
Light-Weight Context Recovery for E�cient and Accurate

Program Analyses

Donglin Liang and Mary Jean Harrold
College of Computing

Georgia Institute of Technology

Atlanta, GA 30332 USA

fdliang,harroldg@cc.gatech.edu

ABSTRACT

To compute accurate information e�cien tly for pro-
grams that use pointer variables, a program analysis
must account for the fact that a procedure may access
di�erent sets of memory locations when the procedure
is invoked under di�erent callsites. This paper presents
light-weight context recovery, a technique that can e�-
ciently determine whether a memory location is accessed
by a procedure under a speci�c callsite. The paper also
presents a technique that uses this information to im-
prove the precision and e�ciency of program analyses.
Our empirical studies show that (1) light-weight context
recovery can be quite precise in identifying the memory
locations accessed by a procedure under a speci�c call-
site and (2) distinguishing memory locations accessed
by a procedure under di�erent callsites can signi�cantly
improve the precision and the e�ciency of program anal-
yses on programs that use pointer variables.

Keywords: Program analysis, slicing, aliasing.

1 INTRODUCTION

Software development, testing, and maintenance activ-
ities are important but expensive. Thus, researchers
have investigated ways to provide software tools to im-
prove the e�ciency, and thus reduce the cost, of these
activities. Many of these tools require program analyses
to extract information about the program. For exam-
ple, tools for debugging, program understanding, and
impact analysis use program slicing (e.g., [5, 6, 15]) to
focus attention on those parts of the software that can
inuence a particular statement. To support software
engineering tools e�ectively, a program analysis must be
su�ciently e�cient so that the tools will have a reason-
able response time or an acceptable throughput. More-
over, the program analysis must be su�ciently precise
so that useful informationwill not be hidden within spu-
rious information.

1. int x;

2. f(int* p) f
3. *p = *p+x;

4. g
5. f1(int* q) f
6. int z = 0;

7. f(&z);

8. f(q);

9. g

10. int y;

11. main() f
12. int w = 1;

13. x = 1;

14. y = 1;

15. f1(&y);

16. f(&w);

17. printf("%d",w);

18. g

Figure 1: Example Program.

Many program analyses can e�ectively compute pro-
gram information for programs that do not use poin ter
variables. However, when applying these techniques to
programs that use pointer variables, several issues must
be considered. First, in programs that use pointer vari-
ables, two di�erent names may reference the same mem-
ory location at a program point. For example, in the
program in Figure 1, both pointer dereference *p and
variable name y can reference the memory location for
y at statement 3. This phenomenon, called aliasing,
must be considered when computing safe program in-
formation. For example, without considering the e�ects
of aliasing, a program analysis would ignore the fact
that y is referenced by *p in statement 3 and thus, con-
clude incorrectly that procedure f() does not modify y.
Second, in programs that use pointer variables, a pro-
cedure can access di�erent memory locations through
pointer dereferences when the procedure is invoked at
di�erent callsites. For example, f() accesses y and x

when it is called by statement 8, but it accesses w and x

when it is called by statement 16. A program analysis
that cannot distinguish the memory locations accessed
by the procedure under the context of a speci�c callsite
might compute spurious program information for this
callsite. For example, a program analysis migh t report
that y, z, and w are modi�ed by f() when f() is called
by statement 8. Furthermore, a program analysis that
propagates the spurious program information through-
out the program will be unnecessarily ine�cient.

Many existing techniques (e.g., [2, 8, 12, 14]) compute
safe program information by accounting for the e�ects
of aliasing in the analysis. However, only a few of these
techniques (e.g., [8, 12]) can distinguish memory loca-
tions accessed by a procedure under the context of spe-
ci�c callsites. These techniques use conditional analysis

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee.
ICSE 2000, Limerick, Ireland
© ACM 23000 1-58113-206-9/00/06 �$5.00

366

that attaches conditions to the information generated
during program analysis. For example, *p references w

at statement 3 (Figure 1) if *p is aliased to w at the en-
try to f(). Thus, a program analysis reports that w is
modi�ed by statement 3 under this condition. To deter-
mine whether w is modi�ed by f() when statement 8 is
executed, the program analysis determines whether *p
is aliased to w at the entry to f() by checking the alias
information at statement 8. Because *q is not aliased
to w at statement 8, *p is not aliased to w at the entry
to f() when f() is invoked at statement 8. Thus, the
program analysis reports that w is not modi�ed when
statement 8 is executed.

Although a technique using conditional analysis can dis-
tinguish memory locations accessed by a procedure un-
der speci�c callsites, and thus avoid computing spurious
program information, it can be ine�cient. First, it re-
quires conditional alias information, which currently can
be provided only by expensive alias-analysis algorithms
(e.g., [7]). Second, it can increase the cost of computing
the program information. For example, without using
conditional analysis, the complexity of computing inter-
procedural reaching de�nitions is O(n2v) where n is the
size of the program and v is the number of names that
references memory locations whereas using conditional
analysis, the complexity is O(n2v5) [12].

To compute accurate program information without us-
ing expensive conditional alias information or adding
complexity to a program analysis, we develop a new
approach that has two parts. First, by examining the
ways in which memory locations are accessed in a proce-
dure, it e�ciently identi�es the set of memory locations
that can be accessed by the procedure under a speci�c
callsite. Second, it uses this set of memory locations
to reduce the spurious information propagated from the
procedure to the callsite or from the callsite to the pro-
cedure.

To e�ciently identify the memory locations that can be
accessed by a procedure under a speci�c callsite, we de-
veloped a technique, light-weight context recovery. This
technique is based on the observation that, under the
context of a callsite, a formal parameter for a proce-
dure typically points to the same set of memory loca-
tions, throughout the procedure, as the actual param-
eter to which it is bound if the formal parameter is a
pointer. Given a memory location that is accessed ex-
clusively through the pointer dereferences of this formal
parameter, such memory location can be accessed by
the procedure under a speci�c callsite only if the mem-
ory location can be accessed at the callsite through the
pointer dereferences of the actual parameter to which
it is bound. This observation allows the technique to
identify the memory locations that are accessed by a
procedure under a speci�c callsite.

To reduce the spurious information propagated across
procedure boundaries by program analyses, we also de-
veloped a technique that uses the information about
memory locations computed by light-weight context re-
covery. At each callsite, program information about a
memory location that is not identi�ed as being accessed
by the called procedure need not be propagated from the
callsite to the called procedure or from the called pro-
cedure to the callsite. Thus, this technique can improve
the precision and the e�ciency of program analyses.

This paper presents our new approach: it �rst presents
a light-weight context recovery algorithm (Section 2); it
then illustrates, using interprocedural slicing [15], the
technique that uses information provided by the light-
weight context recovery to improve program analyses
(Section 3). The main bene�t of our approach is that
it is e�cient: it can use alias information provided by
e�cient alias analysis algorithms, such as Liang and
Harrold's [9] and Andersen's [1]; the light-weight con-
text recovery is almost as e�cient as modi�cation side-
e�ects analysis; using information provided by light-
weight context recovery in a program analysis adds lit-
tle cost to the program analysis. A second bene�t of
our approach is that, in many cases, it can identify a
large number of memory locations whose information
need not be propagated to speci�c callsites. Thus, it
can provide signi�cant improvement in both the preci-
sion and the e�ciency of the program analysis. A third
bene�t of our approach is that it is orthogonal to many
other techniques that improve the e�ciency of program
analyses. Thus, it can be used with those techniques to
improve further the e�ciency of program analyses.

This paper also presents a set of empirical studies in
which we investigate the e�ectiveness of using light-
weight context recovery to improve the e�ciency and
the precision of program analyses (Section 4). These
studies show a number of interesting results:

{ For many programs that we studied, the light-weight
context recovery algorithm computes, with relatively lit-
tle increase in cost, a signi�cantly smaller number of
memory locations as being modi�ed at a callsite than
that computed by the traditional modi�cation side-
e�ect analysis algorithm.

{ For several programs, using alias information provided
by Liang and Harrold's algorithm [9] or Andersen's al-
gorithm [1], the light-weight context recovery algorithm
reports almost the same modi�cation side-e�ects at a
callsite as Landi, Ryder, and Zhang's algorithm [8],
which must use conditional alias information.

{ Using information provided by the light-weight con-
text recovery can reduce the sizes of slices computed us-
ing the reuse-driven slicing algorithm [5] and the time
required to compute such slices.

367

2 LIGHT-WEIGHT CONTEXT RECOVERY

This section �rst gives some de�nitions and then
presents the light-weight context recovery algorithm.

De�nitions

Memory locations in a program are referenced through
object names; an object name consists of a variable and
a possibly empty sequence of dereferences and �eld ac-
cesses. If an object name contains no dereferences, then
the object name is a direct object name. Otherwise, the
object name is an indirect object name. For example,
x.f is a direct object name, whereas *p is an indirect
object name. A direct object name obj represents a
memory location, which we refer to as L(obj).
We say object name N1 is an extension of object name
N2 if N1 is constructed by applying a possibly empty
sequence of dereferences and �eld accesses ! to N2; in
this case, we denote N1 as E!hN2i. We refer to N2 as
a pre�x of N1. If ! is not empty, then N1 is a proper

extension of N2, and N2 is a proper pre�x of N1. If
N is a formal parameter and a is the actual parameter
that is bound to N at callsite c, we de�ne a function
Ac(E!hN i) that returns object name E!hai.
For example, suppose that r is a pointer that points to
a struct with �eld f . Then E�hri is �r, E�:f hri is (�r):f ,
and r is a proper pre�x of *r. If r is a formal parameter
to function F and *q is the actual parameter bound to
r at a callsite c to F , then Ac(E�:f hri) is (**q):f .
Given an object name obj and a statement s, an alias
analysis can determine a set of memory locations that
may be aliased to obj at s. We refer to this set as obj's
accessed set at s, and denote this set as ASet(obj; s).
For example, in Figure 1, ASet(�p; 3) is fy,z,wg when
Landi and Ryder's algorithm [7] is used. Given a mem-
ory location loc and a procedure P , the name set of loc
in P contains the object names that are used to refer-
ence loc in P . For example, the name set for y in f()

(Figure 1) is f*pg. A memory location loc supports ob-
ject name obj at statement s if the value of loc may
be used to resolve the dereferences in obj at s. For ex-
ample, suppose that q points to r and r points to x at
statement s. Then r supports **q at s.

Light-Weight Context Recovery

To identify memory locations accessed by a procedure
P under a speci�c callsite, light-weight context recovery
considers the nonlocal memory locations in P . If the
name set of a nonlocal memory location loc contains a
direct object name, then the technique reports that loc
is accessed under each callsite to P . If the name set
of loc contains a single indirect object name, then the
technique computes additional information to determine
whether loc can be accessed under a speci�c callsite to
P . In other cases, for e�ciency, the technique assumes
that loc is accessed under each callsite to P .

Suppose that indirect object name obj is the only ob-
ject name in the name set of nonlocal memory location
loc in procedure P . Then, if loc is referenced in P , it
must be referenced through obj. If none of the memory
locations supporting obj at statements in P is modi�ed
in P , then when P is executed, obj references the same
memory location at each point in P . In this case, if obj
is an extension of a formal parameter, then when P is
called at callsite c, obj must reference the same memory
location as the one referenced by Ac(obj) at c. Thus, if
loc is referenced in P under c, loc must be referenced by
Ac(obj) at c. During program analysis, we must propa-
gate the information for loc from P to c only if Ac(obj)
is aliased to loc at c. This property of memory loca-
tions gives us an opportunity to avoid propagating (i.e.,
�lter) some spurious information when the information
is propagated from the procedure to a callsite during
program analyses. We say that, if loc has this property
in P , then loc is eligible to be �ltered under callsites to
P , and we say that loc is a candidate. More precisely,
loc is a candidate in P if the following conditions hold.

Condition 1: loc's name set in P contains a single
indirect name obj.
Condition 2: obj is a proper extension of a formal
parameter to P .
Condition 3: the memory locations supporting obj
at statements in P are not modi�ed in P .

For example, in Figure 1, the name set of w in f() con-
tains only *p, a proper extension of formal parameter
p. The value of p does not change in f(). Thus, w is
a candidate in f(). Because A16(�p) is w, we need to
propagate the information for w from f() to statement
16. However, because A7(�p) is z, we need not propa-
gate the information for w from f() to statement 7.

Light-weight context recovery processes the procedures
in a reverse topological (bottom-up) order on the call
graph1 to identify the memory locations that are can-
didates in each procedure. Figure 2 shows algorithm
ContextRecovery that performs the processing. For a
nonlocal memory location loc referenced in procedure
P , ContextRecovery computes a mark, MarkP [loc],
whose value can be unmarked (U), eligible (

p
), or

ineligible(�). By default, MarkP [loc] is initialized to
U. If loc is a candidate in P , then MarkP [loc] is

p
. In

this case, if obj is the object name in loc's name set in
P , then ContextRecovery stores obj in OBJP [loc]. If
loc is not a candidate in P , then MarkP [loc] is � and
OBJP [loc] is �. ContextRecovery also setsMODP [loc]
to true if loc is modi�ed by a statement in P so that it
can check whether the memory locations supporting an
object name have been modi�ed in P .

ContextRecovery examines the way loc is accessed in
P , and calls Update() at various points (e.g., lines 5 and

1Nodes represent procedures; edges represent callsites.

368

algorithm ContextRecovery(P)

input P: a program
global MarkP : maps memory locations in procedure P to marks

MODP : indicate whether a memory location is modi�ed
OBJP : maps memory locations to object names

declare W : list of procedures sorted in reverse topological order
begin ContextRecovery

1. foreach procedure P do /*Intraprocedural phase*/
2. foreach statement s in P do
3. foreach object name obj in s do
4. if obj is direct then
5. Update(P ,L(obj),F,�)
6. else
7. foreach memory location loc in ASet(obj; s) do
8. Update(P ,loc,T,obj)
9. endfor
10. endif
11. endfor
12. set MODP for memory locations modi�ed at s
13. endfor
14. add P to W
15. endfor
16. while W 6=� do /*Interprocedural phase*/
17. take the �rst procedure P from W

18. foreach callsite c to R in P do
19. foreach nonlocal memory loc referenced in R do
20. if MarkR[loc] 6= p

then
21. Update(P ,loc,F,�)
22. elseif loc2ASet(Ac(OBJR [loc]); c) then
23. if Ac(OBJR [loc]) is indirect then
24. Update(P ,loc,T,Ac (OBJR [loc]))
25. else
26. Update(P ,loc,F,�)
27. endif
28. endif
29. update MODP [loc]
30. endfor
31. endfor
32. validate object names in OBJP with MODP

33. if MarkP or MODP updated then add P 's callers to W
34. endwhile
end ContextRecovery

procedure Update(Q,l,m,o)

input Q is a procedure, l is a memory location,
m is a boolean, and o is an object name or �

global MarkQ : marks for memory locations in Q

OBJQ : array of object names
begin Update

35. if m =F then
36. MarkQ[l] := �; OBJQ [l] := �

37. elseif m =T and MarkQ[l] = U then
38. if o is an extension of a formal then
39. MarkQ[l] :=

p
; OBJQ [l] := o

40. else
41. MarkQ[l] := �; OBJQ [l] := �

42. endif
43. elseif m =T and MarkQ[l] =

p
then

44. if o6=OBJQ [l] then
45. MarkQ[l] := �; OBJQ [l] := �

46. endif
47. endif
end Update

Figure 2: Algorithm identi�es candidate memory locations.

8) to compute MarkP [loc] and OBJP [loc]. Update()

inputs procedure Q, a memory location l, a boolean
ag m, and an object name o. When ContextRecovery

detects that a memory location is accessed at a state-
ment in P , if the memory location is accessed through
an indirect object name, the algorithm calls Update()
with m as T (true). Otherwise, if the memory location
is not accessed through an indirect object name, the
algorithm calls Update() with m as F (false).

Update() sets the values forMarkQ[l] and OBJQ[l] ac-
cording to m and the current value of MarkQ[l]. If m

is F, then l is not a candidate in Q because condition
1 is violated. Thus, MarkQ[l] is updated with � and
OBJQ[l] is updated with � (line 36). If m is T and the
current value of MarkQ[l] is U, then Update() checks o
to see whether o is an extension of a formal parameter
to Q (lines 37-38). If so, then l is a candidate according
to the information available at this point of computa-
tion. Thus, MarkQ[l] is updated with

p
and OBJQ[l]

is updated with o (line 39). Otherwise, l is not a can-
didate because condition 2 is violated. Thus, MarkQ[l]
is updated with � and OBJQ[l] is updated with � (line
41). If m is T andMarkQ[l] is

p
, then Update() checks

whether o is the same as OBJQ[l] (lines 43-44). If they
are not the same, then l can be accessed in Q through
more than one object name. This violates condition
1. Thus, l is not a candidate and MarkQ[l] is updated
with� and OBJQ[l] is updated with � (line 45). For the
other cases, MarkQ[l] and OBJQ[l] remain unchanged.

ContextRecovery computes Mark, OBJ , and MOD

using an intraprocedural phase and an interprocedural
phase. In the intraprocedural phase, ContextRecovery
processes the object names appearing at each statement
s in a procedure P (lines 2-13). If an object name obj
is direct, ContextRecovery calls Update(P ,L(obj),F,�)
(lines 4-5). If obj is indirect, then for each mem-
ory location loc in ASet(obj; s), ContextRecovery calls
Update(P ,loc,T,obj) (lines 7-9). For each memory loca-
tion l that is modi�ed at s, ContextRecovery also sets
MODP [l] to be true (line 12).

For example, when ContextRecovery processes state-
ment 3 in f() in Figure 1, it checks *p. *p is an in-
direct name and ASet(�p; 3) = fy; z; wg. Thus, the
algorithm calls Update(f,y,T,*p), Update(f,z,T,*p),
and Update(f,w,T,*p). ContextRecovery also checks
x at statement 3. Because x is a direct name,
ContextRecovery calls Update(f, x,F,�). After f() is
processed, Markf and OBJf have the following values:

Markf [x] = �, OBJf [x] = �

Markf [y] =
p
, OBJf [y] = �p

Markf [z] =
p
, OBJf [z] = �p

Markf [w] =
p
, OBJf [w] = �p

In the interprocedural phase, ContextRecovery pro-
cesses each callsite c to procedure R in a procedure P

(lines 16-34) using the worklist W . For each nonlocal
memory location loc referenced in R, ContextRecovery
checks MarkR[loc] (line 20). If MarkR[loc] is notp
, then ContextRecovery assumes that loc is ac-

cessed by R under each callsite to R, including c.
Thus, ContextRecovery calls Update(P ,loc,F,�) to in-
dicate that loc is accessed by R under c in some
unknown way (line 21). Otherwise, if MarkR[loc]
is

p
, then ContextRecovery checks whether loc is

in ASet(Ac(OBJR[loc]); c) (line 22). If loc is in
ASet(Ac(OBJR[loc]); c), then loc is referenced by R un-
der c through object name Ac(OBJR[loc]). Context-

369

Recovery calls Update(P ,loc,T,Ac(OBJR[loc])) if
Ac(OBJR[loc]) is indirect, and calls Update(P ,loc,F,�)
if Ac(OBJR[loc]) is direct (lines 23{27). If loc is not in
ASet(Ac(OBJR[loc]); c), then loc is not referenced by
R under c. ContextRecovery does nothing in this case.
In the interprocedural phase, when a memory location
loc is processed, ifMODR[loc] is true, then MODP [loc]
is also set to true (line 29).

For example, when ContextRecovery processes the
callsite to f() at statement 8 (Figure 1), it �rst
checks x. Markf [x] is �. Thus, the algorithm
calls Update(f1,x,F,�). The algorithm then checks y.
Markf [y] is

p
. The algorithm checks whether y is in

ASet(A8(�p); 8). A8(�p) = �q, and ASet(�q; 8) = fyg.
Thus, the algorithm calls Update(f1,y,T,*q). The algo-
rithm �nally checks z and w and does nothing because
z and w are not in ASet(�q; 8). The values for Markf1
and OBJf1 change from

Markf1[x] = U, OBJf1[x] =?
Markf1[y] = U, OBJf1[y] =?

to
Markf1[x] = �, OBJf1[x] = �

Markf1[y] =
p
, OBJf1[y] = �q

after statement 8 is processed.

In the interprocedural phase, ContextRecovery also
validates the indirect object names appearing in OBJP
to make sure that the memory locations supporting
such indirect names in P are not modi�ed in P (line
32). Suppose that indirect name obj is assigned to
OBJP [loc]. If there is a memory location l that sup-
ports obj at a statement in P such that MODP [l] is
true, then loc is ineligible because condition 3 is vi-
olated. Thus, ContextRecovery updates MarkP [loc]
with � and OBJP [loc] with �.

After ContextRecovery processes P in the inter-
procedural phase, if MODP or MarkP is updated,
then the algorithm puts P 's callers in W (line
33). ContextRecovery continues until W becomes
empty. Table 1 shows the results computed by
ContextRecovery for the example program (Figure 1).

Mark OBJ MOD

Markf [x] = � OBJf [x] = � MODf [y] = true

Markf [y] =
p

OBJf [y] = �p MODf [z] = true

Markf [z] =
p

OBJf [z] = �p MODf [w] = true

Markf [w] =
p

OBJf [w] = �p
Markf1 [x] = � OBJf1 [x] = � MODf1 [y] = true

Markf1 [y] =
p

OBJf1 [y] = �q
Markmain [x] = � OBJmain [x] = � MODmain [x] = true

Markmain [y] = � OBJmain [y] = � MODmain [y] = true

Table 1: Mark, OBJ , and MOD for example program.

Given that n is the size of the program, the complexity
of ContextRecovery isO(n2) in the absence of recursion
and O(n3) in the presence of recursion. The complexity
of ContextRecovery is the same as the algorithm for
computing modi�cation side e�ects for the procedures.

3 USING LIGHT-WEIGHT CONTEXT RE-

COVERY TO IMPROVE SLICING

This section shows how the information computed using
ContextRecovery can improve interprocedural slicing.
Other program analyses, such as computing interpro-
cedural reaching de�nitions and constructing system-
dependence graphs, can be improved in a similar way.

Interprocedural Slicing

Program slicing is a technique to identify statements in
a program that can a�ect the value of a variable v at
a statement s (hs; vi is called the slicing criterion) [15].
Program slicing can be used to support tasks such as
debugging, regression testing, and reverse engineering.

One approach for program slicing �rst computes data
and control dependences among the statements and
builds a system-dependence graph, and then computes
the slice by solving a graph-reachability problem on this
graph [6]. Other approaches, such as the one used in
the reuse-driven interprocedural slicing algorithm [5],
use precomputed control-dependence information, but
compute the data-dependence information on demand
using control-ow graphs2 (CFGs) for the procedures.
We use the reuse-driven slicing algorithm as an example
to show how a program analysis can be improved using
information provided by light-weight context recovery.

The reuse-driven slicer computes an interprocedural
slice for criterion hs; vi by invoking a partial slicer on
the procedures of the program. The reuse-driven slicer
�rst invokes the partial slicer on Ps, the procedure that
contains s, to identify a subset of statements in Ps or
in procedures called by Ps and a subset of inputs to Ps
that may a�ect v at s. We refer to s and v as the partial
slicing standard used by the partial slicer and denote it
as [s; v]. We refer to the subset of statements identi�ed
by the partial slicer as a partial slice with respect to
[s; v]. We also refer to the subset of inputs identi�ed by
the partial slicer as relevant inputs with respect to [s; v].

When Ps is not the main function of the program, the
statements in procedures that call Ps might also a�ect
the slicing criterion hs; vi through the relevant inputs
of [s; v]. Therefore, after Ps is processed, for each call-
site ci that calls Ps, the reuse-driven slicer binds each
relevant input f back to ci and creates a new partial
slicing standard [ci; ai], given that ai is bound to f at
ci. The reuse-driven slicer then invokes the partial slicer
on [ci; ai] to identify the statements in Pci that should
be included in the slice. The algorithm continues until
no additional partial slicing standards can be generated.
The algorithm returns the union of all partial slices com-
puted by the partial slicer as the program slice for hs; vi.
Figure 3 shows the call graph for the program in Figure

2Nodes represent statements; edges represent control transfer.

370

f1

[15,x] [16,x]

[8,x]

[7,x]
f

[3,x] <3,x>

main

Figure 3: Call graph annotated with partial slicing stan-
dards for h3;xi; solid lines show graph edges; dotted lines
show relationships among partial slicing standards.

1. The graph is annotated with partial slicing stan-
dards created by the reuse-driven slicer to compute the
slice for h3; xi. The reuse-driven slicer �rst invokes the
partial slicer on f() with respect to [3; x]. The par-
tial slicer computes partial slice f3g and relevant input
set fxg. After f() is processed, the reuse-driven slicer
creates new partial slicing standards [7; x] and [8; x] for
the callsites to f() in f1() and partial slicing standard
[16; x] for the callsite to f() in main(), and invokes the
partial slicer on these standards. The partial slicer com-
putes relevant input set fxg for [7; x] and [8; x]. After
the partial slicer �nishes processing [7; x] or [8; x], the
reuse-driven slicer further creates partial slicing stan-
dard [15; x] for the callsite to f1() in main(), and in-
vokes the partial slicer on this standard. The resulting
slice for h3; xi is f3; 7; 8; 13; 15; 16g, the union of all par-
tial slices computed during the processing.

The partial slicer computes the partial slice for stan-
dard [s; v] by propagating memory locations backward
throughout Ps using Ps's CFG. For each node N in the
CFG of Ps, the partial slicer computes two sets of mem-
ory locations: IN [N] at the entry of N ; OUT [N] at the
exit of N . IN [N] is computed using OUT [N] and infor-
mation about N . OUT [N] is computed as the union of
the IN [] sets of N 's CFG successors. The partial slicer
iteratively computes IN [] and OUT [] for each node in
Ps until a �xed point is reached. The formal parameters
and nonlocal memory locations in IN [] at Ps's entry are
the relevant inputs with respect to [s; v].

When N is not a callsite, the partial slicer computes
IN [N] by considering OUT [N] and those memory loca-
tions whose values are modi�ed or used at N . If memory
locations in OUT [N] can be modi�ed at N , then N and
statements on which N is control dependent are added
to the slice. When N is a callsite to procedure Q, the
partial slicer must process Q to compute IN [N] and to
identify the statements in Q for inclusion in the partial
slice. Figure 4 shows ProcessCall(), the procedure
that processes a callsite c to Q.

ProcessCall() uses a cache to store the partial slice
and the relevant inputs for each partial slicing standard
created by the reuse-driven slicer. For each memory lo-
cation u in OUT [c], ProcessCall() binds u to u0 in
Q (line 2). If u0 is not modi�ed by Q or by proce-

procedure ProcessCall(c; IN; OUT)
input c: a call node that calls Q

OUT : the set OUT [c]
output IN : the set IN [c]
globals cache[s; v]: pair of (pslice; relInputs)

previously computed by ComputePSlice on [s; v]
begin ProcessCall

1. foreach u in OUT do
2. u0 = Bind(u, c, Q)
3. if u0 is not modi�ed by Q or pocedures called by Q then
4. IN = IN[fug
5. else
6. if cache[Q:exit; u0] is NULL then
7. cache[Q:exit;u0] = ComputePSlice(Q:exit; u0)
8. endif
9. add cache[Q:exit; u0]:pslice to the slice
10. IN = IN[BackBind(cache[Q:exit; u0]:relInputs, c,Q)
11. endif
12. endfor
end ProcessCall

Figure 4: Procedure processes callsites using caching.

dures called by Q, ProcessCall() simply adds u to
IN [c] (lines 3-4). Otherwise, ProcessCall() creates a
partial slicing standard [Q:exit; u0], in which Q:exit is
the exit of Q. ProcessCall() then checks the cache
against [Q:exit; u0] (line 6). If the cache does not con-
tain information for [Q:exit; u0], then ProcessCall()

invokes ComputePSlice() on [Q:exit; u0], and stores
the partial slice and the relevant inputs returned by
ComputePSlice() in the cache (line 7). ProcessCall()
then merges the partial slice with the program slice (line
9), and calls BackBind() (not show) to bind the rele-
vant inputs back to c and adds them to the IN [c] (line
10). After c has been processed, if some statements in
Q are included in the slice, then c and statements on
which c is control dependent are added to the slice.

For example, to compute the slice for h17; wi, the slicer
�rst propagates w from statement 17 to OUT [16]. Be-
cause statement 16 is a callsite, the slicer propagates
w into f() and creates a new partial slicing standard
[4; w]. The slicer then invokes the partial slicer on
[4; w], and computes partial slice f3g and relevant in-
puts fx,y,z,w,pg. The slicer binds x, y, z, w, and p

back to statement 16 and puts x,y,z, and w in IN [16].
The slicer keeps processing and adds statements 3, 6, 7,
8, 12, 13, 14, 15, 16, and 17 to the slice.

Interprocedural Slicing Using Information Pro-

vided by Light-Weight Context Recovery

The precision and the e�ciency of the reuse-driven slicer
can be improved if it can identify the set of memory lo-
cations modi�ed by a procedure under a speci�c callsite.
To do this, before the slicer propagates a memory loca-
tion from the callsite to the called procedure, it �rst
checks whether the memory location can be modi�ed
by the procedure under this callsite. If the memory lo-
cation cannot be modi�ed by the procedure under this
callsite, the reuse-driven slicer does not propagate the
memory location into the called procedure. Similarly,
the precision and the e�ciency of the reuse-driven slicer
can be improved if it can identify the set of memory loca-

371

procedure ProcessCall(c; IN; OUT)
input c: a call node that calls Q

OUT : the set OUT [c]
output IN : the set IN [c]
globals cache[s; v]: pair of (pslice; relInputs)

previously computed by ComputePSlice for [s; v]
begin ProcessCall

1. foreach u in OUT do
2'. if u is not modi�ed by Q at c then
3'. IN = IN[fug
4'. else
5'. u0 = Bind(u, c, Q)
6. if(cache[Q:exit; u0] is NULL) then
7. cache[Q:exit; u0] = ComputePSlice(Q:exit; u0)
8. endif
9. add cache[Q:exit;u0]:pslice to the slice
10. IN = IN[BackBind(cache[Q:exit; u0]:relInputs, c,Q)
11. endif
12. endfor
end ProcessCall

function BackBind(eV ars; c; P)
input eV ars: memory locations reaching the entry of P

P : a procedure
c: a call node that calls P

output memory locations at callsite
begin BackBind

13. foreach memory location l in eV ars do
14. if l is formal parameter then
15. add memory locations bound to l at c into CalleeV ars

16. elseif l is referenced by P at c then /*old: 16. else */
17. add l to into CalleeV ars

18. enif
19. endfor
20. return CalleeV ars

end BackBind

Figure 5: ProcessCall() (modi�ed) and BackBind().

tions referenced by a procedure under a speci�c callsite.
The slicer propagates, from the called procedure to a
callsite, only the memory locations that are referenced
under the callsite. Both improvements can reduce the
spurious information propagated across the procedure
boundaries, and thus can improve the precision and ef-
�ciency of the reuse-driven slicer.

For example, consider the actions of the reuse-driven
slicer for h17; wi (Figure 1), if the two improvements,
described above, are made. The improved slicer �rst
propagates w from statement 17 to statement 16. Be-
cause f() modi�es w when it is invoked by statement
16, the improved slicer propagates w from statement 16
into f(), and creates partial slicing standard [4; w]. The
improved slicer then invokes the partial slicer on [4; w],
adds statement 3 to the partial slice, and identi�es x, y,
z, w, and p as the relevant inputs. The improved slicer
checks statement 16 and �nds that only x and w can be
referenced when f() is invoked by statement 16. Thus,
it adds only x and w to IN [16]. The improved slicer
further propagates x and w to OUT [15]. Because f1()

modi�es neither x nor w when it is invoked at statement
15, the improved slicer propagates x and w directly to
IN [15], without propagating them into f1(). The im-
proved slicer continues and adds statements 3, 12, 13,
16, 17 to the slice. This example shows that using spe-
ci�c callsite information can help the reuse-driven slicer
compute more precise slices.

We modify ProcessCall() (Figure 4) to use the set

of memory locations that are modi�ed by a procedure
under a speci�c callsite to reduce the spurious informa-
tion propagated from a callsite to the called procedure.
Figure 5 shows the modi�ed ProcessCall() (lines 2'{5'
replace lines 2{5 in the original version). For each u in
OUT [c], the new ProcessCall() �rst checks whether
u is modi�ed by Q at c (line 2'). If u is not modi-
�ed by Q at c, then the new ProcessCall() adds u to
IN [c] (line 3'). If u is modi�ed by Q at c, then the
new ProcessCall() binds u to u0 in Q, creates partial
slicing standard [Q:exit; u0], and continues the compu-
tation in the usual way (lines 5'{10). Because u being
modi�ed by Q at c implies that u0 is modi�ed by Q, the
new ProcessCall() need not check u0.

We also modify BackBind() to use the set of memory
locations that are referenced by a procedure under a
speci�c callsite to reduce the spurious information prop-
agated from a procedure to its callsites. Figure 5 shows
the modi�ed BackBind() in which line 16 has been
changed. BackBind() checks each memory location l

in its input eV ars (line 13). If l is a formal parameter,
BackBind() adds the memory locations that are bound
to l at c to CalleeV ars (lines 14-15). Otherwise, the
new BackBind() checks whether l is referenced when P

is invoked at c (line 16). If so, then BackBind() puts
l in CalleeV ars (line 17). Finally, BackBind() returns
CalleeV ars (line 20).

We use MarkP , OBJP , and MODP computed by
ContextRecovery to determine the memory locations
that can be modi�ed by P under callsite c.3 For a
nonlocal memory location loc in P , if MODP [loc] is
true and MarkP [loc] is �, then loc may be modi-
�ed by P under each callsite to P , including c. If
MODP [loc] is true and MarkP [loc] is

p
, and if loc is in

ASet(Ac(OBJP [loc]); c), then loc can be modi�ed by P
under c. Otherwise, loc is not modi�ed by P under c.

For example, according to the result in Table 1,
Markf [y] =

p
, OBJf [y] = �p, and MODf [y] = true.

Thus, f() modi�es y when f() is invoked at statement
8 in Figure 1 because ASet(A8(�p); 8) (i.e., ASet(�q; 8))
contains y. However, f() does not modify y when f()

is invoked at statement 16 because ASet(A16(�p); 16)
(i.e., ASet(w; 16)) does not contain y.

We use a similar approach to determine the memory
locations that can be referenced by P when P is in-
voked from c. For a memory location loc, ifMarkP [loc]
is �, then loc can be referenced by P under c. If
MarkP [loc] is

p
and OBJP [loc] is obj, and if loc is

in ASet(Ac(obj); c), then loc can be referenced by P

under c. Otherwise, loc is not referenced by P under c.

3We also can use conditional alias information to determine the
memory locations that may be modi�ed by P under c. However,
this approach might be too expensive for large programs.

372

4 EMPIRICAL STUDIES

We performed several studies to evaluate the e�ective-
ness of using light-weight context recovery to improve
the precision and the e�ciency of program analyses. We
implemented ContextRecovery and the reuse-driven
slicing algorithm that uses information provided by
ContextRecovery using PROLANGS Analysis Frame-
work (PAF) [3]. In the studies, we compared the results
computed with alias information provided by Liang and
Harrold's algorithm (LH) [9] and by Andersen's algo-
rithm (AND) [1].4 We gathered the data for the stud-
ies on a Sun Ultra30 workstation with 640MB physical
memory and 1GB virtual memory.5 The left side of
Table 2 gives information about the subject programs.

CFG LH AND
program Nodes LOC CI CR CI CR

loader 819 1132 0.07 0.11 0.08 0.11
dixie 1357 2100 0.12 0.19 0.11 0.17
learn 1596 1600 0.11 0.2 0.11 0.17
unzip 1892 4075 0.14 0.22 0.14 0.21
assembler 1993 2510 0.26 0.35 0.23 0.34
smail 2430 3212 0.28 0.52 0.29 0.59
lharc 2539 3235 0.19 0.35 0.22 0.35
simulator 2992 3558 0.47 0.59 0.49 0.57
arc 3955 7325 0.38 0.77 0.38 0.68
space 5601 11474 1.48 1.62 1.86 1.91
larn 11796 9966 2.18 2.85 2.11 2.84
espresso 15351 12864 7.34 8.81 8.62 15.25
moria 20316 25002 29.29 38.98 22.49 24.79
twmc 22167 23922 2.98 4.69 3.53 7.96

Table 2: Information about subject programs (left) and
time in seconds for context-insensitive modi�cation side ef-
fect analysis (CI) and for ContextRecovery (CR) (right).

Study 1

The goal of study 1 is to evaluate the e�ciency of
our algorithm (CR). We compared the time required
to run CR on a program and the time required to com-
pute modi�cation side-e�ects of the procedures in the
program with a context-insensitive algorithm (CI). We
make this comparison because (1) the time for comput-
ing modi�cation side-e�ects is relatively small compared
to the time required for many program analyses and (2)
our algorithm can be used instead of CI to compute
more precise modi�cation side-e�ects that are required
for many program analyses. The right side of Table 2
shows the results computed using alias information pro-
vided by the LH algorithm and by the AND algorithm.
From the table, we can see that, for the subjects we
studied, CR is almost as e�cient as CI. This suggests
that the time added by our algorithm might be negligi-
ble in many program analyses.

Study 2

The goal of study 2 is to evaluate the precision of our
algorithm in identifyingmemory locations that are mod-
i�ed by a procedure under a speci�c callsite (MOD at

4See [9] for a detailed comparison of these two algorithms.
5Because we simulate the e�ects of library functions using new

stubs with greater details, data reported in these studies for the
subject programs di�er from those reported in our previous work.

Figure 6: Average sizes of MOD at a callsite.

a callsite). We compared the size of MOD at a callsite
computed by the traditional context-insensitive modi-
�cation side-e�ect analysis algorithm (the CI-MOD al-
gorithm) and by our algorithm. The reduction of the
size of MOD at a callsite indicates the e�ectiveness of
our technique in �ltering spurious information at a call-
site. We also compared the results computed by our
algorithm with the results computed by Landi, Ryder,
and Zhang's modi�cation side e�ect analysis algorithm
(the LRZ algorithm) [8] that uses conditional analy-
sis. The results computed by the LRZ algorithm can
be viewed as a lower bound for our algorithm. We used
our implementations of the CI-MOD algorithm and of
our algorithm, and used the implementation of the LRZ
algorithm provided with PAF.

Figure 6 shows the results of this study. In the graph,
the total length of each bar indicated by either AND
or LH represents the average size of MOD at a callsite
computed by the CI-MOD algorithm using the alias in-
formation provided by the AND algorithm or the LH al-
gorithm. On each bar, the length of the slanted segment
represents the average size of MOD at a callsite com-
puted by our algorithm using alias information provided
by the corresponding alias analysis algorithm. For ex-
ample, using the alias information provided by the AND
algorithm, the CI-MOD algorithm reports that a call-
site modi�es 29 memory locations in space. Using the
same alias information, however, our algorithm reports
that a callsite modi�es only 4.2 memory locations. The
graph shows that for most subject programs we stud-
ied, our algorithm computes signi�cantly more precise
MOD at a callsite than the CI-MOD algorithm. Thus,
we expect that using information provided by our algo-
rithm can signi�cantly reduce the spurious information

373

propagated across procedure boundaries.

Figure 6 also shows the average size of MOD at a call-
site computed by the LRZ algorithm.6 In the graph,
the length of each bar indicated by LRZ represents the
average size of MOD at a callsite computed by the LRZ
algorithm. For example, the LRZ algorithm reports that
a callsite in space can modify 5 memory locations. Note
that because this algorithm uses alias information com-
puted by Landi and Ryder's algorithm [7], which treats
a structure in the same way as its �elds in some cases,
this algorithm reports a larger MOD at a callsite than
our algorithm for space. The graph shows that, for sev-
eral programs we studied, the size of MOD at a callsite
computed by our algorithm is close to that computed
by the LRZ algorithm. This result suggests that our
algorithm can be quite precise in identifying memory
locations that may be modi�ed by a procedure under a
speci�c callsite. The graph also shows that the precision
of MOD at a callsite computed by our algorithm varies
for di�erent programs. This suggests that the e�ective-
ness of improving program analyses using information
provided by our algorithm might depend on how the
program is written.

Study 3

The goal of study 3 is to evaluate the e�ectiveness of
using information provided by light-weight context re-
covery in improving the precision and e�ciency of the
reuse-driven slicing algorithm. We compared the size of
a slice and the time to compute a slice with and with-
out using information provided by light-weight context
recovery. Table 3 shows the results.

The left side of Table 3 shows S, the average size of
a slice computed using information provided by light-
weight context recovery, and S0, the average size of a
slice computed without using such information. The ta-
ble also shows the ratio of S to S0 in percentage. From
the table, we can see that, for some programs, using in-
formation provided by light-weight context recovery can
signi�cantly improve the precision of computing inter-
procedural slices. However, for other programs, we do
not see signi�cant improvement. One explanation for
this may be that, on these programs, the precision of
the interprocedural slicing is not sensitive to the preci-
sion of identifying memory locations that are modi�ed
or referenced at a statement. This result is consistent
with results reported in References [9, 14], which show
that the precision of interprocedural slicing is not very
sensitive to the precision of alias information.

The right side of the Table 3 shows T , the average
time to compute a slice using information provided by

6Data for some programs are unavailable: Landi and Ryder's
algorithm [7] fails to terminatewithin 10 hours (time limit we set)
when computing alias information for these programs.

average size time in seconds
name alias S S' S/S' T T' T/T'

load- LH 187 241 77.9% 2.3 6.4 35.0%
ery AND 187 241 77.9% 2.3 6.4 35.2%
dixiey LH 629 648 97.0% 10.0 23.0 43.6%

AND 609 648 94.0% 5.3 12.3 42.9%
learny LH 499 501 99.6% 16.2 29.7 54.6%

AND 479 501 95.6% 10.9 21.2 51.5%
unzipy LH 791 806 98.1% 8.5 12.1 70.6%

AND 791 806 98.1% 8.3 9.7 85.7%
assem- LH 744 751 99.1% 15.2 93.8 16.2%
blery AND 630 750 84.0% 8.7 49.6 17.6%
smailz LH 1066 1087 98.1% 158 545 29.0%

AND 1032 1090 94.7% 129 390 33.0%
lharcy LH 620 710 87.4% 18.4 59.0 31.1%

AND 546 698 78.3% 10.3 39.5 26.2%
simu- LH 1174 1178 99.7% 11.1 18.5 59.8%
latery AND 1174 1178 99.7% 10.8 18.7 58.0%
arcy LH 788 804 98.1% 9.4 12.9 72.5%

AND 771 803 96.1% 7.6 9.2 82.2%
spacez LH 2028 2161 93.9% 31.8 577 5.5%

AND 2019 2161 93.4% 31.2 574 5.4%
larnz LH 4590 4612 99.5% 642 977 65.7%

AND 4576 4603 99.4% 619 798 77.5%

average size time in hours
name alias S S' S/S' T T' T/T'

espre- LH 5704 5705 100% 1.2 4.7 25.4%
ssoz AND 5704 5705 100% 6.9 7.3 93.7%
moriaz LH 7820 28 >100

AND 7822 7.1 >100
twmcz LH 4331 4331 100% 1.9 2.2 83.7%

AND 4327 4327 100% 1.7 2.0 84.1%
yData are collected from all slices of the program.
zData are collected from one slice.

Table 3: Average size of a slice (left) and average time to
compute a slice (right).

light-weight context recovery, and T 0, the average time
to compute a slice without using information provided
by light-weight context recovery. The time measured
does not include time required for building CFG, alias
analysis, computing modi�cation side-e�ect, and con-
text recovery. The table also shows the ratio of T to
T 0. From the table, we see that using information pro-
vided by light-weight context recovery can signi�cantly
reduce the time required to compute interprocedural
slices. This suggests that that our technique might e�ec-
tively improve the e�ciency of many program analyses.

5 RELATED WORK

Flow-insensitive alias analysis algorithms can be ex-
tended, using a similar technique as in Reference [4],
to compute polyvariant alias information that identi�es
di�erent alias relations for a procedure under di�erent
callsites. Using polyvariant alias information, a pro-
gram analysis can identify the memory locations that
are accessed in a procedure under a speci�c callsite,
and thus, computes more accurate program informa-
tion. However, computing polyvariant alias information
may require a procedure to be analyzed multiple times,
each under a speci�c calling context. This requirement
may make the alias analysis ine�cient.

Observing that memory locations pointed to by the
same pointers in a procedure have the same program
information in the procedure, we developed a technique

374

[10] that partitions these memory locations into equiva-
lence classes. Memory locations in an equivalence class
share the same program information in a procedure.
Therefore, when the procedure is analyzed, only the in-
formation for a representative of each equivalence class
is computed. This information is then reused for other
memory locations in the same equivalence class. Ex-
periments [10, 11] show that this technique can e�ec-
tively improve the performance of program analyses.
The technique presented in this paper improves the per-
formance of program analyses in another dimension, and
thus, can be used together with equivalence analysis to
further improve the e�ciency of program analyses.

Horwitz, Reps, and Binkley [6] present a technique that
uses the sets of variables that may be modi�ed or may
be referenced by a procedure to avoid including unnec-
essary callsites in a slice. This technique is needed so
that a system-dependence-graph based slicer can com-
pute slices that are as precise as those computed by
other interprocedural slicers (e.g., [5]). Our technique
di�ers from theirs in that our technique uses the sets of
memory locations that may be accessed by a procedure
under a speci�c callsite to �lter spurious program infor-
mation. Thus, our technique can improve the precision
and performance of many program analyses on which
Horwitz, Reps, and Binkley's technique cannot apply.

There are many other techniques that can improve the
performance of program analyses (e.g., [13]). Our light-
weight context-recovery technique can be used with
many of these approaches to improve further the per-
formance of data-ow analyses.

6 CONCLUSION AND FUTURE WORK

We presented a light-weight context recovery algorithm,
and illustrated a technique that uses the information
provided by the light-weight context recovery to im-
prove the precision and the e�ciency of program anal-
yses. We also conducted several empirical studies. The
results of our studies suggest that, in many cases, using
light-weight context recovery can e�ectively improve the
precision and e�ciency of program analyses.

In our future work, �rst, we will repeat the studies in
this paper on larger programs to further validate our
conclusions. Second, we will perform studies to evalu-
ate the e�ectiveness of combining light-weight context
recovery with equivalence analysis to improve the e�-
ciency of computing interprocedural slices. Third, we
will apply our technique to other program analyses and
evaluate its e�ectiveness on those program analyses. Fi-
nally, we will perform studies to compare our technique
with conditional analysis.

ACKNOWLEDGMENTS

This work was supported by NSF under grants CCR-
9696157 and CCR-9707792 to Ohio State University.

REFERENCES

[1] L.O. Andersen. Program analysis and specialization for
the C programming language. Technical Report 94-19,
University of Copenhagen, 1994.

[2] D. Atkinson and W. Griswold. E�ective whole-program
analysis in the presence of pointers. In The 6th ACM

SIGSOFT Symposium on the Foundation of Software

Engineering, pages 46{55, November 1998.

[3] Programming Languages Research Group.
PROLANGS Analysis Framework. Rutgers University,
http://www.prolangs.rutgers.edu/, 1998.

[4] D. Grove, G. DeFouw, J. Dean, and C. Chambers. Call
graph construction in object-oriented languages. In
Proceedings of ACM SIGPLAN Conference on Object-

Oriented Programming Systems, Languages and Appli-

cations, pages 108{124, October 1997.

[5] M. J. Harrold and N. Ci. Reuse-driven interprocedu-
ral slicing. In The 20th International Conference on

Software Engineering, pages 74{83, April 1998.

[6] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. ACM Trans. on Prog.

Lang. and Sys., 12(1):26{60, Jan. 1990.

[7] W. Landi and B. G. Ryder. A safe approximate al-
gorithm for interprocedural pointer aliasing. In Proc.

of SIGPLAN '92 Conf. on Prog. Lang. Design and Im-

plem., pages 235{248, June 1992.

[8] W. Landi, B. G. Ryder, and S. Zhang. Interprocedural
modi�cation side e�ect analysis with pointer aliasing. In
SIGPLAN '93 Conference on Programming Language

Design and Implementation, pages 56{67, June 1993.

[9] D. Liang and M. J. Harrold. E�cient points-to analy-
sis for whole-program analysis. In Joint 7th European

Software Engineering Conference and 7th ACM Sym-

posium on Foundations of Software Engineering, pages
199{215, September 1999.

[10] D. Liang and M. J. Harrold. Equivalence analysis: A
general technique to improve the e�ciency of data-ow
analyses in the presence of pointers. In Program Analy-

sis for Software Tools and Engineering '99, pages 39{46,
September 1999.

[11] D. Liang and M. J. Harrold. Reuse-driven interproce-
dural slicing in the presence of pointers and recursion.
In International Conference on Software Maintenance,
pages 421{430, September 1999.

[12] H. Pande, W. Landi, and B. G. Ryder. Interprocedural
def-use associations in C programs. IEEE Transactions

on Software Engineering, 20(5):385{403, May 1994.

[13] A. Rountev, B. G. Ryder, and W. Landi. Data-ow
analysis of program fragments. In Joint 7th European

Software Engineering Conference and 7th ACM SIG-

SOFT Symposium on the Foundations of Software En-

gineering, pages 235{252, September 1999.

[14] M. Shapiro and S. Horwitz. The e�ects of the precision
of pointer analysis. In The 4th International Symposium

on Static Analysis, pages 16{34, September 1997.

[15] M. Weiser. Program slicing. IEEE Trans. on Softw.

Eng., 10(4):352{357, July 1984.

375

