissue solver to fail
on card houses of all sizes (see the accompanying video).

Convergence and Warm Starts While we do not guarantee
convergence, all validation examples obtained convergent solu-
tions. All of the above validation examples were run to convergence
with a tolerance of ε = 10−4. A tolerance of ε = 10−1, however,
was generally sufficient to generate convincing frictional behavior,
while convergence was also tested for tolerances down to ε = 10−8.
In general, setting ε in this range allows the user detailed control
over the accuracy of the frictional response obtained by the algo-
rithm.

We note an appreciable acceleration in convergence when warm
starting is applied in these examples. In Table 1 (left) we summarize
the number of iterations to convergence for the validation examples
with and then without warm starts. In many cases a speed-up of
up to two orders of magnitude was obtained. Warm starting also
generated faster simulations in examples were a hard maximum it-
eration limit was enforced. In these simulations convergence may
not be obtained for individual steps. When temporal coherence is
sufficiently high, however, warm starting appears to help conver-
gent behavior emerge over multiple steps.

scene warm w/o warm

composites 6.4 25.8
chairs 2.9  30.9
catenary arch 5.6  133.7
card house 3.2 57.1
dinosaurs 2.7  18.3

scene solve (s) DoFs

log house 4.9  414
log house dec. 0.061   414
bunny drop 37.5   12,276

Table 2: Convergence Behavior (left): The average number of iterations
for the validation examples. Decomposition Performance (right): The
average solve time for the decomposition examples.

Haptic Rate Interaction We also implemented a highly unop-
timized prototype force-feedback haptic rendering of deformable
and rigid frictional contact interactions by plugging a Phantom Pre-
mium 1.5 haptic device directly into our existing integration cy-
cle. A timing and convergence summary for the interaction session
shown in the accompanying video and Figure 1 (a) is given in Table
2, bottom. Note that, here, hard time limits required us to imple-
ment graceful degradation. Even so we found that most (∼ 80%)
of the integration steps were still convergent and that complex fric-
tional behaviors such as jamming, sticking and stick-slip were ob-
tained.

6These S.P. simulations were also run out to 10 minutes of virtual time.

Decomposition Without constraints, each body in a multibody
system can be integrated independently. When contacts are im-
posed, however, the DoFs of individual bodies are effectively
“glued” together. Generally, though, multiple independent con-
nected sets of bodies are formed by contact constraints, each of
which can be solved separately, and, if parallel processing is avail-
able, each such set can be solved in parallel. This is a standard fea-
ture in multibody packages (e.g., “islands” in ODE [Smith 2006]).

Additional decompositions can be applied to Staggered Projec-
tions steps to extract further sparsity. This allows us to effectively
decompose the contacting system down to even smaller indepen-
dent sets. Initial investigations reveal the potential for large speed-
ups. While all of the above examples and timings provided were ob-
tained without decomposition, we implemented two examples with
a preliminary decomposition approach. We constructed a “Lin-
coln Log” scene composed of a rigid log house frictionally sliding,
jumping a ramp and then colliding. The scene was simulated twice,
once with decomposition and the second time without. We provide
a side-by-side comparison of the results in the accompanying video.
We also simulated a larger drop of rigid bunnies using decomposi-
tion (see Figure 1 (c)). The average solve time, per step, and the
number of DoFs per scene for these three simulations is given in
Table 1 (right).

9 Conclusion
We have proposed a discrete formulation of frictional contact suit-
able for both rigid and deformable systems, with a robust and effi-
cient algorithm for accurately capturing the complex interplay be-
tween contact, friction and deformation. The algorithm behaves
well in practice, as demonstrated by our instrumented examples and
video.

Limitations and Future Work While the timings for the haptic
demo (∼ 100 Hz.) are sufficient for rendering soft contact, a sepa-
rate code base specifically optimized for haptic rendering should be
able to scale the timings down to enable haptic update rates of 1000
Hz.

We are also interested in the future inclusion of additional defor-
mation models such as FEM, discrete shells, and other mesh and
node based formulations. We expect that Staggered Projections
should extend well to many of these types of generic deformable
models. For some cases, however, where the interaction between
contacts is almost entirely mediated by internal energy, such as
models with low stiffness and no explicit rigid DoFs, internal en-
ergy terms will likely need to be included in the corrector step.

The Staggered Projection algorithm specifically addresses the
resolution of frictional contact and so does not address collision
detection and contact sampling. Step sizes are therefore somewhat
dependent on the accuracy and quality of collision detection code.
Continuous collision detection methods and other associated ap-
proaches should allow for larger step sizes in examples whose ge-
ometries and dynamics include high speed impacts and/or thin ma-
terials.

We are also focusing on clarifying conditions under which con-
vergence can be guaranteed for Staggered Projections. Given the
robust, accurate and convergent behavior exhibited so far in testing
it is certainly possible that a broad convergence guarantee can be
obtained. Currently, however, this is a work in progress. Research
in this area is also exciting because it may potentially lead to further
convergence accelerations.



Figure 6: Hybrid scene: Reduced deformable StVK bunnies collide with each other and with initially stable semi-circular arches composed of rigid blocks.

Figure 7: Card house: A rigid card house is initially stable and then partially knocked down by dropping blocks.
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