Efficient Mapping of Software System Traces
to Architectural Views

Robert J. Walker, Gail C. Murphy, Jeffrey Steinbok, and Martin P. Robillard
Departmenbf ComputerScience,
University of British Columbia,
201-2366Main Mall,
Vancouer, BC V6T 1Z4,Canada

TechnicalReportTR-00-09

July 7,2000

Abstract

Information abouta software system$ execution
can help a developerwith mary tasks,including
softwaretesting,performanceuning,andprogram
understandingln almostall casesthis dynamicin-
formationis reportedin termsof source-leel con-
structs,suchasproceduresindmethods For some
software engineeringtasks, source-lgel informa-
tion is not optimal becausehereis a wide gapbe-
tweenthe informationpresentedi.e., procedures)
and the conceptsof interestto the software de-
veloper(i.e., subsystems).One way to closethis
gapis to allow developersto investigatethe exe-
cutioninformationin termsof a highetrlevel, typi-
cally architecturalyiew. In this paperwe present
a straightforward encodingtechniquefor dynamic
traceinformation that makesit tractableand effi-
cientto manipulateatracefrom avariety of differ-
entarchitecture-leel viewpoints. We alsodescribe
how this encodingtechniquehasbeenusedto sup-
port the developmentof two tools: a visualization
tool and a pathquerytool. We presentthis tech-
nigueto enablehedevelopmenbf additionaltools
that manipulatedynamicinformation at a higher
level thansource.

Keywords

Dynamic information, execution information,
paths,softwareintegrationtesting,programunder
standing performancenalysistracesgencoding.

1 Introduction

Dynamic information—informationabouta soft-
ware systems execution—canhelp a developer
with mary differenttasks,including softwaretest-
ing [7], performanceuning [4], and programun-
derstandingl1]. Sincedynamicinformationis col-
lectedeither by instrumentingthe sourcecode or
by modifying theexecutionervironment theinfor-
mationis fine-grainedreportingon suchitemsas
instructionsand basicblocks. To help the devel-
operinterpretthis information,toolstypically take
this fine-grainednformationandreportit in terms
of constructghatthe developeris manipulatingin
thesourcecode,suchasprocedures.

For some software engineeringtasks, source-
level informationis not optimal becauséhereis a
wide gap betweenthe presentednformation and
the conceptsof interestto the software developer
For example whenperformingsomekinds of soft-
ware integration testing or when reasoningabout
the impact of someprogramchanges,t may be
more natural for a developer to think in terms
of subsystemsatherthan procedures. Manually
maintainingthe associatiorof source-lgel infor-
mationto more abstractconceptssuchas subsys-
temsis, at best,time-consumingand errorprone.
For large systemsmanualmaintenancef the as-
sociationmay beintractable.

Although tools to help developersmanipulate
staticinformationatahigherlevel thansourcehave
beenavailable for a numberof years(e.g., [8]),
there has beenlesswork focusedon helping de-

velopersinterpretand manipulatedynamicinfor-
mation from an abstract,typically architectural,
view. Thosetoolsthatdo exist take oneof two ap-
proaches.Thefirst is to annotatethe sourcecode
to reportthe dynamicinformationin termsof the
systems architecture(or otherabstractconcepts);
this approachwastaken by Sefikaand colleagues
in atool built to reportperformancenformationin
architecturalterms[13]. However, this approach
limits boththe architecturalviews thatcanbeused
and the meansby which the information is col-
lected. The secondapproachis to allow informa-
tion to be collectedat a fine-grainedevel andthen
to bemappedo the architecture-leel; we have fo-
cusedonthelatterapproach10, 15].

Specifically in this secondapproach,a devel-
oper provides a mapping specificationthat de-
scribeshow the collectedinformationrelatesto the
abstractevel. In the two tools we describein this
paper the mappingspecificationconsistsof anor-
deredist of pairsof regularexpression@ndnames
of architecturalcomponentsan entity reportedin
thedynamicinformationis consideredo be partof
thefirst architecturacomponentvhoseregularex-
pressiorit matches.This approachallows a devel-
operto alterthe mappingto view the systemfrom
differentarchitecturaperspecties.

If the dynamicinformationof interestis a sum-
mary of the execution,it is generallyreasonable
andefficientto maptheinformationafterit is col-
lected. For example,if the dynamicinformation
is a summaryof the numberof timeseachproce-
durehasbeenenteredgachprocedurevould only
needto be mappedonce. However, whenthe dy-
namicinformationis in the form of a tracé, it is
costly to map eachelement. In our approach for
instance,we would end up matchingeachtrace
elementagainsta potentially large set of regular
expressionsyesultingin a large numberof costly
comparisons. Furthermore,if a developerwants
to manipulatethe dynamicinformationfrom more
thanonearchitecturalview, it maybe necessaryo
duplicatelargetraceswhich maybeimpractical.

In this paper we describea straightforvard en-
codingtechniquefor tracesthat makesit tractable
and efficient to interpretand manipulatea trace,
from a variety of architecture-leel views. We
presentthis techniqueto foster discussionand to
enablethe investigationof the usefulnesf ma-

1A traceis an orderedsequencef eventsthatoccurreddur
ing theexecutionof a system.

nipulatingdynamicinformationatahigherlevel.

To beagin the discussionwe describethe tools
we have built uponour encodingschemeo aid the
analysisof systemsat the architecture-leel (Sec-
tion 2). We then presentthe processwe useto
collecttraces,our encodingschemepur approach
to mappingencodedraces,andan analysisof the
benefitsof the encodingscheme(Section3). We
concludewith a short descriptionof why we be-
lieve architecture-leel tracesopennew opportuni-
tiesto developtoolsto aid developersin analyzing
systemgqSection4).

2 Using Architectural Traces

To investigatewhetherarchitecturaltracesmight
help developersanalyzesystems,two tools have
beenbuilt.

The first tool visualizesdynamic information
collected from an object-orientedsystem. Two
small casestudieshave beenconductedn theuse
of thistool. Thesestudiesprovided somepositive
indicationsthatthis tool may help developerstune
the performanceof their system.A brief overview
of this tool is providedin Section2.1; further de-
tails areavailableelsavhere[15].

The secondool supportghe extractionof paths
betweenarchitecturatomponentdérom tracedata.
We have not yet performedary studieson the use
of this tool beyond applyingit to someof the sys-
temswe have developed.We describebriefly how
this tool might help supportintegrationtestingac-
tivities.

2.1 Visualization Tool

Our visualizationtool allows a developerto ana-
lyze the executionof a systemoff-line. The visu-

alizationconsistsf a temporally-orderederiesof

pictures,eachdetailinginformationabouta corre-
spondingpoint in the executionof the systembe-
ing analyzed Ratherthandisplayingraw, low-level

events,eventsaremappedo architectural-lgel en-
tities aschosenby the developer Usingthe visu-
alizationtool, a developercannavigate acrossthe
trace,eitheroneeventatatime or asananimation,
seeinghow objectsmappedo the architecturakn-
tities call eachother, aswell aswhereobjectsare
allocatedanddeallocated.

2Theotherboxesin thescreershotsarehistogramghatpro-
vide a view on the memoryusageby an architecturalcompo-
nent.

category Clustering

cl ass "Archd usteringAnal ysi s’
cat egory Modul esAndSuch

class "Arch(Procedure| Synbol)"
cat egory Si nfFunc

cl ass "ArchSi nFunc"
category Rest

cl ass "Schwanke*"

Figure 2: Map Specification for Figure 1

In contrasto mary performanceanalyzerssuch
asprofilers,the visualizationof atracecanputin-
formationin perspectie, shoving how andwhen
component®f a systeminteract.Abstractingthese
interactiongo thearchitecture-leel canprovidein-
sightinto differentkinds of performanceroblems,
suchas when a subsystenmight be using more
memorythanexpectedandwhy thatis happening.

Figure 1 showns a screensnapshoif the tool.
This snapshoshavs a pointabouthalfwaythrough
the executionof a samplerun of the implementa-
tion of a hierarchicalagglomeratie reverseengi-
neeringalgorithm[12]. This algorithmattemptgo
automaticallycluster entities, such as procedures
in a C program,comprisinga softwaresysteminto
subsystemgmodules)basedon a similarity func-
tion. In thevisualization the classesmplementing
this algorithmaremappedo four architecturakn-
tities (thedarkboxes): Clustering representinghe
classperformingthe clusteringanalysis;SimFun¢
representinghe classcontainingmethod<or com-
puting the similarity function; ModulesAndSuch
representinghefunctionsandmodulesvhosesim-
ilarity wasto be comparedand Rest representing
all otherclassesnvolvedin thealgorithm.Figure2
shaws the specificationcreatedto map low-level
eventsto thesearchitecturakntities;eacheventis
comparedhgainstheregularexpressiorin thelex-
ical orderspecifieduntil it matchesone, at which
point it is mappedto the correspondingarchitec-
tural entity. This particularvisualizationwasused
in a casestudythat discoveredthe sourceof exe-
cution problemsin the implementationof the re-
verseengineeringalgorithm; further detailsabout
thecasestudyareavailableelsavhere[15].

A key propertyof thevisualizationtool is its de-
pendencen fast,iteratedmapping,or abstraction,
to the architecturallevel. The developermay not
have a good idea of what architecturalentitiesto

mapto initially. Furthermoregvenwhenthedevel-
operhasa goodideaof what architecturakentities
to usefor a giventask,thattaskcanchangeasini-
tial questionsareansweredor new questionsarise.
If the processof specifyingthe mapand perform-
ing theabstractions time-consumingtheusability
of thetool suffersmarkedly. An efficient meansof
performingthe mappingwasneededleadingto the
developmentof the encodingtechniquedescribed
in Section3.

2.2 Path Query Tool

Considera software developerfacedwith the task
of developingintegrationtestcasedor alarge sys-
tem. Hopefully, the developerwill have access
to variousdocumentsiescribingthe systemdesign
andimplementatiorthat canbe usedto determine
whichcasesieedo betested. Thedevelopemwould
then proceedto determineinputs and configura-
tions to executethe desiredcases.However, how
canthedeveloperdetermindf aparticulartestcase,
onceexecuteddoesndeedexercisethe pathsof in-
terest?

To the bestof our knowledge, little supportis
available to help software developersanswerthis
guestion. Existing coveragetools reportinforma-
tion aboutsuchitems as basicblocks, line, func-
tions, files, directories,and sometimes libraries
andapplication$.A developermight usethis cov-
erageinformationto gaugewhich entry pointsto a
subsystenwere being exercised but from this in-
formation it would be difficult to determinepath
information.

Path profile tools can provide more useful in-
formation. Although early path profile tools were
limited to reporting intra-proceduralpaths[2], a
morerecenttool reportsinter-procedurapathpro-
files [6]. Theseinter-proceduralpathprofilesrep-
resenta summaryof the executionthat could help
determingpathcoverage.Summaryinformationas
foundin theseprofiles,however, maynotalwaysbe
sufficient. Ratherit mightbehelpfulto understand
the relative orderingof pathsin an executionand
to have, aspartof the path,additionaleventssuch
as objectallocations. For instance,in an object-
orientedprogram,it may beimportantto have one
pathexecuteprior to anothemathto appropriately
setthe stateof a seriesof objects.

3For example, Rationals PureCweerageproductcanreport
coverageatline, function,file, andother levels.

& Data Visualization !E n
Options
<< Step | Play | Stop | Step >> | Summary
Cel#: 14
Stack: Clustering — Rest — SimFunc
Clustering Clustering SimFunc SimFunc
1451 4516
§ ||
1037 3916
i EE
= CJ 127 7
\)
Rest Rest ' /
= \ ModulesAndSuch
\ ;
&9 %) ModulesAndSuch
]
476
0
]
=
L]
K _>l_I

Figure 1: Architecture-level Visualization

To investigatavhetherdetailedpathinformation
might helpa softwaredeveloperreasorabouta set
of integrationtestcaseswe have developeda path
guerytool thatoperate®n tracedataandthat sup-
portsqueriesatthearchitecture-leel. Givenatrace
anda mappingspecification(similar to thatshavn
in Figure 2) describinghow source-lgel compo-
nentsrelateto architecturalcomponentsthe tool
will extractall pathsstartingin one namedarchi-
tecturalcomponentand endingwith anentryto a
seconchamedarchitecturacomponent.The paths
extractedcontainboth call informationand object
allocationanddeallocatiorinformation. Sub-paths
arealsoreported.

To try out this tool, we appliedit to analyze
sometestcasedor the Jex staticanalysigool [11].
Jex analyzeghe flow of exceptionsin Java™ pro-
gramsand consistsof over 100 classes. Six ar-
chitecturalentities compriseJex: a Controller a
Parser a Type system,an AST, a Loaderfor read-
ing intermediatdfiles, anda utility subsystem.In
our trial useof the path querytool, we were in-

terestedin the pathsexercisedbetweenthe AST
andthe Loadercomponenby threetestcases We
usedthe path query tool to extract the pathsbe-
tweenthesetwo architecturalentities: 534 paths
werefound. We analyzedhesepathsto determine
if they were indeedthe pathsintendedto be ex-
ercised. Our analysisshaved that one of the test
casesexercisesa greatervariety of pathsthanthe
othertwo testcases Specifically onecaseensures
that the Loadercomponents calledin threedif-
ferentsituations:while processingnethodinvoca-
tion expressionsyhile processing hr ow expres-
sions,andwhile processingtherJavaexpressions.
The othertestcasedocusonly on the latter situa-
tion. Thisinformationmaybe usefulto helpassess
andselecttestcases.Furthermorepnemight care
aboutinvoking the Loaderfrom a methodinvoca-
tion prior to at hr ow expression;the path query
tool canhelpyou determindf atestcasemeetghis
criterion.

Theability of ourtool to understandhemapping
betweenthe sourceand architecturalcomponents

malesit easyfor a software developerto extract
the pathsof interest.Insteadof having to translate
the questionsof interestfor the software integra-
tion testingtask,a developercanexpressthe ques-
tionsdirectly in termsof the componentbeingin-
tegrated. Oncerelevant pathshave beenextracted
using this approach.a variety of further analyses
can be performed. For instance,the pathscould
be viewed usinga browsersimilar to the Hot Path
Browserby Ball andcolleague$3], or couldbean-
alyzedusingconceptanalysisasalsodescribedy
Ball [1]#

As with our visualizationtool, the developer
may needto iterate the mappingspecificationto
refineit to answerthe test casequestionof inter-
est. For instance,as the developerlearnsabout
the differentpossiblecoursesf execution,the de-
velopermay wish to refine subsystenboundaries.
As before,then,fast,iteratedabstractioris a must
here hencetheneedfor theencodingechniquede-
scribedin Section3.

3 Mapping Traces

Both of the tools describedely on traceinforma-
tion collectedfrom a programs execution. Pro-
gram trace information has beenusedfor mary
yearsand a numberof techniqueshave beende-
velopedfor collectingandstoringit [5]. Theseef-
fortsfocuson theefficient collectionandrepresen-
tation of detailedinformationaboutthe program,
suchasthe instructionsexecutedand the datalo-
cationsreferencedThesedetailedtraceshelp sup-
portthe designof memorysystemsandhelp guide
the behaviour of parallelizingcompilers,amongst
otheruses.

In comparisonthe traceswe use supportsoft-
ware engineeringactiities. We cansupportthese
activities usinglessdetailedtraces. In the object-
orientedsystemave have beenstudying,ourtraces
consistof informationaboutmessagsendspbject
allocationsandobjectdeallocationsAlthoughthis
informationis alreadyat a higherlevel than pro-
graminstructions,we believe softwaredevelopers
dealingwith largesystemsanbenefitfrom further
abstractiorof theinformation.

Trace information is collectedin one of three
ways: by instrumentingsourcefiles, by instru-
menting objectfiles, or by altering the execution

4Ourtraceinformationdoesinc|udetimestampsaothedura—
tionsof pathscanbe determined.

ervironmen®. The framevork we have developed
encode®bjectsrepresentingventsof interesthat
occurduringexecution,in theformatdescribede-
low.

In this sectionwe describeour tracerepresenta
tion. First, we describethe eventswe arerecord-
ing and how we encodetheseeventsin the trace
representationNext, we describehow the encod-
ing facilitatestheabstractiorandsummarizatiorof
the events. Finally, we describewhy this encoding
schemas of benefit.

3.1 Events

Thetraceswe arecollectingdescribethe execution
of an object-orientedsystem. Tracescomposethe
following typesof events:

e classmethodentryandexit events,

e instancamethodentryandexit events,

¢ objectallocationanddeallocatiorevents,and
o threadstartandstopevents.

Each event carries particular information rel-
evant to the systemevent it represents. Class
methodentry and exit eventsrecordthe nameof
the classandthe nameof the methodthatwasen-
teredor exited (classand methodidentifiers). In-
stancemethodentry and exit eventsrecordan ad-
ditional identifier representinghe objecton which
themethodwascalled. Objectallocationanddeal-
locationeventsrecorda classidentifierandan ob-
jectidentifier. All of theseeventtypesalsorecord
the nameof the threadexecutingthe event (thread
identifier). Finally, the threadstartandstopevents
recorda threadidentifier.

3.2 Encoding Events

As with arny encodingschemethekey liesin deter
mining the patternshat canbe usedto encodethe
information of interest. Sinceour goal wasto ab-
stracteachevent, we neededo determinehow to
supportthe abstractionoperationefficiently. The

S0ur current set of tools works on Jaa pro-
grams. We are using Aspect]M from Xerox PARC
(http://www. aspectj.org/) to instrument Jaa
source, and the Jikes Bytecode Toolkit from IBM Re-
search (htt p:// ww. al phawor ks. i bm cont)
to instrument bytecode. We have also created a
translator to corvert IBM Researcls Jinsight traces
(htt p: // ww. al phawor ks. i bm conml), which are
produceddy the JinsightVM, to ourtraceformat.

abstractioroperationconsistof testinganeventto

seewhetherit meetssomesetof propertiesassoci-
atedwith the descriptionof an abstracttem. For

instancejn thetools describedabove, the associa-
tion betweeraneventandanabstracitem consists
of a setof regular expressionsan eventis associ-
atedwith the abstracitemif it matcheoneof the

regularexpressions.

Our encodingschememeetsthis goal by cat-
egorizing events and encodingthe categories in
the trace. With this encodingschemewe record
tracesin two streams:an encodingstream,andan
event stream. The encodingstreamconsistsof a
sequencef records,eachcontaininginformation
abouta givencataory; thesecatagyoriesaretermed
primitive becausehey cannotbe subdvided. The
eventstreanconsist®of asequencef recordseach
of which containsanindex to a primitive cateyory
within the encodingstream,plus someadditional
information that dependwon the type of eventin-
volved.

A primitive category consistof auniquecombi-
nationof classidentifier, methodidentifier, thread
identifier, andeventtype. Primitive categoriesdo
not include objectidentifier information because,
in generalthe numberof eventsassociatedavith a
givenobjectwill besmall,andthereforethe num-
ber of primitive categyorieswith which we would
have to dealwould increasedramatically Events
that containobject identifiers record them within
theeventstream.

Figure 3 demonstrateghis encodingscheme.
The event streamstartswith a C assMet hod-
Ent r yEvent . The detailsaboutthis event, such
as the class and method that were enteredand
the threadin which the methodwas executed,are
recordecdbntheencodingstream.Therecordonthe
eventstreamncludestheordinalnumberof thefull
information on the event encodingstream. When
thesecondCl assMet hodEnt r yEvent occurs,
it is a call to the sameclassand methodin the
samethreadas the first event; therefore,we en-
codeit in the event streamasbeingthe samecat-
egory, and nothingnew is written to the encoding
stream. The | nst anceMet hodEnt r yEvent
thatoccurdaterin theeventstreams encodedim-
ilarly to thefirst event. Unlike the d assMet h-
odEnt r yEvent , the recordon the event stream
for the entry of aninstancemethodincludesinfor-
mationaboutthe objecton which the methodwas
invoked.

Category 1 Category 1 Category 5
Event oID 126
Stream
) ClassMethodEntry InstanceMethodEntry
Encoding Class C . Class D
Stream Method m() Method n(int)
Thread main Thread main
1 5

Figure 3: Encoding Scheme

3.3 Abstracting Events

Interpretingatraceat anabstractevel requiresap-
plying anabstractioroperatiornto eacheventin the
trace.Encodingthe eventstreanfacilitatesthis in-
terpretation.

Insteadof having to apply the abstractioroper
ation againsteachevent, the abstractioroperation
needonly beappliedagainsteachrecordin theen-
coding stream,i.e., eachprimitive categyory. The
architecture-leel entitiesto which they areto be
mappedaretermedabstract categories

For eachtool, the developerusingit specifiesa
mappingfrom a set of primitive catgyoriesto an
abstractcategory througha partial, orderedspeci-
fication of matchingcriteria. For example,in Fig-
ure2, thedeveloperspecifiedthatary eventsrefer
ring to the classAr chCl ust eri ngAnal ysi s
shouldbe mappedto the Clusteringabstractcate-
gory. This meanghateachencodingstreanrecord
hasits classidentifier (if any) comparedagainst
this matchingcriterion. If it matchesthe eventis
placedin the Clusteringabstractcategory; if not,
the eventis then comparedagainstthe next map-
ping criterion. If theeventmatchesioneof thecri-
teria, it is notmappedandis notusedfurther.

The abstractionoperationproducesan array of
values: the primitive category numbersenes as
an index into the array which storesthe abstract
catgyory to which eachprimitive category is to be
mappedIn theexamplein Figure2, we mighthave
hadhundredf primitive cateyories,but only four
abstractcategories,so our array would have been
(identically) hundredf elementsn size,but each
elementwould referencean abstractcateyory asa
numberfrom 1to 4, or O if it wasnotmappedhtall.
The larger eventstreamcanthenbetraversed.and
eachindividual event, which refersto its primitive
catgyory, canbe mappedo theappropriatebstract

categoryvia anO(1) lookupin thisarray

3.4 Summarizing Events

Softwaredeveloperscanalsobenefitfrom thesum-
marizationof events: summarizatiorabstractshe
eventsovertime. For example,asdescribecearlier
in this paper pathprofiletoolssummarizéhepaths
takenduringanexecution[2, 6].

Summarizatiorandabstractiorof eventsareor-
thogonaltechniques. Although eachis useful on
its own, their combinationcanprovide furthersoft-
ware analysissupport. For example,to help soft-
ware developersunderstanda trace, our visual-
ization tool summarizesthroughoutthe trace, the
numberof objectsallocatedand deallocatedthat
belongto eachabstractategory.

Ourencodingschemdacilitatesthecombination
of thesaechniquedy allowing themostcostlypart
of summarizatiorto occuronce, prior to abstrac-
tion. Summarizatioris performedwith respecto
individual primitive categoriesandrecordedLater,
theserecordedsummariesanbe abstractedby ap-
plying the abstractionoperationto the primitive
catgyoriesin the summary andthen, for eachab-
stractcategory, aggr@atingthe summarizationsf
the primitive cateyoriesthatmapto it® Sincemary
eventsmay mapto a primitive category, this two-
step processallows the abstractionto be altered
muchmore cheaplythanre-summarizingn a sin-
gle stepwould.

For example, if we found that 32 instancesof
String and 14 instancesof Stri ngBuffer
hadbeenallocatedduringatraceandthe architec-
tural view calledfor all String andStri ng-
Buf f er eventsto be groupedtogetherinto the
StringQp abstractcategory, we would simply
addthetwo countsto find that 46 objectswereal-
locatedin thetracethatmappedo St ri ngOp.

Without the notion of indivisible, primitive cat-
egories, as found in our encodingscheme,each
event could be mappedarbitrarily to an abstract
catgyory. This would preventary partial summa-
rizationfrom beingperformedprior to abstraction.
Sincesummarizatiorover atracerequiregprocess-
ing of the entiretrace,if the architecturalview of
the systemis to be changedrequently asit is in
our model, summarizationcan be a prohibitively
expensve operation.

6This aggre@ative schemeassumeshatthetotal summariza-
tion in questionis describablesolely as a function of abstract
cateyory.

3.5 Savings

The encodingstratayy is only an advantagef two
conditionsaremet: (1) primitive categyory informa-
tion tendsto be repeatedn the trace,and (2) the
abstractioroperationis costlyto perform.

The first condition is important since we will
only gain an advantageif the encodingstreamis
smallerthanthe eventstream. This conditionwill
typically hold: the numberof events produced
whenrunninga systemis large comparedvith the
numberof classesandmethodsin a system,upon
which the encodingschemeis based. The total
numberof encodingspossiblefor a given system
is a small multiplier of the productof the number
of classesandthenumberof methodsandthe num-
ber of threads. As one example,for the Jex tool
describedn Section2, Jex produceda tracecom-
posing5x 10° eventsasit analyzecnesimpleJaza
class.Encodingthistraceresultsin only 725 prim-
itive categyories.

Thesecondcconditionmattersbecausall events
in thetracestill requireprocessing.Whenthe ab-
stractionoperationis cheapto perform,it may as
well be appliedasthe eventsaretraversed. How-
ever, whentheabstractioroperations expensve, it
is anadvantageo applyit only to themuchsmaller
numberof encodings. At first glance,our regu-
lar expression-basectbmparisormayappearcheap
sincean individual regular expressioncomparison
is not necessarilycostly Although we do not
yet have much experiencewith applyingthe reg-
ular expression-basedperationagainsttracedata,
whenapplyingit to static datacollectedfrom the
sourcecode of Microsoft Excel to supportan ex-
perimentakeengineeringask,the numberof com-
parisonsgrew to be large, over 1000in total [9].
Obviously in sucha case,comparingagainstthe
primitive catggoriesratherthan the eventsresults
in amoreefficienttool. This savingsalsoprovides
an opportunityto try out more expensve abstrac-
tion operationssuchasoperationsnvolving some
inference.

To clarify the savings of the encodingscheme,
considerthat the cost of abstractinga traceis on
the orderof 3" e;p; + a; wheree; is the number
of eventsbelongingto primitive cateyory i, p; is
the cost of identifying that a given event belongs
to primitive cateyory i, and a; is the cost of ap-
plying the abstractionoperationto primitive cate-
gory i. Without the encodingschemewe canstill
considetthesetof eventsthatwould have belonged

to primitive cateyory i, for the sale of ouranalysis.
In the absencef the encodingthe abstractiorop-
erationhasto be performedon eacheventinstead
of oncefor the entire primitive category for atotal
costof 3" ase;! Thesaingsin usingthe encoding
schemes ontheorderof 3 (a; — p;)e; — a;. The
encodingschemewill thusbe an advantagewhen
theconditionsabove aremet.

4 Summary

Can the abstractionand summarizationof trace
information enable new software analysis ap-
proaches? Can it enhanceexisting approaches?
Canit help software developersperform software
engineeringasksmoreeffectively?

There are no definitive answers to these
guestions—yet. To answerthesequestions,it is
necessaryo have the basetechnologyto abstract
andsummarizeracesefficiently. This technology
allows toolsto be built thatcanbe appliedto real-
istic systemsandrealisticscenarios.

This paperhas presentedan encodingscheme
that providesthis basetechnology Tracesmay be
abstractedo differentarchitecturalviews. Trace
informationmayalsobeintermittentlysummarized
andthenabstracted.

Although, to date, we have only limited expe-
rience with applying this technology we believe
it holds promisefor increasingthe usefulnessof
dynamicinformationin softwareengineeringools
andtechniques.As an example,in additionto the
visualizationand path query tools we have built,
the approachmay enablethe determinatiorof ar-
chitecturaldependencesetweerpiecesof existing
systemg14]. Thisinformationcouldenableanew
way to verify thata systemadherego its architec-
tural goals.

Acknowledgments

This researchwas funded in part by the Natu-
ral Sciencesand EngineeringResearctCouncil of
CanaddNSERC)andin partby the Consortiurnfor
Software EngineeringResearcHCSER)in coop-
erationwith ObjectTechnologyinternational,Inc.

7Abstractingan event directly to an abstractcateyory will
costthe sameasabstractingan eventfrom a primitive cateyory.
Theactualabstractiorprocesds a regular expressiormatching
that could be performedon eithereventsor primitive cateory
recordsidentically

“Aspect]”is a trademarkof Xerox Corporation.
“Java” is atrademarkof SunMicrosystems.

About the Authors

RobertJ. Walker is a Ph.D. candidatein the De-
partmentof ComputerScienceat the University of
British Columbia. His thesiswork concernsthe
use of dynamic contectual information for soft-
wareevolution andreuse.He may be contactedat
walker@cs.ubc.ca.

Gail C. Murphy is an assistanprofessorin the
Departmentof ComputerScienceat the Univer-
sity of British Columbia. Her researchinterests
are in software evolution, software design, and
sourcecodeanalysis.Shemaybecontactecatmur-
phy@cs.ubc.ca.

Jefrey Steinbokis a recentgraduatefrom the
University of British Columbia. He currently
works at Microsoft. He may be contactecdht stein-
bok@cs.ubc.ca.

Martin P. Robillard is a Ph.D. studentin the
Departmentof ComputerScienceat the Univer-
sity of British Columbia. His researchinter
estsincludeprogramunderstandinggvolution,and
modularization. He may be contactedat mro-
billa@cs.ubc.ca.

References

[1] ThomasBall. Theconceptbf dynamicanaly-
sis. In OscarNierstraszandMichel Lemoine,
editors. ESEC/FSE99, volume1687of Lec-
ture Notesin ComputerScience Toulouse,
France,6—10 Septembef 999, pp. 216-234.
7th EuropeanSoftware EngineeringConfer
enceheldjointly with the7thACM SIGSOFT
Symposiumon the Foundationsof Software
Engineering.

[2] ThomasBall andJamesR. Larus. Efficient
path profiling. In Proceedingsof the 29th
AnnuallnternationalSymposiunon Microar-
chitecture, pp. 46-57,Paris, France 2—4 De-
cemberl996.

[3] ThomasBall, JamesR. Larus,andGeneieve
Rosay Analyzing path profiles with the
Hot Path Browser In Workshopon Profile
and Feedbak-Directed Compilation Paris,
France,13 October1998. htt p:// www
cse. ucsd. edu/ user s/ cal der/fdo/

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

archi ve/ f dol/ paper s/ pfdc-
bal I . ps. Z.

Susarn_. GrahamPeterB. KesslerandMar-
shallK. McKusick. gprof: A call graphex-
ecutionprofiler. In Proceedingsf the SIG-
PLAN’82 Symposiunon CompilerConstruc-
tion, pp. 120-126, Boston, Massachusetts,
USA, 23-25Junel982.

JamesR. Larus. Efficient programtracing.
Computer26(5):52—61,1993.

JamesR. Larus. Whole programpaths. In
Proceedingof the ACM SIGPLAN'99 Con-
ference on Programming Languaje Design
and Implementation pp. 259269, Atlanta,
Geogia, USA, 1-4May 1999.

Edward F. Miller, Jr. Programtesting: Art
meetstheory Computer 10(7):42-51,July
1977.

HausiA. Muller andKarl Klashinsky. Rigi—
A systemfor programmingin-the-lage. In
Proceedingsof the 10th International Con-
ferenceon Softwae Engineering pp. 80-87,
Singapore11-15April 1988.

Gail C. Murphy and David Notkin. Reengi-
neeringwith reflexion models: A casestudy
Computer30(8):29—-36 August1997.

Gail C. Murphy, David Notkin, and Kevin
Sullivan. Softwarereflexion models: Bridg-
ing the gapbetweendesignandimplementa:
tion. To appeaiin IEEE Transaction®n Soft-
ware Engineering 2000.

Martin P. RobillardandGail C. Murphy. An-
alyzing exception flow in Jasza™ programs.
In OscamierstrasandMichel Lemoine edi-

[12]

[13]

[14]

[15]

tors. ESEC/FSE99, volume 1687 of Lec-
ture Notesin ComputerScience Toulouse,
France,6—10 Septembef 999, pp. 322-337.
7th EuropeanSoftware EngineeringConfer

enceheldjointly with the7thACM SIGSOFT
Symposiumon the Foundationsof Software
Engineering.

RobertW. Schwanke. An intelligenttool for
re-engineeringsoftware modularity In Pro-
ceeding®fthel13thinternationalConfeence
on Softwae Engineering pp. 83—92,Austin,
Texas,USA, 13-17May 1991.

Mohlalefi Sefika, Aamod Sane,and Ray H.
Campbell. Monitoring complianceof a soft-
ware systemwith its high-level designmod-
els. In Proceedingsof the 18th Interna-
tional Confeenceon Softwae Engineering
pp. 387—-396 Berlin, Germaly, 25-29March
1996.

Judith A. Staford, Debra J. Richardson,
and AlexanderL. Wolf. Architecture-level
dependencanalysisfor softwaresystems.in
International Workshopon the Role of Soft-
ware Architecture in Testing and Analysis
Marsala, Sicily, Italy, 30 June—3July 1998.
http://ww.ics.uci.edu/ ~djr/
rosat ea/ paper s/ st af f ord. pdf .

Robert J. Walker, Gail C. Murphy, Bjorn
Freeman-Benson, Darin Wright, Darin
Swanson, and Jeremy Isaak. Visualiz-
ing dynamic software system information
through high-level models. In Proceedings
of the ACM Confeenceon Object-Oriented
Programming Systemsl.anguages,and Ap-
plications pp. 271-283,Vancouer, British
Columbia,Canada]18—220ctober1998.

