In Proceedingsof the 21st Inter national Conference on Software Engineering (16-22 May 1999, Los Angeles, CA, USA).

Contextual Programming
(Doctoral Symposium—Extended Abstract)

Robert J. Walker
Department of Computer Science
University of British Columbia
201-2366 Main Mall
Vancouver, BC, Canada V6T 124
+1 604 822 3061
walker@cs.ubc.ca

ABSTRACT

When information external to a component is not of impor-
tance to the implementation of that component but is present
within it as an artifact of design or programming mecha-
nisms, system structure suffers, resulting in greater difficul-
tiesin softwareevolutionand reuse. | am investigating an ap-
proach to | essening the effects of such extraneous embedded
knowl edge through the use of dynamic executioninformation
and static structural information, which comprisethe concept
of context.

1 THE PROBLEM

Current approaches to design and programming cause ex-
ternal information to be encoded into components. When
this information is not of importance to the essence of the
these componentsbut isan artifact of design or programming
mechanisms, system structure suffers, resulting in greater
difficultiesin software evolution and reuse. | refer to knowl-
edge of the external world that is not explicitly required for
the specification of a component as extraneous embedded
knowledge (EEK). EEK comes in many forms; space does
not permit afull recitation.

Asan example of EEK, consider three methods: A, B, and C.
Method A calls B, and B subsequently calls C (Figure 1a). In
these calls, various parameters are passed; among theseisa
piece of information called sni p. Method Crequiressni p
for itsexecution and Aisin the best positionto obtain or cal-
culate sni p. Method B does not use sni p inany way ex-
cept to pass it on to C. At some poaint, it is decided that C
should be replaced within B by anew method, D (Figure 1b).
Method D serves the same purpose as C, but does not require
that sni p bepassedtoit. Sincewedo not want to break all of
B's clients, we do not change the interface to B. Our system
now performs work that is unneeded and conducts commu-
nication that is unwanted; aside from inefficiency, the code

(© 1999 |EEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or pro-
motional purposesor for creating new collectiveworks for resaleor
redistribution to serversor lists, or to reuse any copyrighted compo-
nent of this work in other works must be obtained fromthe | EEE.

734

in support of this EEK obscures the meaningful operations
within these methods. The system isharder to changeand is
more likely to contain errors.

EEK arises because of the early binding of names by pro-
grammers and thefragility of encapsulation in interface pro-
tocols. Current design and programming mechanisms neces-
sitate these restrictions; a new approach is needed to reduce
theinfluence of EEK.

® =] -0 o =
A B C A B D
@ (b)

Figurel. Method Cis replaced with method D, which does not need
the parameter sent from method A, but the data-flow from A still
passesto B, which doesnot useit. Thesolid arrowsindicate control-
flow, the dotted are data-flow.

2 PRIOR RESEARCH

Global variables are a standard means of sharing informa-
tion without passing parameters. There are severa standard
objectionsto the proliferation of globa variables, including
name-space collisionsand viol ation of encapsulation[6]. Ev-
ery component accessing aglobal variableis strongly depen-
dent on its name and type, increasing component coupling
and the presence of EEK.

Predicate classes [1] permit the type of an object to be tran-
siently redefined according toitsstate (or according to auser-
defined predicate that can be fairly arbitrary). Context rela
tions[5] provide a language-based mechanism in support of
the Strategy design pattern by allowing “context objects’ to
bedynamically attached to instances. Subjectivity [2] alows
different method implementations to be executed for ames-
sage depending on therun-timetype of the sender of themes-
sage. Such amechanism could provideflexibility ininterpre-
tation of names within messages, but would still require too
restrictive an agreement on the meaning of those names. All
three of these mechanisms permit significant dynamic flexi-
bility, and hence might address the need for eliminating early
binding, but they do not provide any special means for elimi-



nating the forms of EEK not arising from early binding, such
as extraneous parameters (Figure 1).

Dynamic scoping (e.g., in Lisp) alows names to be bound
into an external, non-lexical scope at run-time. Thisis no-
torioudly fraught with evolutionary problems, as there is no
guarantee that identical names in different scopes will be se-
mantically equivalent. Evenif they initialy are semantically
equivalent, an intervening scope can later beintroduced with
anon-equivaent variable name.

Reflection [4] can allow aprogram to monitor and alter itself
dynamically. However, reflection is a general principle that
could be used by other mechanisms in mitigating the effects
of EEK and not a mechanismin itself.

Behavioraly adaptive objects [3] separate objects into two
separate, interacting entities: crystalsto represent the state of
an object, recelve messages, and select behaviour, and con-
textsto define operations. If more than one context is appro-
priate for the response to a message, the crystal must explic-
itly order the behavioursit sel ects and somehow resolve con-
flicts between them. Contextsare defined across sets of crys-
talstoo, tightly couplingthem as aresult. Behaviorally adap-
tive objects are fraught with EEK—even more than other ap-
proaches due to the tight coupling of crystals.

Many other rel ated mechani sms exist, but space does not per-
mit their description. No existing mechanisms address al
forms of EEK simultaneoudly.

3 THE APPROACH

Coupling between components can be mitigated, making
them more reusable and easier to change, by reducing or
eliminating the EEK withinthem. Such areductionis possi-
ble through extensions to the concepts of reflection and dis-
patch.

Reflectionisordinarily defined interms of monitoringand al-
tering what is currently occurring within a system—not what
has already taken place. Many attempts have been made to
leverage theideaof “context” ininterpreting messages or se-
lecting implementations (e.g., [5, 3]). These approaches are
quite static, looking only at the current state of the system,
or more likely, some small portion thereof. But the previous
state and execution of the system have alot to say about what
should happen next: whether certain components have been
used yet when they need to have been, or whichlibrary should
be used in conjunction with servicing a message from a par-
ticular object. Just asin human speech, we can use statements
and concepts from earlier communication to understand cur-
rent requests, and we can modify our responses according to
whom we are speaking and under what circumstances. As
long as messages do not become ambiguous, we can be more
concise, providingonly that information whichisrealy nec-
essary.

More concretely, consider the problem of extraneous param-

735

eters again, where component C requires sni p from A, and
it happens to be passed through B because that is where
the control-flow goes. Since sni p is extraneous to B, it
is needed by B only because of language constraints—the
logical service provided by B does not suggest a need for
sni p. Therefore, sni p should bypass B dtogether (Fig-
ure 2). When the control-flow arrives a C, sni p should be
filled in from context. The context mechanism might look
for the most recent object of sni p’stypethat was “floating
inlimbo”—in context, that is—and fill in the appropriate pa
rameter to C. Or it might look for the name sni p and do the
filling in that way. To make this safer than dynamic scoping,
the identity of the component or pathway providing sni p
could be checked against.

o ‘o
B C

A

Figure 2. The data-flow from method A bypasses B, which is not
interestedin it, thereby eliminating the EEK from B that would have
otherwise been present.

Combining data-flow separation with a particul ar structuring
and dispatch mechanism should permit the necessary flexi-
bility to adapt components and systemsto new situations. By
moving the bindings of component interactions from within
components to their boundaries, the components should be
more easily reusable and the system more easily evolvable.
With the elimination of extraneous constraintsand code aris-
ing from too much knowledge about particular components,
their interfaces, and protocol s, components should be cleaner
to write and more closely represent their core concern.

ACKNOWLEDGEMENTS

Thiswork would not have been possiblewithout the help and
encouragement of Gail Murphy.

REFERENCES

[1] C. Chambers. Predicate classes. In ECOOP '93—Object-
Oriented Programming, pages 268-296, 1993. LNCS 707.

[2] W. Harrison and H. Ossher. Subject-oriented programming: A
critique of pure objects. In Proc. OOPSLA’ 93, pages411-428,
1993.

S. Langand P. Lockemann. Behaviorally adaptiveobjects. The-
ory and Practice of Object Systems, 4(3):169-182, 1998.

P. Maes. Conceptsand experimentsin computational reflection.
In Proc. OOPSLA ' 87, pages 147-155, 1987.

L. Seiter, J. Palsberg, and K. Lieberherr. Evolution of object
behavior using context relations. |EEE Trans. on Software En-
gineering, 24(1):79-92, 1998.

[6] W. Wulf and M. Shaw. Global variable considered harmful.
SIGPLAN Notices, 8(2):28-34, 1973.

(3]

[4]

(5]



