
Evaluating Emerging Software Development Technologies:

Lessons Learned from Assessing Aspect-oriented Programming�

Gail C. Murphy, Robert J. Walker, and Elisa L.A. Baniassad

Department of Computer Science

University of British Columbia

201-2366 Main Mall

Vancouver, B.C., Canada V6T 1Z4

fmurphy,walker,banig@cs.ubc.ca

April 24, 1998

UBC Computer Science TR-98-10

(A revision of this work appears in IEEE Transactions on Software Engineering, 25(3):1{18,
May/June 1999.)

c 1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

Abstract

Two of the most important and most di�cult questions one can ask about a new
software development technique are whether the technique is useful and whether the
technique is usable. Various avours of empirical study are available to evaluate these
questions, including surveys, case studies, and experiments. These di�erent approaches
have been used extensively in a number of domains, including management science and
human-computer interaction. A growing number of software engineering researchers
are using experimental methods to statistically validate hypotheses about relatively
mature software development aids. Less guidance is available for a developer of a new
and evolving software development technique who is attempting to determine, within
some cost bounds, if the technique shows some usefulness. We faced this challenge
when assessing a new programming technique called aspect-oriented programming. To
assess the technique, we chose to apply both a case study approach and a series of four
experiments because we wanted to understand and characterize the kinds of information
that each approach might provide when studying a technique that is in its infancy. Our
experiences suggest some avenues for further developing empirical methods aimed at
evaluating software engineering questions. For instance, guidelines on how di�erent
observational techniques can be used as multiple sources of data would be helpful when
planning and conducting a case study. For the experimental situation, more guidance
is needed on how to balance the precision of measurement with the realism necessary to
investigate programming issues. In this paper, we describe and critique the evaluation
methods we employed, and discuss the lessons we have learned. These lessons are
applicable to researchers attempting to assess other new programming techniques that
are in an early stage of development.

�This research was funded by Xerox Corporation, a Canadian NSERC research grant, and a University
of British Columbia graduate fellowship.

1

Keywords: empirical study, software development technique, qualitative assess-
ment, case study, experiment

1 Introduction

Two of the most important and most di�cult questions one can ask about a new software
development technique are whether the technique is useful and whether the technique is
usable. One way to evaluate these questions is to make the technique accessible to the
greater community and to see whether the approach sinks or swims. This strategy has
many pitfalls: useful techniques that are not yet usable can be lost, and usable techniques
that are not particularly useful can inhibit the adoption of other, more powerful techniques.
The cost of developing a technique to the point where it can be released to the greater
community can also be prohibitive.

An alternate evaluation strategy is to subject the new technique to some form of careful
empirical study. Various avours of empirical study are possible, including surveys, case
studies, and experiments [P94, ZW98]. These di�erent approaches have been used exten-
sively in a number of domains, including management sciences (e.g., [All89, TG95]) and
human-computer interaction (e.g., [RJ89, Pre94]). Direct application of these methods to
studying software engineering questions, however, is often di�cult. In human-computer
interaction research, for example, the focus is generally on innate physiological and psy-
chological characteristics (e.g., 3D perception); with extensive training, such characteristics
can be altered with the result that individuals who have undergone training are considered
tainted for the purposes of study. In contrast, most software development aids require
some form of training, be it the basic knowledge gained in becoming a software developer
or additional, specialized training. There is less experience with empirical techniques in the
presence of these kinds of constraints.

A growing number of researchers have been confronting the di�culties and are adopting
and applying variations of empirical techniques to assess development aids (e.g., [CSKB+89,
PSTV97, SWF+96]). Many of these e�orts have focused on the application of experi-
mental methods to statistically validate hypotheses about relatively mature methods and
techniques. Less guidance is available for a developer of a new and evolving software de-
velopment technique attempting to determine|typically within some cost bounds|if the
technique shows some usefulness. The developer must attempt to choose between and adapt
the various study types available in the absence of any explicit criteria about the bene�ts,
limitations, and cost of each approach for studying software engineering concerns.

We faced these di�culties in trying to assess the usefulness of a new software design
and programming technique called aspect-oriented programming [KLM+97] (Section 2).
Aspect-oriented programming provides explicit support for expressing separate, cross-cutting
programming concerns, such as synchronization or distribution. Using the technique, state-
ments about concerns may be placed in separate modules that are then woven together with
the base functionality to form an application. The aspect-oriented approach claims to make
it easier to reason about, develop, and maintain certain kinds of application code.

To assess the aspect-oriented approach, we undertook both a three-month case study
(Section 3) and a series of four experiments1 (Section 4). We chose to apply both of

1We use the term experiment similar to Basili: \a study undertaken in which the researcher has control

UBC Computer Science TR-98-10 2 May 27, 1999

these evaluation approaches because we wanted to understand and characterize the kinds
of information that each approach might provide when studying a technique that is in
its infancy. Our intent in evaluating aspect-oriented programming was not to be able to
categorically determine whether the new programming approach could or could not meet
all of its claims, but rather to explore whether the approach might be useful, and which
parts of the approach might help or hinder various parts of the software development
process. Our strategy to put into practice these fuzzy concepts of usefulness and usability
was to investigate whether there was any evidence to support subsets of the claims about
aspect-oriented programming. Some of our studies attempted to isolate individual claims
for investigation, while others considered combinations of the claims. This paper discusses
the issues we encountered in designing and carrying out these investigations; the results
speci�c to the aspect-oriented approach are published elsewhere [WBM99].

We based our case study method on the exploratory case study method described by
Yin [Yin94]. Our experiences suggest that the general techniques discussed by Yin need to
be supplemented by domain-speci�c techniques. For example, when evaluating a software
design and programming approach, it would be helpful to have lists of observational tech-
niques that have been found to be useful for understanding the e�ects of the new software
development approach on the development process. Guidelines on how di�erent observa-
tional techniques can be used as multiple sources of data would also help solidify the case
study methods used to evaluate new approaches.

We primarily based our experimental methods on the human-computer interaction lit-
erature (e.g., [Sch87, RJ89, Pre94, McG95]). This literature has the same roots as the
experimental software engineering literature [BSH86, P95c, P95a, P95b]. Employing
an experimental approach based on these methods proved more di�cult than our adap-
tation of the case study method. For instance, it was di�cult to balance the precision of
measurement with the realism necessary to investigate programming issues.

Similar to others [Yin94, P94], we distinguish between case study and experimental
approaches based on the degree of control the investigator has over the environment in which
the study is being conducted. We consider it a case study method when the investigator
has little control over the environment. For instance, in a case study, an investigator
may have little input into how participants order or approach tasks, or may have little
control over the materials to which participants have access during the study. We consider
it an experimental approach when an investigator is able to control many aspects of the
environment, such as dictate the use of certain tools.

In this paper, we describe and critique the case study and experimental methods we
employed in the assessment of aspect-oriented programming, paying particular attention to
the cost of employing each method (Sections 3 and 4).

We also discuss how we would apply each method in the future based on our experience
(Section 5) and describe the lessons we have learned about assessing an emerging technology
(Section 6). Throughout

the paper, we compare and contrast our approaches with the approaches that other
researchers have used in studying similar software engineering issues. The contributions of
this paper are in the synthesis of our experiences, not in the individual methods we chose

over some of the conditions in which the study takes place and control over (some aspects of) the independent
variables being studied" [Bas96, p. 444].

UBC Computer Science TR-98-10 3 May 27, 1999

to employ.
In short, we found the case study approach a more e�ective means of assessing the broad

usefulness and usability questions of interest for a technique in its early stages of devel-
opment. Although both case study and experimental methods are costly, early evaluation
of aspect-oriented programming using both empirical approaches has been bene�cial; the
results of our assessment have been incorporated into further development of the technique.
We believe the methods we have developed and the lessons we have learned are applicable
to other researchers attempting to assess other new programming techniques.

2 Aspect-oriented Programming

Some design decisions are di�cult to express cleanly in code using existing programming
techniques. In object-oriented programming, for example, code to support the distribution
of the system over multiple machines often ends up spread across multiple classes and
methods.

Aspect-oriented programming is a new programming technique intended to enable a
more modular expression of these design decisions, referred to as aspects, in the actual
code [KLM+97]. As Kiczales and colleagues have noted, one reason aspects have been
di�cult to capture is that the decisions cross-cut the structure chosen to provide a system's
functionality.

To better support the expression of cross-cutting design decisions, aspect-oriented pro-
gramming uses a component language to describe the basic functionality of the system,
and aspect languages to describe the di�erent cross-cutting properties. An aspect weaver
is then used to combine the components and the aspects into a system.

Several di�erent aspect-oriented programming systems have been built, including AML,
an environment for sparse matrix computation [ILG+97], and RG, an environment for cre-
ating image processing systems [MKJ97]. Our empirical studies were performed using the
AspectJTM aspect-oriented programming system [Asp98]. AspectJ uses a slightly modi-
�ed form of JavaTM, called JCore, for the component language and supports two aspect
languages: COOL for expressing synchronization concerns, and RIDL for expressing distri-
bution concerns. The JCore language removes overloading of methods, the synchronized
keyword, and the wait, notify, and notifyAll methods from Java to ensure appropriate
semantics when the aspect languages are used.

Since we focus in this paper on the methods used in our experiments, we do not describe
AspectJ in detail. For the case study and experiments, AspectJ was used from within the
Microsoft Visual J++TM environment running on Microsoft NTR workstations. A number of
versions of AspectJ were used during the case study; only one was used for the experiments.

With AspectJ, developers write classes in JCore as they would write classes in Java.
Synchronization issues can be speci�ed on a per-class or per-object level using COOL:
COOL aspects are placed in separate �les. RIDL supports the speci�cation of remote
interfaces for classes and describes how various objects should be passed across remote
interfaces. Similar to COOL, RIDL aspects are placed in separate �les.

Figure 2 shows some small snippets of a digital library program written in AspectJ that
we used in several of our experiments (Section 4). The code on the left side of Figure 2 is
part of a Query class written in JCore that represents a query made by a user against one

UBC Computer Science TR-98-10 4 May 27, 1999

JCore

public class Query {

Hashtable books;

int bookCount = 0;

public void addBook(Book b,

Library source) {

if(!books.containsKey(b)) {

books.put(b, source);

bookCount++;

}

}

public long numBooks() {

return bookCount;

}

}

COOL

coordinator Query {

mutex{ addBook, numBooks };

}

Figure 1: Snippets of AspectJ Code.

or more libraries. Parts of two methods on Query are shown: addBook adds a book that is
being searched for and has been found into the results list for the query; numBooks returns
the number of books that have been found. The code on the right side of Figure 2 is part
of an aspect written in COOL for the Query class. This aspect ensures di�erent threads
cannot run the addBook and numBooks methods concurrently.

The aspect-oriented programming approach claims to make it easier to reason about,
develop, and maintain certain kinds of application code [KLM+97]. We conducted a series of
empirical studies to begin to evaluate the approach according to some of these claims. When
we began these studies, no substantial programs had yet been written using this approach.
Furthermore, the AspectJ programming environment, including the aspect languages, were
actively evolving.

3 Case Studies

The claims made about aspect-oriented programming are quite broad. Using a case study
approach, we were interested in trying to address two narrower, but still broad, questions:

1. Does aspect-oriented programming make it easier to write and change certain kinds
of programs?

2. What e�ect does aspect-oriented programming have on software design activities?

The �rst question goes to the usefulness of the technique whereas the second question fo-
cuses more on usability issues. We were interested in studying these questions by collecting

UBC Computer Science TR-98-10 5 May 27, 1999

data about multi-person developments using aspect-oriented technology.
To investigate these questions, we undertook two case studies involving a group of four

summer interns located at Xerox PARC. One study was composed of two phases: in the �rst
phase, the four interns worked together to develop a distributed game using AspectJ; in the
second phase, two of the interns reimplemented the game in Java using a strictly object-
oriented approach. In the second study, two interns implemented a distributed library
application using AspectJ. The progress of the interns through these projects and their
experiences were tracked jointly by researchers at Xerox PARC and at the University of
British Columbia (UBC). We describe our case study approach in detail in Section 3.1.

These studies provided some qualitative evidence that the aspect-oriented approach was
useful: in a short period of time, the interns, who had little prior concurrent and distributed
programming experience were able to produce two complex, albeit small, applications. The
studies also provided indications about how the aspect-oriented programming approach can
both help and hinder accomplishing a goal. For instance, when an aspect language matched
a design concern, such as concurrency, the language provided a vocabulary for expressing
and reasoning about that concern. When a particular aspect language is used to try to
express a concern not intended by that aspect language, an increase in design complexity
can result. In addition, the case studies helped identify:

� a number of challenges possibly facing the usefulness of aspect-oriented programming
in other settings,

� a set of concrete AspectJ features that could improve the usability of the approach
including the possible addition of aspect languages, and

� a number of potential research directions.

These results are detailed in an internal report [MB97].
Below, we describe the format of our case studies (Section 3.1), analyze the costs of

conducting the studies (Section 3.2), and critique the study format (Section 3.3).

3.1 Method

The two case studies were conducted over a two-and-a-half-month period at Xerox PARC
from June through August of 1997. Each involved a multi-person development of an ap-
plication using an aspect-oriented programming environment. Four summer interns took
part in the studies: three computer science graduate students and one junior-level com-
puter science undergraduate. Given the infancy of aspect-oriented programming, none of
these interns had experience in building aspect-oriented programs. Moreover, although all
the interns had knowledge of object-oriented concepts, none of the interns had extensive
object-oriented development experience.

To build knowledge of aspect-oriented programming in general, and AspectJ in partic-
ular, we �rst asked the interns to work together for two weeks on several sample problems.
We considered this two-week period to be prior to the study period (Figure 3.1).

The �rst case study was broken into two phases. In the �rst phase of the study, the
interns were asked to consider themselves a small company funded by pseudo-venture cap-
italists. The company was funded to build several versions of a distributed near-real-time

UBC Computer Science TR-98-10 6 May 27, 1999

2 Weeks

6 Weeks 2 Weeks

2 Weeks

Pre-Study
(4 Interns) Study 1: Phase 1

(4 Interns)
Study 1: Phase 2

(2 Interns)

Study 2
(2 Interns)

Figure 2: Case Studies Timeline

game using AspectJ. The development of this game was broken into three main deliverables.
The �rst deliverable was a version of the game, a space combat game, running for a single
user on a single machine where the user played against a computer opponent. The second
deliverable was a version of the game running for multiple users on a single machine. The
last deliverable was a version for multiple users running on multiple machines. Each deliv-
erable had an assigned deadline. For each deliverable, the interns were asked to produce a
design document and a working version of the system. These deliverables, in particular the
design information, were reviewed as part of a regular weekly meeting. The deliverables
involved incremental use of di�erent features of the AspectJ environment. This phase of
the study took six weeks.

When the game development was completed, two of the interns continued onto the
second phase of this study. Over two weeks, the pair built an object-oriented, but not
aspect-oriented, version of the game in Java. Originally, we had thought that the four-
person game development might take the full eight weeks available for the project: not only
was the programming environment untested and evolving; the interns were unfamiliar with
each other's design and programming approaches. When time became available, the Xerox
and UBC researchers jointly decided to create a second phase to the original study. This
second phase provided an opportunity for the students to directly compare development
using an object-oriented style with an aspect-oriented style.

The second study was also created as a result of time becoming available in the project.
In this study, conducted over the �nal two weeks of the interns' time at PARC, a pair of
interns built a distributed library application using aspect-oriented technology. Although
the second phase of the �rst study and this second study were planned more on-the-y, we
were able to leverage the method that we had been following.

During the two studies, the interns worked in a four-person o�ce area, each with their
own NT workstation. As they built the two applications, the interns were asked to reect on
the experience of using aspect-oriented programming, including such issues as what aspect
language features were useful, what features were missing, and how aspects a�ected the
organization of the team.

The interns worked alongside the four-person aspect-oriented programming research
team at PARC. This research team played several roles during the study period. In the �rst

UBC Computer Science TR-98-10 7 May 27, 1999

role, as developers of aspect-oriented technology, the research team provided development
support to the interns, responding to problem reports with AspectJ. In the second role, as
mentors and supervisors of the interns, the research team set goals for the interns, monitored
progress, and evaluated the interns. In the third role, as on-site observers in the study, the
team served to both collect and help analyze gathered information on the study.

Two observers from UBC were also involved in the study. These observers participated
in the study in four ways:

1. through three on-site meetings held at Xerox PARC comprised of a project initiation
meeting in the �rst week of the study, a mid-term meeting held 4 weeks into the
study, and a project wrap-up meeting at the end of the study period;

2. through weekly one- to two-hour video-conference meetings with the interns and mem-
bers of the research team;

3. through the monitoring of artifacts produced by the interns, most of the artifacts
being stored digitally on PARC servers to which the observers had access; and

4. through conference calls to discuss study operations held, at least, weekly with the
PARC research team.

We tracked several types of information during the study, including e-mail, hallway con-
versations, and whiteboard drawings. Table 3.1 provides a complete list of the information
tracked.

This data was analyzed by the UBC researchers both throughout the studies and cumu-
latively, at the end of the studies. We treated the data from both studies together, rather
than separately. Although the studies had di�erences, such as di�erences in the training
levels of the participants, this analysis decision was reasonable given the broad questions of
interest. The studies could not be considered as replicas within a multi-case study design
because of the rise in expertise with aspect-oriented programming the interns gained during
the �rst study. It was di�cult to separate the studies at the end of the period because it was
not always possible to determine from discussions in meetings held with the participants|a
major data source|which study was the source of any particular comment.

We reviewed the written artifacts, including documents, email, and survey results, at-
tempting to identify and categorize pertinent passages according to a list of keywords we
had identi�ed that included such words as \usability", \process", \tools", and \aspect-
language". Our intent was to provide an index to the collected data so as to support queries
about potentially related evidence. This categorization approach was not successful: we
found it impossible to pre-select a reasonably small set of meaningful keywords; adding
keywords during categorization required iteration across previously categorized material
which was not a reasonable option given the available resources.

Instead, we identi�ed key observations as we reviewed material, tagging the observations
with their source. For example, one intern noted in the second survey,

\I �nd aspect code to be extremely clear and easy to read. I can only imagine
the nightmare of reading through woven Java output looking for deeper meaning
behind the slew of Locks and TraversalPatterns."

UBC Computer Science TR-98-10 8 May 27, 1999

Information Type Details and Examples

E-mail Various mailing lists were used to facilitate communication amongst
and between these di�erent groups; all messages were also (manually)
logged to a separate �le. The information in e-mail included upgrades
to the aspect-oriented programming infrastructure, AspectJ feature
requests, and general thoughts on aspect-oriented programming.

Weekly Video-
conference Meetings

These meetings which involved the interns, researchers, and observers
was captured by video-taping the meetings.

Informal Interactions Substantive hallway and o�ce conversations between interns and the
research team was captured by having the researcher log a summary
form of the interaction in e-mail.

Documents (Interns) These documents included documentation on the applications pro-
duced and the processes used to produce the applications, proposals
of enhancements for AspectJ, and personal journals logging each in-
tern's experience over the study period.

Documents (Re-
searchers)

These documents included AspectJ language speci�cations and user
guides, as well as descriptions of proposed language features and
potential directions.

Problem Reports These reports pertained to problems and �xes for the aspect-oriented
programming environment.

Source Code The source code produced by the interns for the applications.

Whiteboard Drawings These were drawings sketched by the interns as they worked on the
applications. These whiteboard drawings were captured through the
use of a zombie board: essentially, a whiteboard with a video cam-
era pointed at it that easily allows sketches to be captured. These
captured drawings were stored digitally.

Survey Results (In-
terns)

Two surveys were completed by the interns about aspect-oriented
programming and AspectJ. One survey was distributed at the mid-
point of the study period and was discussed by a UBC observer with
the interns during an on-site session at PARC. The second survey
was distributed at the end of the study period.

Survey Results (Re-
searchers)

The results of a survey distributed to the researchers at the end of
the study period about the studies themselves. Only one researcher
completed this survey.

Table 1: Information Tracked During Case Studies

UBC Computer Science TR-98-10 9 May 27, 1999

Participant Person-Days/ Number of Total
Type Participants Participants Person-Days

Intern
Pre-Study 10 4 40
Study 30 4 120

Researcher
Preparation Time 5 2 10
Observation Time 3.75 2 7.5
Meeting Time 7 2 14

UBC Observer
Preparation Time 5 2 10
Observation Time 3.75 2 7.5
Meeting Time 7 2 14
Analysis 7 2 14

Total 237

Table 2: Costs of Case Studies

This quotation became a tagged observation. We then analyzed the observations, drawing
together and organizing key observations along development process steps, such as observa-
tions about design versus observations about the programming environment. Our analysis
also included a structural analysis that compared versions of source code produced based
on diagrams of the \knows-about" relation between classes. The \knows-about" relation
was de�ned by one class naming a second class, either to extend or to access functional-
ity within the second class. This structural analysis provided a means of comparing the
complexity of the various versions of the application developed.

3.2 Cost

Conducting the case studies entailed labour costs, equipment costs, and travel costs. We
focus here on the labour costs as these costs are the most signi�cant.

As described above, the case studies involved interns, on-site researchers, and o�-site
observers. Table 3.2 summarizes a low estimate of the hours of involvement of each of
these classes of participants. The interns spent approximately two weeks in pre-study
activities, and approximately six person-weeks of e�ort developing applications during the
studies. Two of the PARC researchers invested approximately a week of preparation time,
approximately �ve hours per week during the study, and seven days of meetings associated
with the studies. The UBC observers invested approximately the same amount of time
as the PARC researchers, plus the analysis time consisting of approximately seven days
for each observer. The total labour cost of conducting the study was thus in excess of
237 person-days.

UBC Computer Science TR-98-10 10 May 27, 1999

3.3 Critique

Empirical social research is commonly evaluated according to four tests [Yin94]: construct
validity, internal validity, external validity, and reliability. Construct validity refers to
whether appropriate means of measurement for the concept being studied have been chosen;
internal validity refers to how a causal relationship is established to argue about a theory
from the data; external validity refers to the degree of generalizability of the study; and
reliability refers to the degree to which someone analyzing the data would conclude the
same results. We �rst consider how our case studies evaluate against these criteria. Then,
we reect on which aspects of our case study format proved useful, and which aspects of
our format did not substantially help generate meaningful results.

3.3.1 Method Evaluation

We designed our case study method based on Yin's exploratory case study model [Yin94].
According to Yin, the main purpose of an exploratory study is to \develop pertinent hy-
potheses and propositions for further inquiry" [Yin94, p. 5]. Our goal was admittedly
broader as we were not only interested in deriving hypotheses based on what we observed,
but we were also interested in documenting evidence to support theories about the speci�c
questions of interest. Speci�cally, we were interested in understanding how aspect-oriented
programming might help development tasks so as to both begin to assess whether the tech-
nique is useful and in which areas further inquiry might be targeted. These questions are
common with new software development techniques.

The case study model employed a�ects the importance to place on the four criteria
used to evaluate a case study method. For the kind of exploratory study we undertook, we
placed our emphasis on construct validity and reliability over internal and external validity.
The reason for this emphasis is that we were more interested in being able to identify
believable evidence about the questions underlying the study, then to be able to generalize
our theories about aspect-oriented programming.

Our approach to construct validity was to collect data in more than one medium wher-
ever possible. For instance, we asked the interns to document their development processes
in the design deliverables they were assigned. We then asked about the processes they used
in the weekly video-conference meetings. As another example, usability problems with
the programming environment reported during meetings were also later logged to email as
problem reports. The use of multiple mediums helped to broaden the data collected by
ensuring that the observations of all interns were considered. The use of multiple mediums
also helped to corroborate observations: we assigned more weight to an observation that
appeared in more than one medium when condensing results from the studies.

The reliability of our study with respect to gathering the same data if the same study
had been conducted by others was high. Descriptions of how we gathered data were in
place throughout the study. We estimate that the reliability with which other researchers
would draw the same results from the data is lower. Reliability in this dimension might
have been higher had we determined a more rigorous approach to identifying and classifying
observations from the data.

A primary question of interest to software researchers and developers outside Xerox
PARC is whether a case study of this nature provides any generalizable results. Some of

UBC Computer Science TR-98-10 11 May 27, 1999

the results from the study are quite speci�c to the PARC researchers and their particular
instantiation of aspect-oriented programming. Others deal with more general issues re-
garding the separation of code parts. For instance, are aspects expressed in di�erent aspect
languages separate or might they be layered as components are layered?

We believe the insights we gained about aspect-oriented programming have some gener-
alizability because our study participants were representative of many developers, namely
they had some but not extensive experience with object-oriented development techniques.
Empirical studies are sometimes criticized for using students as subjects because students
are not necessarily representative of practitioners who are typically the target users for a
software development aid [FPG94]. We are subject to this same criticism. However, par-
ticipants must be chosen relative to the claims being investigated and the generalizability
desired. When assessment is being performed on a new and evolving technology, students
are often accessible and can play a useful, cost-e�ective role within a study.

Our results may also have some generalizability because we placed the participants into
a somewhat realistic scenario where the applications they produced had to be produced
according to deadlines. The generalizability of many of the results is dependent on the
degree to which the concept of aspect-oriented programming is still evolving.

3.3.2 Useful Techniques

We found the following techniques provided useful data for the case study.

On-site interns as the study participants. Two possible criticisms of this study are
that the study participants, the users of the aspect-oriented approach, were co-located
with the researchers developing the approach, and that the aspect-oriented programming
environment underwent signi�cant change over the course of the study. Since the goals of
the study were to broadly understand the issues surrounding aspect-oriented programming,
rather than to de�nitively show the value of the approach, these study factors do not
undermine the value of the results. Rather, for this kind of study, these factors were an
advantage for several reasons. First, since the participants were interns, there was a well-
de�ned period in which the study could and would take place. This time factor limited, in
a positive sense, the size of the problems that could be tackled and helped place realistic
engineering time pressures on the study participants. Second, the experiences of the interns
with the programming environment could be quickly fed back into the research cycle; the
research team could use this information to prioritize their support activities.

Outside observers. There were both advantages and disadvantages to the UBC ob-
servers not being full-time at the study site. One bene�t from being o�-site was that these
observers could ask the same question multiple times to gauge the similarity of response.
The di�erent modes of communication used when o�-site, such as e-mail and telephone,
seem to make it more acceptable to keep asking the same question. Another bene�t was
that it was easier for these observers to be objective about the feedback provided by the
interns. The major disadvantage from the set-up is that a signi�cant source of information
from casual conversations was missed. We attempted to capture some of these conversa-
tions by having the PARC researchers log to e-mail conversations deemed as containing
interesting information. By far, the most interesting discussions about the development

UBC Computer Science TR-98-10 12 May 27, 1999

activities were casual conversations we had with the interns as we used the equipment in
the \pit" where they worked. These conversations were not captured as we did not �nd a
reasonable way to capture the information without altering the information ow.

In retrospect, it may have been useful to ask the participants to tape their conversa-
tions. Of course, this would have entailed an additional serious burden on the investigators
in having to transcribe and annotate many hours of audio-tape. The value of this data
considering the high cost is questionable.

Deadlines. To help investigate the trade-o�s that developers in more realistic settings
might have to make when using aspect-oriented programming, we enforced deadlines on
the interns. Every week to a week and a half, a deliverable was de�ned. These deadlines
helped to ensure a certain amount of functionality was attempted in the systems under
construction. According to the interns, the deadlines were not hard to meet and did not
signi�cantly a�ect their work patterns. Since the deadlines helped to ensure progress was
made on the project and did not severely undermine the study, they appear to have been
successful.

Video-conferencing. The weekly video-conference held between PARC and UBC was
necessary to ensure the o�-site observers were up-to-date on the current application devel-
opments and to ensure the participants were comfortable with answering questions from the
observers. The downside of the video-conferencing was the quality of the PictureTel system
used which caused the UBC participants to hear only about 75% of the discussions oc-
curring on the PARC side. Each of these video-conferenced sessions was also video-taped.
These video tapes were later analyzed by recording observations during playback; these
tapes proved useful as data sources.

3.3.3 Less Useful Techniques

Other techniques did not work as well to provide data for the study.

Journals. We had asked the interns to keep journals, either electronically or within note-
books, to capture their evolving thoughts about aspect-oriented programming. This infor-
mation did not turn out to be particularly useful because the interns wrote in the journals
only periodically over the course of the studies, and because the information was often very
general. We did not provide many guidelines for the kind of information to record in the
journals and we did not provide any incentives for maintaining this information. Better
guidelines or incentives may have lead to more useful information.

Documentation. With each application milestone, we requested documentation on the
design, the implementation and the development process used to construct the application.
In general, this documentation served mostly to formulate questions to ask the interns.
It was much easier to extract the desired information about these development activities
through meetings.

UBC Computer Science TR-98-10 13 May 27, 1999

Zombie Board. The intent of using the zombie board was to capture those all important
sketches that often appear on whiteboards during a development and which can give ex-
tensive insight into the design process. Since, in general, the UBC observers had access to
the picture without any accompanying explanation, this information did not have su�cient
context to be useful. Zombie information might be useful if accompanied by short textual
or audio clips describing the information. The zombie board information captured during
meetings was useful for later reference.

4 Experiments

The case study method we employed permitted us to investigate broad issues concern-
ing aspect-oriented programming. We were also interested in understanding how aspect-
oriented programming eased, or did not ease, particular programming tasks. To investigate
three more speci�c tasks, we designed a set of four experiments:

1. the �rst experiment compared the ease of creating a program using an aspect-oriented
approach with an object-oriented approach,

2. another experiment compared the ease of debugging in aspect-oriented and object-
oriented approaches,

3. a third experiment investigated the ease of changing an aspect-oriented program
compared to changing a program written in a domain-speci�c (and object-oriented)
language, and

4. the �nal experiment investigated a combination of these activities.

These experiments were conducted at UBC between September 1997 and May 1998.
In conducting these four experiments, we were constrained by four factors: the pool of

potential participants available to us was small, the amount of time each participant could
devote to an experiment was short|especially in comparison to typical development times
of even tiny applications, the cost of running and analyzing the experiments was high, and
since the evaluation of an aspect-oriented approach is complex, some precision of measure-

ment had to be forfeited in favour of realism [McG95]. As a result, our \experiments" were
set up as semi-controlled empirical studies rather than statistically valid experiments.

As investigators, we had some limited experience running experiments to investigate
human-interaction questions, but no experience applying the technique to investigate soft-
ware engineering issues. We quickly learned some of the di�erences when conducting soft-
ware engineering experiments with the result that our �rst experiment became a pilot study.
This change occurred because we ended up re�ning our experimental method to overcome
problems that occurred when conducting the experiment.

We describe the methods we used in the pilot study and the three experiments in
Section 4.1. These experiments were successful in gathering qualitative evidence about the
usefulness of aspect-oriented programming; most participants that used the approach were
enthusiastic about how it supported them in completing the task assigned. In some cases
the qualitative evidence was supported by limited quantitative evidence. For instance, in
one experiment, we compared the number of times a participant selected a di�erent �le to

UBC Computer Science TR-98-10 14 May 27, 1999

view when debugging aspect-oriented code with the number that occurred when debugging
similar object-oriented code.

The experiments also revealed which parts of the approach contribute to its usefulness
and usability. For instance, the aspect language used in the debugging experiment operated
on methods in component code whereas the participants using the object-oriented approach
could operate on statements as well as methods. The granularity limitation of the aspect
approach may have contributed to the aspect-oriented users more easily �nding and solving
certain kinds of concurrency problems. These detailed observations were obtained at less
cost than incurred in running the case studies.

Similar to the description of our case studies, we focus below on the format of our
experiments (Section 4.1), the costs of conducting the experiments (Section 4.2), and a
critique of the approach (Section 4.3). More detail about the experimental setup and
results can be found elsewhere [WBM99].

4.1 Method

Table 4.1 provides an overview of the pilot study and experiments. The study and experi-
ments were conducted in the order presented by the table. The pilot study, the debugging
experiment, and the change experiment shared a similar experimental method. In Sec-
tion 4.1.1, we describe the method used for the debugging experiment as representative of
these studies. In Section 4.1.2, we describe the method used for the last experiment that
encompassed a longer programming activity.

4.1.1 Comparative Experimental Method

We describe the method used in the debugging experiment as representative of our ap-
proach. A session for this experiment consisted of the following steps:

1. First, we introduced the participant to the goal, the overall format of the experiment,
and showed the participant a running example of the program to be used in the
experiment. We then had the participant complete consent forms.

2. The participant was then given thirty minutes to review a series of web pages on
synchronization. The participants had been screened (through questioning) about
their knowledge of synchronization issues; we wanted to ensure that this information
was fresh in their minds and that we were using the same terminology.

3. Next, the participants were asked to review, for thirty minutes, web material we
prepared on the programming approach they would be using. Java users were given
material on a lock library that they had available for use. AspectJ users were given
material on aspect-oriented programming, and the particular aspect language(s) they
would be using.

4. The experimenter then walked the participant through the use of the programming en-
vironment to ensure the participants could edit, compile, and run the program. Both
the Java and the AspectJ participants used the same basic environment, Microsoft's
Visual J++ environment. The environment was extended through its standard cus-
tomization features to incorporate tools for weaving the aspect-oriented programs.

UBC Computer Science TR-98-10 15 May 27, 1999

Experiment Description

Pilot Study The pilot study investigated the ease of creating an aspect-oriented program.
The experiment addressed whether a programmer working with an aspect-
oriented language could produce a working multi-threaded program in less
time, and with fewer bugs, than a programmer working in an object-oriented
language. We selected a small programming problem with concurrency, and
had six Java-knowledgeable programmers attempt to produce a solution to
the problem: three programmers worked individually in Java, and three
worked individually in AspectJ (the JCore component language and COOL
aspect language). The running time for an experimental session was three
hours for a Java participant and four hours for an AspectJ participant.

Debugging The intent of this experiment was to learn whether the separation of con-
cerns provided in aspect-oriented programming enhanced a user's ability to
�nd and �x functionality errors (bugs) present in a multi-threaded program.
We again compared the performance of participants working with the com-
bination of JCore and COOL in AspectJ, with participants working on the
same program written in Java. The participants worked in pairs to �nd
three cascading synchronization bugs we introduced into an approximately
600 line digital library program. Three pairs of participants worked with
AspectJ; three with Java. The running time for an experimental session was
four hours.

Change This experiment focused on the ease of changing an existing program. The
experiment involved six participants: three working individually in AspectJ
using the JCore component language, the COOL synchronization aspect
language, and the RIDL distributed aspect language, and three working in
the Emerald distributed object-oriented language [BHJL86, RTL+91]. The
participants were each asked to add the same functionality into an approx-
imately 1500-line distributed digital library program that they were given
(either in AspectJ or Emerald). The running time for an experimental ses-
sion was four hours.

Combinative The last experiment involved two participants both working individually in
the AspectJ aspect-oriented language. The intent of this experiment was to
study a more realistic programming scenario in which a developer was asked
to make more substantive changes to a skeleton program than was possible in
the earlier experiments. We used participants who had experience building
concurrent and distributed systems with existing techniques. The skeleton
program on which the tasks were performed was the same problem used in
the debugging and change experiments. The running time for a session was
eight hours.

Table 3: Experimental Methods Overview

UBC Computer Science TR-98-10 16 May 27, 1999

5. The participants were then introduced to a small program in the environment and
were given thirty minutes to play with the program.

6. After a break, the participant was given the programming task. The experimenter
showed the participant where the program �les were located, described the resources
available (including the synchronization information, Java books, design documenta-
tion on the program, etc.) and gave them a web page describing the bugs they were
to �nd and remove. The participants were asked to \think-aloud" [GKC87] as they
performed the task. The participants were given ninety minutes to perform the tasks.
This part of the session was video-taped. The experimenter was present during this
session and available to answer questions about the programming environment.

7. At thirty minute intervals, or after each task, such as �nding a bug, was completed,
the experimenter stopped the participants and asked a series of questions:

� What have you done up to now?

� What are you working on?

� Any signi�cant problems that you have encountered?

� What is your plan of attack from here on?

8. At the end of the session, which was either when the participants found and removed
the three bugs, or the end of the time limit, the experimenter interviewed the partic-
ipants, amongst other questions asking them to explain their solutions.

The experiment participants were predominantly graduate students, undergraduate stu-
dents, and faculty in computer science and computer engineering; one participant was from
industry. For the debugging experiment which involved pairs, one participant had control of
the computer with the programming problem, and the other had access to a report describ-
ing the symptoms of the bugs, and on-line documentation. The debugging experiment was
the only of our experiments to use this constructive interaction technique [ODR84, Wil95];
in the other experiments, participants worked alone. Participants were remunerated a �xed
amount based on maximum time of participation to remove any temptation to take longer
to complete the tasks than was necessary.

The number of participants available to us was small: there are not that many pro-
grammers and students versed in both Java or Emerald, and concurrency and distribution
issues. Given the small number of participants, we decided to use knowledge we had of the
participants' backgrounds to assign the participants to particular parts of the experiments.
For example, we assigned participants with previous knowledge of Emerald to the Emerald
trials for the change experiment. This is referred to as blocking [P95c]. Blocking was
a valid choice because we were interested in the usefulness of the di�erent approaches to
experienced, not novice, users.

In the debugging experiment, we used our knowledge of the participants to form pairs
such that one participant would not dominate the action in any given trial. These assign-
ment choices were made to facilitate verbal interaction for data gathering and to promote
a more homogenous skill level. Classical experimental design procedures []2 would have

2[RW: Fill-in citation]

UBC Computer Science TR-98-10 17 May 27, 1999

called for the formation of pairs by random selection from the available pool. Since random
selection from our small available pool would not have produced pairs that were arguably
a statistically representative of the programming team population, we chose to introduce
a known skew. This skew limits the generalizability of our results. Given that we were
studying a fast evolving, young technology, we believe this was an acceptable tradeo�. We
discuss the low generalizability of our approach in more detail in Section 4.3.

Because the number of participants available was small, we had to determine whether or
not to reuse participants between trials and between experiments. We decided not to reuse
participants in any way so as to avoid biases of experience that would have complicated
analysis of the results.

We took an \on-line" approach to running the experiments and conducting the analysis.
The experimenter actively followed the actions of the participant, or participants in the
case of the debugging experiment, by listening to what was described aloud and watching
their actions via a video monitor displaying the camera's view.3 During this time, the
experimenter recorded times of major events and general observations about the progress
of a participant by annotating a copy of the experimental script. We reasoned that if an
experimenter could not determine what was going on during the experiment itself, it was
unlikely that reviewing the videotape would help.

During a session, limited interaction between the experimenter and participant was
allowed. This interaction included both dialogue initiated by the experimenter, and dialogue
initiated by the participant. The experimenter initiated dialogue in a few situations. For
instance, whenever the experimenter would lose track of the actions of the participant(s),
the experimenter would ask \What's going on?". The experimenter also engaged in dialogue
with the participant during the scheduled questioning periods. From one questioning period
to the next, the experimenter formulated follow-up questions based on the observations
being made about the actions of the participant. Although these exchanges interfere with
the \natural" activities of the participants, our intent was to ensure that environmental
factors, such as the tool's interface, were not inhibiting the participant frommaking progress
on an assigned task, and that appropriate information was recorded about the participant's
actions and thoughts to support later analysis. This rationale is consistent with that applied
by Guindon, Krasner, and Curtis during an observational study of the design process in
which they allowed interaction between an experimenter and participant to support an
objective of \generat[ing] as much design behaviour4 as possible" [,]5. Similarly, we wanted
to keep our participants \on-track" to ensure as much interaction with aspect-oriented
programming as was possible in the limited time available.

Questions about the usability of the environment were also sometimes initiated by
participants. These questions were answered directly. However, questions raised by the
participants regarding style or use of aspect-orientation were strictly out-of-bounds when
above the level of \How do I add a �le to this project?" or \So if I want to have COOL code
for this class, I have to put it in a separate �le?". The guideline was that if the question was
answered in training, it should be answered by the experimenter. Design questions, such
as \Do I need to have a lock here?", were considered out-of-bounds and would have been

3This monitor was present in all the experiments, but was not used actively in this fashion during the
pilot study.

4[RW: Double-check spelling]
5[RW: Fill-in citation]

UBC Computer Science TR-98-10 18 May 27, 1999

answered \If it is needed to complete the task"|providing no information. This approach is
supported by Weick in a discussion of observational methods; Weick describes how natural
settings may be modi�ed to embed a measure, evoke a behaviour, or amplify an incipient
response [Wei68]. By answering questions that a participant could have answered on their
own given more time with the training materials or available documentation and by taking
care in not answering questions that could alter the decisions of the participants, we believe
the interactions supported the ampli�cation of incipient responses rather than evoking new
behaviours.

To give a sense of the events used in our analysis, we describe the three events on which
we focused for the debugging experiment: the time, the number of times a participant
selected a di�erent �le to view, and the instances of semantic analysis performed by the
participants that occurred while �nding and solving each bug. The time and �le switch
counts were relatively straightforward to analyze from the video-tape. To quantify the
instances of semantic analysis, we reviewed the tapes and recorded the number of times a
participant said something to the e�ect of \let's �nd out what this does...". We chose to fo-
cus on these three events because they provided a basis on which the di�erent programming
approaches could be objectively compared.

The data gathered from the videos was also helpful in assessing the qualitative state-
ments made by the participants during the interviews. For instance, one pair using the
aspect-oriented approach stated that although the separation was \handy", they were un-
sure if separation provided an advantage in the end when both the component and aspect
code might need to be consulted to solve problems. This pair, however, switched �les less
in total than any of the Java pairs.

4.1.2 Combinative Experimental Method

Our comparative experimental method provided a means of carefully investigating a par-
ticular question by isolating, as much as possible, the tasks to be performed by the partic-
ipants. In the debugging comparative experiment, for instance, participants were asked to
solve, but not identify, problems with an existing program. This task sometimes arises in
production software development environments. At least as often, however, developers are
required to both �nd and solve functional problems with their systems. To address the more
realistic development situation in which developers must make substantial modi�cations to
a program and make those modi�cations work, we used a di�erent experimental method
that we refer to as a combinative experimental method.

Our combinative experimental method di�ered from our comparative approach in two
ways. First, the tasks assigned to the participants were more extensive. Speci�cally, par-
ticipants were asked to sequentially make two modi�cations to a working program: the
�rst modi�cation was to add support for concurrency into the digital library, the second
modi�cation was to add support for distribution into the digital library. These tasks re-
quired signi�cantly more design thought and debugging e�ort than tasks assigned in our
comparative experiments. As a result, the running time of an experimental sessions was
considerably longer, requiring eight rather than four hours.

The second di�erence in our method was that we did not run any experimental sessions
in a non-aspect-oriented environment. Our rationale for running only aspect-oriented ses-
sions was that we were primarily interested in collecting, through our interviews during a

UBC Computer Science TR-98-10 19 May 27, 1999

Experiment Preparation Execution Analysis Total

Pilot Study 10 7 12 29

Debugging 37 10 { 47

Change 37 9 { 46

Combinative 4 5 14 23

Total 145

Table 4: Experimental Costs in Person-Days

session, qualitative data about the participant's experiences. In particular, we were inter-
ested in seeing if the qualitative data we collected from these longer experimental runs was
similar to the data collected from the shorter comparative sessions.

Similar to the comparative method, our experimental sessions included some training
time. The same training materials were used for both kinds of experiments. Also similar to
the comparative method, we video-taped the participants during the session and interviewed
them at de�ned intervals with a pre-set list of questions. Participants were instructed they
could record, simply by speaking, any observations of interest as the session progressed:
they were not instructed to talk-aloud.

4.2 Cost

Similar to the case studies, we focus on our labour costs involved in experimental prepara-
tion, execution, and analysis. Table 4.2 summarizes the cost for each of the four experiments
conducted. The values given in Table 4.2 constitute lower-bounds on the actual cost.6

The preparation time for each experiment includes time for preparing materials, such as
web pages and program skeletons, time for preparing an experimental script and conduct-
ing dry-runs, and time for meeting to discuss the experimental format. As some materials
were re-used for more than one experiment, we only included their preparation time when
they occurred. Costs for executing experiments are for both the combination of the exper-
imenter's and participants time in running experimental sessions.7 The analysis costs were
di�cult to gauge but include the time to review video-tapes and compare collected data.
Since much of the analysis for the pilot study and the debugging experiment happened
together, we placed this analysis value under the debugging experiment. Since much of
the analysis for the change and combinative experiment happened together, we placed this
analysis value under the combinative experiment.

The overall cost is less for the experiments (145 person-days) than the case studies (237
person-days). However, more of the costs in the case studies relate to time spent with
the participants using the technology; more of the time in the experiments was spent in
preparation and analysis.

6To reviewers: Please note that we are in the progress of completing our analysis on the change and
combinative experiments so these cost �gures are approximate.[RW: Is this comment still relevant?]

7We include both times to be consistent with the values reported in Table 3.2.

UBC Computer Science TR-98-10 20 May 27, 1999

4.3 Critique

Similar to the case studies, we can evaluate our approach against the four tests of construct
validity, internal validity, external validity, and reliability. In this evaluation, we focus on
the comparative experiments; we return to the combinative experiment when comparing
the case study and experimental approaches (Section 6).

For the comparative experiments, we were more concerned with construct and internal
validity than with external validity and reliability. We placed our focus on the former
because we wanted to ensure the results were meaningful to the overall question of interest:
does aspect-oriented programming show any promise of easing programming tasks? If our
analyses had shown that the participants using aspect-oriented programming had taken
longer on their tasks or experienced great di�culties, we did not want their di�culties
blamed on other factors, such as di�culties with the programming environment.

Our approach to achieving internal validity was to ensure the di�erent groups|aspect-
oriented versus non-aspect-oriented|had access to as-similar support as possible, with
variances limited as much as possible to the features of interest. For the debugging exper-
iment, this translated to building a pair of synchronization lock classes in Java that were
identical in functionality with the woven output from AspectJ source code. The Java par-
ticipants were provided this library and documentation on its use. This approach allowed
the true aspect-oriented properties of COOL, as opposed to its library-like functionality, to
be compared with non-aspect-oriented Java code. For the change experiment, we ensured
the program structures were as similar as possible between the AspectJ and Emerald ver-
sions, varying only when a di�erent structure would be common in one of the languages.
One criticism of this approach is that we nudged the participants down a particular path;
for instance, participants may have changed the way they would normally have attacked
the debugging problem given the Java lock library. This \reduction in realism" was a
reasonable price to pay to be able to compare results from the di�erent groups.

As with the case studies, our approach to construct validity was to gather data from
multiple sources. For the experiments, one source was the qualitative statements made
by the participants during the taped interviews; the other sources were the data analyzed
from the tapes. As we noted earlier, sometimes the data from the multiple sources was
corroborative, other times it was contradictory. Corroborative data strengthened the result
under discussion: contradictory data weakened the result.

Our stress on realism also addressed construct validity. For example, a formal experi-
ment could have been performed to test the e�cacy of separation of concerns, one of the
properties purported by aspect-oriented programming. But this is only one property of
aspect-oriented programming; if we had formally demonstrated the value of separation of
concerns, we would not have been much closer to demonstrating the usefulness of aspect-
oriented programming but would have done a comparable amount of work.

The reliability of our experiments was high with respect to the procedures we followed
in conducting the experiments and analyzing the data. However, as expected, the skills of
the participants varied greatly. It was di�cult to �nd participants who met the minimal
requirements of our studies, namely experience with Java, concurrent programming, and
for the change and combinative experiments, distributed programming. Thus, we did not
subject the participants to stringent pre-tests on the scope of their understanding and
experience in each of these areas. We do not see any reasonable way we could have further

UBC Computer Science TR-98-10 21 May 27, 1999

limited the variability in the participants.
The external validity (generalizability) of our experiments was low. In designing the

experiments, we knew that our participant pool was limited and had high variability. We
also knew that the questions we were interested in investigating were highly dependent
on the problems we chose and the environment in which our participants were working.
Designing an experiment that could generalize whether or not aspect-oriented programming
will allow faster creation of multi-threaded programs, or more e�cient debugging, than
current techniques is impossible because of these many contributing factors. We wanted to
achieve su�cient external validity for our results to have merit with respect to our goals.
By using participants with some background in multi-threading and distribution, and by
balancing realism in the experiments, we believe we achieved this level.

The experience of designing, conducting, and analyzing this series of experiments identi-
�ed a set of techniques to us that must be in place for these kinds of studies (Section 4.3.1).
We also discuss the techniques we used that were useful (Section 4.3.2). A number of
di�culties one may need to overcome are discussed later (Section 6).

4.3.1 Necessary Techniques

Terminology. For these types of experiments, it is essential that all participants be given
lengthy exposure to the concepts to be used in the experiment and their mapping, in our
case, to the languages of interest. After this exposure they should be tested to ensure
they know the information necessary to perform the experiment task. Subtle di�erences in
vocabulary can be problematic for participants to understand the task being assigned. Sub-
tle di�erences in constructs, such as synchronization constructs, can be a great hindrance
to someone attempting to use a language in which they have not frequently programmed
synchronization, even if they are otherwise familiar with synchronization concepts.

Participant Training. It is also essential to train participants in the set-up and use of
the programming environment. One of the reasons our �rst experiment became a pilot
study was that we showed participants the environment, but did not allow su�cient time
for them to interact with the environment prior to the study period. The essential lesson
is that it is impossible to test usefulness when usability is at a minimum.

Protocol. To ensure consistency between sessions, the experimenters followed a protocol,
consisting of a script of steps to complete and guidelines on interaction with the partici-
pants. Scripting operational steps is straightforward; determining appropriate interaction
with participants is di�cult and delicate. Participants will vary in their understanding,
experience and skills; each is likely to ask di�erent questions, requiring di�erent answers.

Since, in our experiments, we were not interested in the e�cacy of our training methods,
it did not make sense to precisely script the details of communication with participants. On
the other hand, not thoroughly scripting interaction can introduce biases into a study when
the experimenter casually responds to any query from participants. Instead, we placed well-
de�ned boundaries on what information would be o�ered to participants and which would
not.

UBC Computer Science TR-98-10 22 May 27, 1999

4.3.2 Useful Techniques

Timed Interviews. Our original approach to collecting data for the experiments was to
have the participants talk-aloud during their session, to video-tape each session, and then
later annotate the video-tape. During the pilot study, however, we found that most partic-
ipants did not provide the information of interest as they talked-aloud. Furthermore, many
participants mumbled, since they were essentially talking to themselves, which complicated
the annotation process. To get a better sense of how the participants were attacking the
given problems, we introduced the protocol of stopping participants every thirty minutes
and asking a series of questions. Our initial analysis of the video-tapes then concentrated
on these interview segments. These interviews ensured we had participants' views on the
questions of interest at di�erent stages and reduced the annotation load.

Constrained Experiment Times. In some cases, particularly during our pilot study,
the participants were unable to complete the given task(s) in the time allotted. One way
of mitigating this problem is to hold additional dry-run sessions to try and gauge if the
experimental time is reasonable. Another approach is to give participants as much time
as they need for the task up to some reasonably large maximum, such as several hours.
Bowdidge and Griswold used this kind of approach in a study of a program restructuring
tool: participants were permitted an additional hour of time after a two-hour de�ned exper-
imental session time [BG97]. For us, in most cases where time was an issue, it was unlikely
that additional time alone would have lead to more consistent (and interpretable) results.
Our approach was to constrain the running times to values that seemed reasonable given
the dry-runs; this approach reasonably balanced the cost of experiments with the results
obtained.

5 Our Assessment Methods Revisited

Assessment methods must undergo continual re�nement. In this section, we describe the
facets of each method we would maintain and the facets we would change if faced with
evaluating another emerging technology.

5.1 Case Studies

Perhaps the most important facet of our case study method that we would maintain is
having a de�ned period of time in which to conduct the case study. A de�ned period of
time helps to focus the size and scope of development activities attempted in the study. In
our case, the de�ned period was the twelve weeks during which the summer interns were
available.

Another facet of our method that we would carry forward is the separation of the
observers of the study from the day-to-day activities of the participants through such means
as o�-site observation. This separation lends a di�erent perspective to the progress of
the study and can help in data gathering by facilitating a de�ned dialogue between the
participants and the observers. We would also continue to use surveys to gather qualitative
comments about the technology. Surveys were an e�ective means of gathering reective
comments about the technology being assessed.

UBC Computer Science TR-98-10 23 May 27, 1999

Several other parts of our approach we would change. First, we would set-up the case
study to ensure more e�ective comparison is possible. For instance, if the case study can
be set-up to redevelop an existing system, then an artifact, and hopefully a process, exists
against which to compare the output of the case study. Second, we would maintain a
constraint of having only one case study per set of users; this constraint would simplify
data analysis. Third, we would attempt more objective comparison measures on artifacts
produced, such as applying more source-based analysis techniques to compare the structure
of artifacts.

A di�cult question one also faces is determining whether the technology is su�ciently
stable for conducting a case study. As we discuss in Section 6.1.2, the case study format may
enable earlier assessment of a technology, but the technology still must be su�ciently stable
to ensure that only small changes are occurring over the period of the study. Otherwise, it
is di�cult to conduct reasonable analysis of collected data.

5.2 Experiments

As we discussed earlier (Section 4), when designing our semi-controlled experimental ap-
proach we were constrained by four factors:

� a small pool of potential participants

� the short amount of time available from each participant

� the perceived high cost of running and analyzing the experiments, and

� the desire to maintain realism, at the cost of precision in data gathering.

There are a variety of ways in which these constraints could be relaxed. If using students
as participants, the students could be recruited from multiple universities. Trials could span
more than one day. A decision could be made to spend more time and money performing the
experiments. Extensive instrumentation could be performed on the tools used to produce
additional data.

However, the fundamental question that the assessors must ask is whether relaxing the
constraints will produce signi�cantly more useful results relative to the increased costs.
This question is particularly di�cult to answer when dealing with the early assessment of
a technology. Increasing the size of the participant pool, for instance, allows more trials to
be run, but when the questions being asked in an exploratory study are fuzzy, additional
trials would likely bring limited bene�t. Increasing the amount of time for each trial also
has potential pitfalls. Some participants will be distracted by exams or work they perceive
as more important, while others will have thought about the experiment during the periods
between their multiple sessions potentially complicating the study set-up. Increasing the
quantitative data available may be relatively straightforward in cases where the environment
lends itself to instrumentation, but the assessors must factor in the potential di�culty of
analyzing reams of low-level data to detect meaningful high-level events.

Despite the constraints, we believe our experimental approach did yield some useful
results for the developers and potential users of aspect-oriented programming [WBM99].
In future semi-controlled studies, we would focus on relaxing the constraints in two areas.

UBC Computer Science TR-98-10 24 May 27, 1999

First, we would perform more extensive preparation which would require additional
time and participants. Although we attempted to conduct \dry-run" trials prior to col-
lecting data for an experiment, major glitches, such as �nding defects in the programming
environments, tended to preclude a smooth dry-run. The small number of participants
available limited our ability to continue to perform dry-runs until all problems with the
experimental approach had been resolved.

There are three main reasons for conducting dry-run trials: to ensure the task posed
during the trial is reasonable, to debug potential problems with the experimental set-up,
including tools and environment, and to solidify the experimental protocol, including the
interactions that will be allowed between an experimenter and a participant. In future
exploratory experiments of this nature, we intend to use members of the experimental sta�
for dry-runs to identify any potential di�culties with the chosen task. We then intend to
ensure a su�cient participant pool to allow for one clean dry-run prior to conducting the
experiment. The dry-run will be used to identify problems with the experimental set-up
and to re�ne the experimental protocol. Further re�nement of the experimental protocol,
such as questions asked by the experimenter to a participant, can also occur during the
�rst \real" trial.

The second modi�cation we would make is to introduce additional data gathering mech-
anisms. If the technology under assessment involves a tool, some instrumentation of the
tool would be introduced. In an exploratory setting, the di�culty is determining the level
of instrumentation that will be useful. In our case, it would have been helpful to instru-
ment the programming environment to report what �les were being viewed when, and at
what points environment operations, such as build commands, where executed. More de-
tailed instrumentation, such as recording keystrokes, may be warranted depending upon
the questions of interest in the study. However, such instrumentation can be di�cult if
tools employed in the study have not been designed to support it. Video analysis of any
dry-run trials might also suggest what data gathering mechanisms would be appropriate.
More automated means of collecting this kind of data would have eased the analysis phase
of our experiments.

6 Early Assessment of Software Development Technologies

Assessing software development technologies is challenging. Based on our experiences, we
o�er some lessons we have learned that apply in guiding the early phases of assessing soft-
ware development technologies. We start with some questions to ask when attempting to
select an evaluation method (Section 6.1). Next, we consider areas in which particular at-
tention must be paid to maintain realism when studying software development technologies
(Section 6.2). Finally, we present a synthesis of issues that may arise in designing either a
case study-based or experimentally-based empirical evaluation (Section 6.3).

As before, we distinguish between case study and experimental methods based on the
degree of control an investigator has over the environment in which the study is conducted.
This \de�nition" introduces a spectrum. The case studies we conducted exerted less control
than our combinative experimental method which exerted less control than our compara-
tive experimental methods which exert less control than true experimental methods. The
lessons reported below do not attempt to divide this spectrum on a �ne-grained scale as

UBC Computer Science TR-98-10 25 May 27, 1999

our experiences do not warrant such a detailed treatment.

6.1 Selecting a Method

Suppose you have or are asked to evaluate a new software engineering aid or technology.
What method should you choose to conduct your evaluation? Deciding on an appropriate
method requires consideration of four questions.

1. What do you want to know about the technology?

2. How stable is the technology?

3. How much are you willing to spend in evaluation?

4. How do you want to use the evaluation results?

6.1.1 Goals of the Evaluation

If it is the broad e�ects of the new technology that are primarily of interest, we found
a case study approach to be e�ective. With this approach, we were able to gather data
from such diverse areas as the design process used by participants to problems with the
environment in which the technology was being deployed. Our combinative experiment
was an attempt to gather similar, but not quite as broad, qualitative data about multiple
facets of tasks in a more controlled setting. We did not �nd that this evaluation method
provided as much data, in part, because the time constraints placed on the tasks restricted
the di�erent approaches the participants could try to complete the tasks. We were also
able to spend the bulk of the e�ort involved in conducting the case study on activities
involving the use of the technology by the participants. A similar quantity of experience
was garnered in the preparation for the comparative experiments, but the investigators
themselves were e�ectively the participants in this \uno�cial case study". Stressing a
technology in di�erent ways by di�erent users is particularly important in the early stages
of technology development.

The case study approach was also more e�ective, for us, in quickly identifying and
addressing usability issues with the technology than the experimental approach. A wide
range of usability questions and problems surround a new development technology, from
the understandability of the error messages or feedback reported by a tool to a user to
what arrangement of input to a tool, such as how information is split between aspect and
component �les, is most e�ective. Our case study method was su�ciently exible to allow
participants a range of interaction with the technology. The longer duration of the case
study also made it possible to try to improve usability problems that arose. In an experi-
mental setting, such exibility is more di�cult to allow because an extra non-random factor
would be immediately introduced. Experiments into usefulness, though, cannot ignore us-
ability. In our experiments, we provided immediate feedback about usability di�culties
encountered, such as interpreting error messages, to ensure analysis could concentrate on
studying the usefulness of the technique. Whether it is reasonable to try to address both
usefulness and usability at the same time is an open question. Because usefulness and
usability are closely intertwined for new technologies, determining how to investigate them
together or how to separate these issues at reasonable cost is an important question.

UBC Computer Science TR-98-10 26 May 27, 1999

For both methods, the information that was of the most value was the comparative in-
formation. As McGrath points out, in the behavioral and social sciences, the \comparisons
to be made are the heart of the research" [McG95]. In the case study and the combinative
experiment, we relied on qualitative comparisons the participants made to past experiences.
For example, in the combinative experiment, one participant noted:

I don't think [the aspect language] is as elegant for [distribution] as it was for
threads... normally, I just write [classes] and then post-process them to make
them network-enabled... remote... like DCOM... so I don't see as big a bene�t
here [with RIDL] as with threads, but the idea of [the] per-attribute basis is
nice.

In the comparative methods, we compared the experiences of participants in the two groups;
for instance, considering the number of viewing switches between �les that occurred when
debugging a problem. To investigate the usefulness of a technique, then, it seems desirable
to design a study to make comparisons possible. This can be achieved either in a case study
or an experimental format, but is not guaranteed by either approach. For instance, our
combinative experiment provided this information largely because we focussed some of our
interview questions on the issues, asking the participant to relate to previous experiences.

6.1.2 Stability of the Technology

Selecting a method also requires consideration of the stability of the technology. The greater
the control that is desired in a study, typically the greater the investment that is required
in preparation time. Both of our comparative and combinative experiments, for instance,
required more of the labour cost to be devoted to preparation. This cost may only be
reasonable with a stable technology. With a case study, there is often more opportunity
to overcome problems that may arise with the technology. For example, the version of the
AspectJ programming environment used during the case study changed over the course of
the study. It was possible to factor this change in versions into the data analysis given the
questions of interest, such as the design processes used. Within an experimental format,
however, it was necessary to keep the version of the environment consistent, at least within
a given experiment, to permit comparison of results.

6.1.3 Cost of the Evaluation

The cost of evaluation is also an issue, particularly for technologies that are evolving quickly.
The predominate cost in the case study method we used was the labour costs of our par-
ticipants, whereas the predominate cost in the experiments was in the labour required to
prepare materials for the experiment. We could have signi�cantly reduced our case study
costs by reducing the number of participants. Depending on the technology being studied,
this may be a reasonable approach to cost management. It may be more di�cult to reduce
and manage the costs of experiment preparation.

6.1.4 Use of Evaluation Results

Finally, one must determine the goal of the evaluation results. Experimental methods more
rigorous than ours are often advocated [P95c]. These more rigorous approaches have the

UBC Computer Science TR-98-10 27 May 27, 1999

bene�t of striving for statistically valid results that may be more generalizable. Achieving
these results typically requires a large number of trials. When studying an immature
software development technique that is rapidly changing, the costs incurred in preparing
and running experimental trials may not be worthwhile, particularly as the applicability
of the results may be limited to a short time span in the evolution of the technique. The
di�culty of balancing generalizability of the results with the evolution of the technique is
not limited to experiments but applies to case studies as well. Careful design of any study
is be necessary to achieve a suitable balance.

6.1.5 Approaching Evaluation

Whatever empirical method is chosen, it is necessary for the investigator to �gure out the
appropriate balance of construct validity, internal validity, external validity, and reliability.
Achieving high levels for all of these factors may not be possible for new technologies. For
instance, the hypotheses about the technology may not be su�ciently formed to permit
external validity to be achieved. In our experience, none of the methods we used made
achieving the desired balance easier than any other.

One way of approaching assessment may be to apply ideas from the spiral model of
software development [Boe88]. At the early stages of a technology, assessment e�ort should
concentrate on the broad features of the technology when these are still possible to change.
Later, more statistically valid studies can be performed testing hypotheses formed from the
earlier exploratory studies. The early studies, though, need not serve solely as hypotheses
generators as is sometimes alluded [BSH86]; our aspect-oriented programming e�orts show
that these early results can provide keys to the usefulness and usability of a technology.

Overall, then, the assessment method to choose should depend on the feasibility of
conducting a reasonable study given the cost structure available for the questions of interest.

6.2 Maintaining Realism

Studying questions about how a technology may help the software development process is
di�cult because it requires maintaining a reasonable degree of realism about the process
and factors a�ecting the process while exerting some control to enable the study. We found
there were three areas in which careful attention must be paid to realism: the problem
underlying the study, the environment, and the participants. These areas apply to both
case studies and experiments.

6.2.1 The Problem

Realism in the problem underlying the study comes in two forms. First, if a limited time
is available for the study, as is usually the case, the problem chosen for the participant to
tackle in the time available must be representative of a problem arising in a larger software
development. Selection of an appropriate problem is particularly di�cult in the context of
experiments which are typically more time-limited than case studies. For the experiments
we ran, selecting appropriate problems that participants could reasonably tackle in the time
available was almost impossible since problems involving concurrency and synchronization
are generally hard to solve. Our de�nition of \appropriate problem" was one that was

UBC Computer Science TR-98-10 28 May 27, 1999

motivating to the participants and reasonably realistic. For the �rst experiment, we chose
a simple version of a non-audio karaoke machine in which text at the bottom of a small
window scrolls from right to left and a ball bounces straight up and down above the text.
The problem was to synchronize the ball and the text such that the ball would bounce on
the start of each word. This problem was motivating, but proved too di�cult for the time
provided, causing, in part, our experiment to become a pilot study.

The problem must be chosen to ensure that adequate testing of the question of interest
is accomplished. For some of our experiments, for instance, we could have chosen to use
standard reader-writer problems that are used in many textbooks when discussing concur-
rency. Using this example, however, might have enabled participants to transfer knowledge
they previously had of the problem and solution. By recasting the problem in a di�er-
ent framework, such as the digital library used in three of the experiments, we tried to
mitigate this issue of knowledge transfer. The digital library example was more successful
for us than the karaoke example; it was still motivating and realistic, but more tractable
for the participants to understand. It is di�cult to provide general guidelines on how to
approach the problem selection problem for experiments beyond suggesting the careful use
of dry-runs of your experiment to ensure the problem is tractable.

6.2.2 The Environment

Realism can be introduced into the environment by letting participants work, as much
as possible, as developers normally would. For example, the deadlines we set in the case
study mimic the real constraint that developers seldom, if ever, can take as much time
as required to produce a deliverable. As another example of realism in the environment
during the case study, we did not restrict, beyond the programming environment, any tools
that the participants wanted to use. A general rule we applied for both the case studies
and experiments we conducted was to allow participants to use normal tools and resources
except where the use would defeat the purposes of the study.

6.2.3 The Participants

Finally, realism in the participants means picking participants that represent, at least part
of, the skill-set of the target users of the software technology. This representation is needed
to provide meaningful context for the questions of interest. Since the questions of interest
to us involved whether aspect-oriented programming eased development tasks given some
programming background on the part of the developer, we could not use any beginning
students. This point may seem trivial, but it is an important constraint to recognize,
particularly when the participant pool is limited. The number of participants available
may a�ect the kind of study that can be conducted.

For example, a small participant pool may limit an experimenter's ability to randomly
assign participants to trials, thereby limiting the generalizability of the results.

6.3 Designing the Empirical Study

Although some guidance is available on the overall design of, most notably, experimental
studies for software engineering (e.g., [BSH86, P94]), there is little collected information

UBC Computer Science TR-98-10 29 May 27, 1999

about two critical pieces of the design: data gathering and analysis. We spent a signi�cant
amount of time trying to design these pieces of our case studies and experiments; our
critiques of our methods indicate that they are both areas requiring more attention.

6.3.1 Data Gathering

Gathering data about a task, such as design or programming, that incorporates so many
activities is challenging. Performing these kinds of tasks involves problem solving at both
abstract and concrete levels [vMM96], time management, and communicating ideas, among
other activities. Previous detailed studies in this general area have used a variety of quan-
titative and qualitative data sources, including time-diaries in which developers self-report
time spent on tasks on a provided form [PSV94], video-tapes of programmers working on
assigned tasks [RC96], and structured interviews [CKI88]. Because experimentation in soft-
ware engineering is relatively immature, little guidance is available about the bene�ts and
limitations of each of these approaches for collecting data about di�erent activities. A body
of knowledge relating researchers' experience with di�erent data sources for investigating
di�erent parts of the software development process is needed.

6.3.2 Data Analysis

Ideally, we should have spent additional time determining what data analysis we would
perform before conducting our case studies and experiments. This statement is one that is
easy to write, but di�cult to put into practice because it is not at all evident how we could
have determined our analysis strategy more fully at the start. Especially when conducting
exploratory studies in which some analysis is required to determine appropriate observations
that drive further analysis, such foresight is di�cult to achieve. The experiences we have
gained in analyzing our case study and experimental data, though, suggest some areas
requiring further technique development.

In the context of experiments, it is possible to search for patterns that occur in di�er-
ent sessions as part of the analysis. Bowdidge and Griswold describe an example of this
approach [BG97]. Patterns in part helped us to determine items of interest to analyze in
the video-tape we collected during our experimental trials. Even though there were some
repetitions in our case studies|for example, multiple versions of the game were developed
iteratively|it was di�cult to �nd patterns, perhaps because the patterns were spread over
a longer time duration. Some means of abstracting the patterns from longer duration
observations would be helpful.

Multiple sources of data were useful to us in several ways during our analysis of the case
study data. For instance, we assigned more weight to observations that occurred in more
than one medium. However, our approach to identifying and matching observations from
di�erent sources was ad-hoc. Techniques that would provide more rigour to this analysis
would help improve the validity of results from case studies such as the ones we conducted.

7 Summary

Many di�erent validation methods for software engineering questions exist [ZW98]. When
attempting to select an evaluation method for a software development aid, an investigator

UBC Computer Science TR-98-10 30 May 27, 1999

must typically trade-o� three factors: validity, realism, and cost. An investigator may have
signi�cant exibility in each of these factors when assessing a mature technology. A costly
study that provides a high degree of validity, for instance, may be feasible. On the other
hand, an investigator assessing a new technology may face more stringent constraints: the
validity of any study, for example, may be limited by the evolution path of the technology.

We faced such constraints when undertaking an assessment of the new and evolving
aspect-oriented programming technique. To study aspect-oriented programming, we ap-
plied two basic methods: a case study method, and an experimental method. Since the
technique under study is in its infancy, our case study and experimental methods were
largely exploratory, yielding qualitative insights into aspect-oriented programming and di-
rections for further investigation. Our case study approach provided results about the
usefulness of the technique, about challenges facing the usefulness of the technique, about
concrete features that could improve the usability of the approach, and about potential
research directions. Our experimental approach provided qualitative evidence about the
usefulness of the technique and identi�ed more speci�c parts of the approach that con-
tribute to its usefulness and usability. Overall, we found the case study approach a more
e�ective means of achieving our initial goals of assessing whether and how the emerging
aspect-oriented programming technique might ease some development tasks.

This paper makes two contributions. First, we describe our experiences in and analyze
the costs of applying several di�erent evaluation methods: case studies, and comparative
and combinative, but non-statistically valid, experiments. Our experiences highlight some
strengths and weaknesses of the various approaches and outline data gathering and analysis
methods that were successful and unsuccessful. Second, our experiences highlight the value
possible in various forms of semi-controlled studies. Particularly for new technologies,
these studies can help determine if the technique shows promise, and furthermore, can help
direct the evolution of a technology to increase its usability and potential for usefulness.
The results of these studies may help the adoption of the technology by convincing early
adopters that there is su�cient grounds to try the technology in more realistic settings.

Evaluating software engineering questions about a new technology requires signi�cant
investigation into evaluative techniques used in similar domains, such as the behavioral
and social sciences, as well as creativity in determining how to map those techniques to
the domain of interest. An interchange of experiences with the techniques in di�erent
circumstances is a necessary �rst step to improving the evaluative methods we have available
for new design, programming, and other similar techniques. We believe the methods we have
developed and the lessons we have learned will be helpful to other researchers attempting
to assess other new software engineering techniques.

Acknowledgments

We thank the Xerox PARC Embedded Computation Area group|Gregor Kiczales, John
Lamping, Crista Lopes, Jean-Marc Longitier, and Venkatesh Chopella|for their comments
on and involvement in in the studies, the use of the AspectJ weaver, and the fast responses
to solving the few problems with the environment that occurred. We also thank Robert
Rekrutiak and Paul Nalos for their work on experiment setup and contributions to ex-
periment design; the interns who participated in the case studies (Mark Marchukov, Beth
Seamans, Jared Smith-Mickelson, and Tatiana Shpeisman); our many anonymous experi-

UBC Computer Science TR-98-10 31 May 27, 1999

mental participants; and Martin Robillard for helpful comments on a draft of this paper.
AspectJ is a trademark of Xerox Corporation. Java is a trademark of Sun Microsystems,

Inc. Microsoft Visual J++ is a trademark of Microsoft Corporation. Microsoft NT is a
registered trademark of Microsoft Corporation.

References

[All89] S. L. Allen. A scienti�c methodology for MIS case studies. MIS Quarterly, pages 33{50,
1989.

[Asp98] AspectJ web page, 1998. http://www.parc.xerox.com/spl/projects/aop/aspectj.

[Bas96] V. R. Basili. The role of experimentation: Past, current, and future. In Proceedings
of the 18th International Conference on Software Engineering, pages 442{450. IEEE
Computer Society, 1996.

[BG97] R. W. Bowdidge and W. G. Griswold. How software tools organize programmer behav-
ior during the task of data encapsulation. Empirical Software Engineering, September
1997.

[BHJL86] A. Black, N. Hutchinson, E. Jul, and H. Levy. Object structure in the Emerald system.
ACM SIGPLAN Notices, 21(11):78{86, November 1986.

[Boe88] B. W. Boehm. A Spiral Model of Software Development and Enhancement. IEEE
Computer, 21(5), May 1988.

[BSH86] V. R. Basili, R. W. Selby, and D. H. Hutchens. Experimentation in software engineering.
IEEE Transactions on Software Engineering, SE-12(7):733{743, July 1986.

[CKI88] B. Curtis, H. Krasner, and N. Iscoe. A �eld study of the software design process for
large systems. Communications of the ACM, 31(11):1268{1287, November 1988.

[CSKB+89] B. Curtis, S. B. Sheppard, E. Kruesi-Bailey, J. Bailey, and D. A. Boehm-Davis. Experi-
mental evaluation of software documentation formats. Journal of Systems and Software,
9(2):167{207, February 1989.

[FPG94] N. Fenton, S. L. Peeger, and R. Glass. Science and substance: A challenge to software
engineers. IEEE Software, 11(4):86{95, July 1994.

[GKC87] R. Guindon, H. Krasner, and B. Curtis. Breakdowns and processes during the early ac-
tivities of software design by professionals. In G.M. Olson, S. Sheppard, and E. Soloway,
editors, Empirical studies of programmers: Second Workshop, pages 65{82, 1987.

[ILG+97] J. Irwin, J. M. Loingtier, J. R. Gilbert, G. Kiczales, J. Lamping, A. Mendhekar, and
T. Shpeisman. Aspect-oriented programming OS sparse matrix code. In Proceedings of
the Scienti�c Computing in Object-Oriented Parallel Environments First International
Conference (ISCOPE '97), pages 249{256. Springer-Verlag, December 1997.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In M. Aksit and S. Matsuoka, editors,
ECOOP'97|Object-Oriented Programming, 11th European Conference, volume 1241
of Lecture Notes in Computer Science, pages 220{242, Jyv�askyl�a, Finland, 9{13 June
1997. Springer.

[MB97] G. C. Murphy and E. L. A. Baniassad. Qualitative case study results. UBC-CS-SE-
AOP-1, October 1997.

UBC Computer Science TR-98-10 32 May 27, 1999

[McG95] J. E. McGrath. Methodology matters: Doing research in the behavioral and social
sciences. In R. M. Baecker, J. Grudin, and W. A. S. Buxton, editors, Readings in
Human-Computer Interaction: Toward the Year 2000, pages 152{169. Morgan Kauf-
mann Publishers, Inc., San Francisco, CA, 2nd edition, 1995.

[MKJ97] A. Mendhekar, G. Kiczales, and Lamping. J. RG: A case-study for aspect-oriented
programming. Technical Report SPL97-009 P9710044, Xerox PARC, February 1997.

[ODR84] C. O'Malley, S. Draper, and M. Riley. Constructive interaction: a method for studying
user-computer-user interaction. In Proceedings of First IFIP Conference on Human-
Computer Interaction (INTERACT '84), volume 2, pages 1{5. Elsevier, 1984.

[P94] S. L. Peeger. Design and analysis in software engineering, part 1: The language of
case studies and formal experiments. ACM SIGSOFT Software Engineering Notes,
19(4):16{20, October 1994.

[P95a] S. L. Peeger. Experimental design and analysis in software engineering, part 3: Types
of experimental design. ACM SIGSOFT Software Engineering Notes, 20(2):14{16, April
1995.

[P95b] S. L. Peeger. Experimental design and analysis in software engineering, part 4: Choos-
ing an experimental design. ACM SIGSOFT Software Engineering Notes, 20(3):13{15,
July 1995.

[P95c] S. L. Peeger. Experimental design and analysis in sofware engineering, part 2: How
to set up an experiment. ACM SIGSOFT Software Engineering Notes, 20(1):22{26,
January 1995.

[Pre94] J. Preece. Human-Computer Interaction, chapter Part VI, Interaction Design: Evalu-
ation. Addison-Wesley Publishing Co., Wokingham, England, 1994.

[PSTV97] A. A. Porter, H. P. Siy, C. A. Toman, and L. G. Votta. An experiment to assess the cost-
bene�ts of code inspections in large scale software development. IEEE Transactions on
Software Engineering, 23(6):329{346, June 1997.

[PSV94] D. Perry, N. Staudenmayer, and L. Votta. People, organizations, and process improve-
ment. IEEE Software, 11(4):38{45, July 1994.

[RC96] M. Rosson and J. M. Carroll. The reuse of uses in Smalltalk programming. ACM
Transactions on Computer-Human Interaction, 3(3):219{253, September 1996.

[RJ89] S. Ravden and G. Johnson. Evaluating Usability of Human-Computer Interfaces: A
Practical Method. Ellis Hornwood Ltd., Chichester, England, 1989.

[RTL+91] R. K. Raj, E. Tempero, H. M. Levy, A. P. Black, N. C. Hutchinson, and E. Jul. Emer-
ald: A general-purpose programming language. Software|Practice and Experience,
21(1):91{118, January 1991.

[Sch87] B. Schneiderman. Designing the User Interface: Strategies for E�ective Human-
Computer Interaction, chapter 10: Iterative Design, Testing, and Evaluation. Addison-
Wesley Publishing Co., Reading, MA, 1987.

[SWF+96] M. A. D. Storey, K. Wong, P. Fong, D. Hooper, K. Hopkins, and H. A. M�uller. On
designing an experiment to evaluate a reverse engineering tool. In Proceedings of the
Third Working Conference on Reverse Engineering, pages 31{40. IEEE Computer So-
ciety Press, 1996.

[TG95] E. A. Trahan and L. J. Gitman. Bridging the theory-practice gap in corporate �nance: a
survey of chief �nancial o�cers. Quarterly Review of Economics and Finance, 35(1):73{
88, 1995.

UBC Computer Science TR-98-10 33 May 27, 1999

[vMM96] A. von Mayrhauser and A. M. Mans. Identi�cation of dynamic comprehension pro-
cesses during large scale maintenance. IEEE Transactions on Software Engineering,
22(6):424{437, 1996.

[WBM99] R. J. Walker, E. L. A. Baniassad, and G. C. Murphy. An initial assessment of aspect-
oriented programming. In Proceedings of the 21st International Conference on Software
Engineering, May 1999. To appear.

[Wei68] K. E. Weick. Systematic Observational Methods, chapter 13, pages 357{451. Addison-
Wesley, 1968.

[Wil95] D. Wildman. Getting the most from paired-user testing. ACM Interactions, 2(3):21{27,
1995.

[Yin94] R. K. Yin. Case Study Research: Design and Methods (Second Edition). Sage Publi-
cations, Thousand Oaks, CA, 1994.

[ZW98] M. V. Zelkowitz and D. R. Wallace. Experimental models for validating technology.
Computer, 31(5):23{31, May 1998.

UBC Computer Science TR-98-10 34 May 27, 1999

