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ABSTRACT

Dynamic information collected as a software system executes
can help software engineers perform some tasks on a system
more effectively. To interpret the sizable amount of data gen-
erated from a system’s execution, engineers require tool sup-
port. We have developed an off-line, flexible approach for vi-
sualizing the operation of an object-oriented system at the ar-
chitectural level. Thisapproach complements and extends ex-
isting profilingand visualization approaches avail ableto engi-
neers attempting to utilizedynamicinformation. I nthispaper,
we describe the technique and discuss preliminary quditative
studies into its usefulness and usability. These studies were
undertaken in the context of performance tuning tasks.
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1 INTRODUCTION

Effective performance of many software engineering tasksre-
quires knowledge of how the system works. Gaining the de-
sired knowledgeby studying or statically analyzing the source
code can be difficult. Static analysis, for instance, can help
a software engineer determine if two classes can interact, but
it does not help the engineer determine how many objects of
a class might exist at run-time, nor how many method calls
might occur between particular objects. Determining answers
to these questions requires an investigation of dynamic in-
formation collected as the software system executes. This
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dynamic information helps bridge “the dichotomy between
the code structure as hierarchies of classes and the execution
structure as networks of objects’ [1, p. 326].

Software engineers require tool support to effectively ac-
cess and interpret dynamic system information, because the
quantity, level of detail and complex structure of this infor-
mation would otherwise be overwhelming. In creating atool
to help an engineer access this information, two goals must
be paramount: the tool must be usable and it must be useful
for the task it is designed to address. Usability is defined in
terms of practicality and simplicity of interface; usefulnessis
defined in terms of easing the performance or completion of
atask of importance, especialy in comparison to alternative
methods.

Many tools have been devel oped to provide engineers ac-
cess to dynamic information. Profilers, for instance, provide
numerical summaries of dynamic information, such as the
length of time spent executing a method. This information
can behel pful when trying totackl e some system performance
problems. Other tasks, however, such asverifyingthat objects
are interacting appropriately according to defined roles [6],
require additional structura information. The usefulness of
profilersfor these types of task degrades because the relevant
dynamic information is not evident from a summary numeric
value produced on a per method or per class basis.

When structural dynamic information is needed, an engi-
neer may attempt to use an object-leve visualizer (eg., [1, 6,
7]). These visualizers provide such displays as the interac-
tions between objects (or classes) and the number of objects
created of each class. When the task requires viewsinvolving
many classes in alarge system, the usability of thesetoolsde-
grades, as they tend to display complex interactions between
multi pleobjectsin ahaze of extraneous, overlaininformation.

In part to overcome this complexity problem, Sefika
et al. introduced an architectura -oriented visuaization ap-
proach [14] that allows an engineer to investigate the oper-
ation of the system at both coarse- and fine-grained levels.
Some of the design choices made in their approach limit its



applicability. Their approach is on-line, limiting its useful-
ness for some kinds of tasks. Their approach requires hard-
wired instrument classesto be attached to the system, limiting
itsflexibility and reducing its usability.

We have devel oped an off-line, flexible approach for visu-
alizing the operation of an object-oriented system at an archi-
tectural level. Our approach abstractstwo fundamental pieces
of dynamicinformation: thenumber of objectsinvolvedinthe
execution, and the interactions between the objects. We visu-
alize these two pieces of information in terms of a high-level
view of the system that is selected by the engineer as useful
for the task being performed.

To represent theinformation coll ected across asystem’sex-
ecution, we use a sequence of cels. Each cel displays ab-
stracted dynamic information representing both a particul ar
point in the system’s execution, and the history of the execu-
tion to that point. The integration of “current” and “histori-
ca” information is intended to ease the interpretation of the
display by the engineer. Using our prototype, a software en-
gineer can navigate both forwards and backwards through the
cels comprising views on the execution.

Our approach complements and extends existing ap-
proaches to accessing dynamic system information. Our
approach

o alows an unfamiliar system to be studied without alter-
ation of source code,

o permits lightweight changes to the abstraction used for
condensing the dynamic information,

o suppliesavisualization independent of the speed of exe-
cution of the system being studied, and

o dlowsauser toinvestigate the abstracted informationin
adetailed manner by supporting both forwards and back-
wards navigation across the visuaizations.

To investigate the usefulness and usability of the approach,
we have performed preliminary, qualitative studies of the use
of thetechniqueto aid performance-tuning tasks on Smalltalk
programs. These studies show that the technique can help
software engineers make better use of dynamic system infor-
mation when performing tasks such as performance enhance-
ment.

We beginin Section 2 by describing our visualization tech-
nique; Section 3 discusses the creation of avisudization. In
Section 4, wediscuss our initial evaluation effortsintended to
assess the usability and usefulness of the approach. In Sec-
tion 5, we consider the design choices we made in our vi-
sualization technique. Section 6 describes related work and
Section 7 concludes with a description of directionsfor future
work.

2 VISUALIZATION TECHNIQUE

Our visualization technique abstracts information that has
been previoudy collected during a system’'s execution and
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uses concepts from thefield of computer animation to display
that information to a user. We begin the description of our
technique by focusing on the visualization itself, and then de-
scribe how asoftware engineer can construct such avisuaiza-
tion.

Figures1through4 show different viewswithinavisuaiza-
tion produced during one of our case studies that was inves-
tigating a performance problem in areverse engineering pro-
gram (Section 4.1). Thetwo windowsin Figures 1 and 2 each
provide one view—acel showing eventsthat occurred within
aparticular interval of the system’s execution, defined as a set
of n eventswheren isadjustable. Theview in Figure 3 shows
asummary view of al events occurring in thetrace, and Fig-
ure 4 givesadetailed, textua view of some of theinformation
within the summary view. Sections 2.1, 2.2, and 2.3 describe
theseviewsinmoredetail. Full detailsof therunning example
we use are provided in Section 4.1.

Our prototype permits a software engineer to easily switch
from a particular cel to the summary view. A user may aso
move through the sequence of cels sequentially or viarandom
access; animation controls, such as play, stop, step forward
and step backward, allow auser to review the execution trace
and pause or return to pointsof interest. We discuss the navi-
gation capabilities of our visualization in Section 2.3.

2.1 Cels

A cel consists of acanvas upon which are drawn a set of wid-
gets. These widgets consist of

o boxes, each representing a set of objects abstracted
within the high-level model (Section 3.2) defined by the
engineer,

o adirected hyperarc between and through some of the
boxes,

e aset of directed arcs between pairs of boxes, each of
which indicates that a method on an object in the desti-
nation box has been invoked from amethod on an object
in the source box,

o abar-chart style of histogram associated with each box,
indi cating the ages of and garbage collectioninformation
about the objects associated with that box,

e annotations and bars within each box, and
e annotations associated with each directed arc.

Each box drawn identically within each cel represents a
particular abstract entity specified by the engineer, and thus,
does not change through the animation. The grey rectangles
in Figures 1 through 3 1abelled Clustering, SimFunc, Module-
SAndSuch, and Rest are boxes corresponding to abstract enti-
ties of the same names. Two of these entities, Clustering and
SimFunc, each correspond to aclass in the reverse engineer-
ing tool source; the other two entities represent collections of
classes.
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Figure 1: A window showing an example cel in the visualization technique.
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Figure 2: A window showing the next cdl after that in Figure 1 for the same system and execution trace.
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Figure4: A pop-up window produced by clicking onthe Al-
location Pattern histogram for the Clustering entity of Fig-
ure 3.

The path of the hyperarc represents the call stack at theend
of the current interval being displayed. In Figure 1, the cur-
rent cal stack only travels between the Clustering and Rest
boxes—the hyperarc is marked in red (shown as a dashed
black line herein); in Figure 2, the call stack has extended to
SimFunc as well.

The set of directed arcs represents the total set of calls be-
tween boxes up to the current interval; they are displayed in
blue (shown as solid black herein). Because the total number

274

of pairs of boxes is manageable, thisset does not obscure the
rest of the cel significantly. Multipleinstances of interaction
between two boxes are shown as a number annotating the di-
rected arc. The same two arcs are shown in Figures 1 and 2
from Clusteringto Rest, with 123 calls, and from Rest to Sim-
Func, with 122 cdlls.

Object creation, age, and destruction are a particular focus
withinthe visuaization. Each box isannotated with numbers
and barsindicating thetotal number of objectsthat map tothe
box that have been all ocated and deall ocated until the current
interval. The length of abar for agiven box is proportional to
the maximum number of objects represented by that box over
thecourse of thevisualization. The Clustering box of Figure1
showsthat atotal of 1127 objects associated with it had been
created to this point in the execution, and that 1037 of these
had been garbage collected.

The histogram associated with each box shows thisinfor-
mation as well, but in a more refined form. An object that
was cregted in the interval being displayed has survived for
asingleinterval; stepping ahead one cdl, if it still exists, the
object has survived for two intervals, and so on. The kth bin
of the histogram showsthe total number of objects mapped to
the box that are of age k; to limit the number of binsin the
histogram, any objects older than some threshold age 7" are
shown in the rightmost bin of the histogram. The histogram
attached to the Clustering box in Figure 1 indicatesthat all of
its 1127 objects were created relatively far in the past, more
than 10 intervals before the one being shown here.



Colour is used to differentiate those objects that still ex-
ist from those that have been garbage collected; each bar of
the histogram is divided into alower, green part (marked ina
vertical-line pattern herein) for the living objects and an up-
per, red part (marked in adiagonal-line pattern herein) for the
deleted objects. In Figure 1, the upper part of thebar in Clus-
tering’s histogram shows that roughly 80% of the old objects
have been desllocated. Yellow (shown aslight grey herein) is
used both withinthe box annotationsand within histogramsto
indicate a change that just occurred during theinterval. More
specificaly, it isused to show objectsthat have just been cre-
ated or deleted. In Figure 2, which showstheinterval immedi-
ately after that of Figure 1, an additiona 324 objects had just
been allocated that were related to Clustering. Thisallocation
is shown both by the yellow (light grey) portion of the upper
bar, and the yellow (light grey) bar in the first bin of the his-
togram.

No complex graph layout agorithms are currently used to
produce the views. The drawing package used in the proto-
type supportsinteractive rearrangement of the widgets by its
user.

Each cdl isintended to represent a combination of informa
tion not present in its predecessor (interms of the original ex-
ecution) and a summary-to-date of the informationin its pre-
decessors and itself. The new information isdifficult to inter-
pret inisolation; the context provided by the summary-to-date
eases this interpretation. See Section 5.3 for further discus-
sion.

2.2 Summary View

Inadditionto theindividual cels, asummary view isprovided
to display the overall execution of the system being studied.
This view shows the same boxes, directed arcs, arc annota-
tions, and box annotations as the fina cel of the animated
view. In addition, it displays two histograms per box; these
are different from the histogramsin the animated view. One,
the allocation pattern, shows the entire execution trace di-
vided into a set of ten equal-length intervalss; if the trace con-
sistsof 10n eventsthen each interva consistsof n contiguous
events. The height of each bar represents the number of ob-
jectsalocated in that interval that map to that box. The other
histogram, the deallocation age, shows the age of every ob-
ject associated with the box when the object was garbage col-
lected; if an object had not been garbage collected when trac-
ing ended, it is displayed in the rightmost bar. For example
in Figure 3, Clustering’s deall ocation-age histogram shows
that most of its objects were dedllocated at a very young age
while the rest still existed when tracing stopped—thisis the
case for al of the boxesin this example except ModulesAnd-
Such, whose associated objects were aways deallocated a a
young age. Clustering’s dlocation pattern is fairly uniform,
showing only adlight increase in allocations halfway through
execution; on the other hand, SimFunc stopped all ocating ob-
jects after the halfway point.

275

2.3 Navigating the Visualization

There are three forms of interaction with the visualization:
view selection, animation control, and detail querying.

View sdlection simply entails choosing between a sum-
mary view, or the detailed, cel-based view. It would be rea-
sonableto alow multiple, simultaneous views, both summary
and cel-based, but thisis not provided by the current imple-
mentation. However, the off-line nature of this technique
(Section 3.1) allows multiple instances of the tool to be run
simultaneously.

Animation control isprovided by several buttons, adlider,
and thetextua entry of particular values. The buttonsare Step
Backwards and Forwards (by step-size number of cels), Play,
and Stop. The dlider isused for random accesstoacd in a
drag-and-drop fashion.

Textud entry isused to specify step- and interval sizes, and
animation speed; altering the step size allows the engineer
to move through the animation more quickly by not showing
some cel s—thisallowsthe animation to proceed more quickly
when theredisplay rate of the graphics software and hardware
is slower than the desired rate of animation.

By default, an interval ends upon an event that caused a
frame to be added or removed from the execution stack; these
events include making or returning from a method cal, and
generaly, each object alocation or deallocation. This gran-
ularity is generally too fine to be usable—with tens of thou-
sands of method calls occurring and similar numbers of ob-
jects being created and destroyed, not much changes between
two adjacent cels, and histogramstend to have empty binsex-
cept for therightmost. Therefore, we allow theengineer tore-
set the interval size; asize of ten, for example, indicates that
each cel should represent the changes to the system produced
by ten events.

Detail querying allows the engineer to connect observa-
tions made viathe abstract visualization to the actual classes,
object allocations and deall ocations, and method callsthat are
being abstracted. Thisis done by clicking on the appropriate
widget for which details are sought. Arcs, hyperarcs, and his-
tograms can be clicked onin thisway; dl cause atextua dia-
log window to pop-up (Figure 4).

This pop-up window containsalist of the dynamic entities
that were associated with the widget of interest. For exam-
ple, the pop-up for an arc contains a list of &l the cals be-
tween the boxes connected by that arc; the pop-up for thea -
location/desallocation histogram of the animated view gives a
list of the objects that mapped to that box, when they were
created, how old they were when garbage collected, and what
method caused them to be created. Selection of an entry
within these pop-up windows could be used to automatically
positionthe view inatextual code browser inafutureversion
of thetool.



3 CONSTRUCTING THE VISUALIZATION

A software engineer employsafour-stage process when using
our visualization technique (Figure 5).

1. Datais collected from the execution of the system being
studied, and is stored to disk.

The software engineer designs a high-level modd of the
system as a set of abstract entitiesthat are selected toin-
vestigate the structural aspects of interest. For example,
inFigureb, “utilities” and “database” are specified asen-
tities.

The engineer describes a mapping between the raw dy-
namic information collected and the abstract entities.
Figure 5, for instance, shows that any dynamic informa-
tion whose identifier begins with “foo” (such as objects
whose class name starts with “foo”) is to be mapped to
the “utilities” entity. This mapping is applied to the raw
information collected by the tool, producing an abstract
visualization of the dynamic data.

The software engineer interacts with the visualization,
and interpretsit to investigate the dynamic behaviour of
the system.

The process is ddliberately divided into multiple stages to
increase its usability. Rather than having to complete the en-
tire process every time any change is required for the task
of discovery, iteration can occur over any suffix of the pro-
cess. For example, the software engineer might begin with
any extremely coarse view of the program, knowing very lit-
tle about its performance; after interacting with the resulting
visualization and gaining a partial understanding of the stud-
ied system’s operation, the software engineer need only alter
the high-level model and corresponding mapping to generate
anew visualization—thereis no need to re-collect the identi-
ca dynamic information.

Thisprocessisbased onthework of Murphy et al. [12]. We
compare our visualization technique to this previous work in
Section 6.

3.1 Stage 1: Gathering Dynamic Information

Dynamic system information is collected for every method
call, object creation, and object del etion performed by thesys-
tem being investigated. In other words, trace information is
collected. This information currently consists of an ordered
list of:

¢ the class of the object calling the method or having the
object created, and

o theclass of the object and method being called or return-
ing from, or the class of object being created or deleted.

Since the tool currently uses complete trace information, the
complete cal stack for any given moment can be recon-
structed.
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Figure5: The process.

Because our implementation isin Smalltalk, thisinforma
tion is collected by instrumenting the Smalltalk virtual ma-
chine (VM) tolog these eventsasthey occur. Thereisnothing
inherent in thetool in its use of Smalltalk; it could be as eas-
ily implemented in any language in which the execution was
instrumented to collect the required information.

Because a software engineer often needs to understand dy-
namic problemsthat only occur after significant initialization
of the studied system, the collection of the trace information
needs to be performed only during portions of the execution.
This eliminates extraneous information not of interest, and
speeds up the process of collection. In our implementation,
VM methods are available to dynamically activate and deac-
tivate tracing. We used these methods to collect data for Fig-
ures 1 through 4 that included only the main iteration loop of
the algorithm, excluding execution pertaining to initialization
and the output of results.

3.2 Stage 2: Choosing a High-level View

The software engineer typically begins an investigation with
some idea of the static structure of the system being studied.
Even when thisis not the case, the naming conventions and
organization of the source code itself often allow some guess
asto the system’s structure.

The engineer chooses a high-level structural view to use as
the basisfor visualization by stating the names of the abstract
entities. These entitiesmay correspond to actual system com-
ponents, be aggregates or subdivisionsthereof, or have little
connection to redlity. In Figures 1 through 4, for instance, the
investigator chose two entitiesrepresenting specific classesin
the program (Clustering and SimFunc), and two entitiesrep-
resenting collectionsof classes (Rest and ModulesAndSuch).



3.3 Stage 3: Specifying a Mapping

For the tool to indicate the dynamic interactions between the
abstract entities, it needs to have amap relating dynamic sys-
tem entitiesto the abstract ones. A map indicates that specific
system entities, such as objects of a given class or methods
matching a particular pattern, are to be represented by a spe-
cific abstract entity (and thus, by a box in the visualization).
An engineer states this mapping using a declarative mapping
language. To be usable, a mapping language must allow an
engineer to easily express the relationships between entities.

The mapping language's constructs are based on the stan-
dard Smalltalk notion of structurd hierarchy: methods are
grouped into classes, classes into categories, categories into
subapplications, and subapplicationsinto applications. A map
consists of an ordered set of entries, each of which has three
parts:

1. anameindicatingthelevel of the Smalltalk structural hi-
erarchy being mapped,

a regular expression indicating the set of names to
map for the particular structura hierarchy level being
mapped, and

the name of the abstract entity to which these dynamic
system entities are to be mapped.

Methods are provided for mapping a class regular ex-
pression plus method regular expression simultaneously, and
subapplication, class, category, and method simultaneously.
For example, say the engineer has defined an abstract entity
named f 00, and every message foo passed to classes named
*bar * within the subapplications dog* should be mapped
there; thiswould be indicated by a map entry:

mat chi ngSubAppl i cation: 'dog*’
class: '*bar*’ category: '*’
net hod: ' foo’ mapTo: 'foo'.

The example in Figures 1 through 4 used the following map:

mat chi ngC ass: ' Archd ust eri ngAnal ysi s’
mapTo: ' Custering’

mat chi ngC ass: ' ArchModul eG oup’
mapTo: ' Modul esAndSuch’

mat chi ngCl ass: ' ArchProcedure’
mapTo: ' Modul esAndSuch’

mat chi ngC ass: ' ArchSynbol’
mapTo: ' Modul esAndSuch’

mat chi ngCl ass: ' ArchSi nFFunc’
mapTo: ' Si nFunc’

mat chi ngSubAppl i cation: ' Schwanke*’
mapTo: ' Rest’

277

Because we are interested in visualizing the interactions
between system components, the tool takes note both of the
method being called and the method being executed when
it was caled. The same set of map entries is used to map
both; thevisualizationitself will differentiate between incom-
ing and outgoing calls.

Individual objects are also mapped in thisway. Because it
is often important where an object was created, we track ob-
jects not simply based on their class, but also in terms of the
call stack that was present when it was crested. Such an object
will typically bemapped to aparticular abstract entity through
the mechanism described above; the object is treated as be-
longing to that abstract entity and is represented through its
visualization (i.e., through its representation as a box).

The mapping possesses two important properties: itispar-
tial and it is ordered. The ordering means that each system
entity is mapped to a single abstract entity, the first one for
which the map entry is a valid match. The mapping is par-
tial because a software engineer does not need to express the
structure of the entire system before investigatingit. If asys
tem entity failsto match every entry in the map, itis not rep-
resented in the resulting visualization. This festure both de-
creases the overhead for the tool and removes unwanted in-
formation from the visualization. If the engineer wants every
dynamic entity to appear in the visudization, afinal entry in
the map of the form:

mat chi ngAnyt hi ng: ' *' mapTo: ’default’

will act asadefault abstract entity for all dynamic entitiesthat
“fal through” the other map entries.

4 EVALUATION

Threefundamental questionsthat must be answered about any
software visudization are:

¢ |s the technique useful to software engineers trying to
perform atask on a system?

¢ |sthetechnique usable by software engineers?

o For what kinds of software engineering tasksisthe visu-
alization helpful ?

Evaluating a technique against each of these questions re-
quires a number of careful, in-depth studies. These studies
arewarranted only after an initial determination of the coarse-
grained utility of atechnique. In this paper, we report on re-
sultsfrom our preliminary investigationsinto the utility of our
visualization technique.

In our preliminary investigations, we chose to fix the kind
of software engineering task studied to be performance tun-
ing. Thistask was chosen because it is heavily reliant on dy-
namic system information and because it tends to be dele-
gated to “expert” developers. A visualization technique that
can aid anon-expert devel oper in tackling performance prob-
lemswouldthushbe beneficia inincreasing the use of dynamic



system information by engineers, which was one of our initial
goals.

We also chose to focus on the usefulness of the technique,
rather thanitsusability. Thisdecisionwas reasonable because
the main features of the technique affecting its usability have
been investigated in other related domains. The iterative se-
lection of the high-level entities and designation of the map-
ping by the software, for instance, are also characteristic of
the software reflexion model approach from which this visu-
alization technique is derived. Users of the software reflex-
ion model approach have not had difficulties performing these
steps[10, 11].

Our preliminary studies, then, focus on investigating the
usefulness of the visudization. We report on two case stud-
ies. The first case study (Section 4.1) discusses the use of
the visualization technique by one of the authorsto determine
why a Smalltalk implementation of areverse engineering a-
gorithm [13] was running slower than expected. In this sce-
nario, we focus on the differences in information provided by
the visualization techni que compared to a profiler. In the sec-
ond case study (Section 4.2), we had both an expert and anon-
expert Smalltalk devel oper use the visualization to attempt to
discover the cause of a performance problem with the visu-
alization technique itself. We report on both qualitative and
guantitative data collected about the use of the visuaization.

4.1 Case Study #1

A hierarchical agglomerative reverse engineering agorithm
attempts to automatically cluster entities, such as procedures
inaC program, comprising asoftware system into subsystems
(modules) based on asimilarity function. One of the authors
wanted to determinewhy a Smalltalk implementation of apar-
ticular algorithm[13] executed significantly more slowly than
a C++ implementation.

Thealgorithmstartsby placing each procedureinaseparate
module. It then iteratively computes the similarity function
between each possible pair of modules; in each iteration, the
most similar pair of modulesis combined. The algorithmter-
minates when a specified number of modules areleft or when
no modules are similar enough to be combined.

The performance investigator had knowledge of the design
of each program, but had not implemented either program.
To examinethe performance of the Smalltalk implementation,
the investigator first used the IBM VisualAge for Smalltalk
execution profiler. With this tool, a user can either sample
or trace the execution of an application, and then view col-
lected statistics, such astheamount of execution timespent in
particular methods or the number of garbage collection scav-
enges. After perusing severa of these views, the investiga
tor determined about 16% of the execution time was spent
in methods of the Ar chCl ust eri ngAnal ysi s class that
contains the main iteration loop, 5.5% was spent in methods
of the Ar chCache classthat acts as a cache for already com-
puted similarity val ues, and 4.6% was spent i n computing new
similarity values. This result was not surprising. The infor-
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mation confirmed the investigator’ sunderstanding of how the
program works, but did not provide any hints as to whether
the performance could be enhanced.

The investigator next applied the visuaization tech-
niqgue, choosing a high-level model consisting of
four entities.  One entity, Clustering, represented the
Ar chd ust eri ngAnal ysi s class. Another, SimFunc,
represented the class that had methodsfor computing thesim-
ilarity function. A third, ModulesAndSuch, represented the
functions and modules whose similarity was to be compared,
and a fourth, Rest, represented all other classes comprising
the program. The mapping associated the appropriate classes
(and sub-applications) with these boxes. The investigator
collected trace information for the main iteration loop of the
program and then began interacting with the visualization.

Playing throughtheabstracted i nformation, theinvestigator
noted the large number of objects (over 4500) associated with
the SimFunc entity. The investigator viewed the summary
and queried it for the objects associated with SimFunc’s box.
The object list contained many Set and Met hodCont ext
objects (Figure 4). These results confirmed that the cost of
computing the similarity between two modules was high and
should be minimized. Returning to a “play” through the vi-
sualization, the investigator noted that the ratio of calls from
Clustering to Rest and from Rest to SimFunc was |ower than
expected. Prior investigation had shown that the mgjority of
the calls between Clustering and Rest were dueto callsonthe
Ar chCache object; calls from Rest to SimFunc represent
new computations of similarity.! Thisinsight led the investi-
gator to study the Ar chCache class. Theinvestigator found
that the“key” value used to store and access similarity values
in the cache was not causing as many hitsasit could. A dight
modification to the formation of keys resulted in an increase
of just over 25% in the speed of the program.

The visualization technique aided this performance-tuning
task by presenting information that caused the investigator to
ask, and answer, the “right” questions about the implementa-
tion. Insight into structural interactionsin the system hel ped
theinvestigator narrow in ontheagorithmicproblem. Thein-
vestigator made use of the both the interaction and object a-
location and deall ocationinformation, the summary view, and
the ability to play, and re-play, through the traced execution.

4.2 Case Study #2

In the second case study, the tool was used to investigate its
own performance problems; specifically, due to a structural
design flaw, it was faster to step forward than to step back-
ward in the visualization tool. Thisflaw centered on the fact
that theimplementor had chosen to generate cel sonthefly and
often used simplelinkedliststo hold the required information
for the arc annotations; as aresult, adding to these listsviathe
method

1A better design for the programwould havebeen to hidethe cachebehind
the Ar chSi nfFFunc interface.



addl nt eracti onsFrom t o: bet ween:
was fast, but removing from thelistsvia
removel nteracti onsFromt o: bet ween:

required a linear-order search through each list. The imple-
mentor of the tool had discovered thisflaw and informed the
experimenters of its existence and its cause.

To prepare for the studies, the experimenters gathered a
trace consisting of stepping forwards and backwards in the
visualizationtool.2 Aninitial high-level model and mapping
were also prepared for the participants as the short study peri-
ods were intended to focus on the visualization itsalf, rather
than the process of creating a visualization. The high-level
model was very simple, and can be seen in the visualization
shown in Figure 6; the classes used by thetool al had names
that began with a two- or three-letter prefix, and thus were
mapped to abstract entitieswith these prefixes as names.

In aseparate session each, aprevioudly collected trace was
given to two experimental participants. an expert at solv-
ing performance problems in Smalltalk applications, and a
non-expert in solving performance problemsin any language.
Each participant was given an introduction to the tool and a
short training session in which each had the opportunity to
use the tool on atoy problem. Then, the symptom of theflaw
in the tool was explained, and the parameters and interaction
that we had traced were described. Each was asked to deter-
mine three or fewer points of interest within the source code
for the tool that they saw as being good candidates for more
detailed analysis, they were al so asked to answer aset of ques-
tions periodically in regards to their perceptions of the tool
and progressin their task. We audio-taped these question and
answer sessions. We also captured automatically alog of the
participants’ navigation pattern through the visualization us-
ing instrumentation built into the prototype.

4.2.1 The Expert Participant

The expert participant began with a ten-minute inspection of
the summary view: the Gp box was seen to have the most
objects allocated, and most of these were immediately desl-
located. Querying the attendant Allocation Pattern histogram
showed that many of these obj ectswere of the classes Poi nt ,
Met hodCont ext , and Bl ockCont ext .

The animated view was then used, bothin step forward and
backward mode andin play mode, to examinetherange of cels
where many of these objectswere being allocated; arepetitive
call patternwas observed between the Gp and Cdf boxes. The
arcs and hyperarcs between these boxes were queried for de-
tails, and the methods involved in this pattern were found by
the participant. A separate code browser was then used to in-
vestigatethe detail scausing thisbehaviour. After studyingthe

2Thevisualizationtool hadto berun on adifferent, pre-existing execution
trace. A toy example was used for this purpose, but choice of input was not
afactor in the tool’s symptoms. The second participant actually received a
trace of only a step backwards.
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system for an hour, the participant decided that the likeliest
cause was in the methods

e renovel nteracti onsFromto: bet ween: ,and
e addl nteracti onsFromto: bet ween: .

The participant noted the similarity of codein thesetwo meth-
ods. This observation made sense because the fundamental
problem was due to the data structure. The participant was
thus able to indicate a useful point to continue the investiga
tion, as had been requested at the start of the study.

The expert participant liked two features of the tool in par-
ticular:

o the summary view, although the participant stated: “in
this case [the effect] was dightly obvious [in the sum-
mary view]—it may not be so obvious in other cases’;
and

the animation of the hyperarc resulting from pressing
“play”, because of the way one can watch “how things
gointoloopsor circlesor watch the communication back
and forth between different things, or specific things.”

The expert participant felt the tool lacked two desirable fea-
tures:

e integration between it and a traditional code browser,
so one could, for example, select a method in a pop-up
detail window and have the code browser display that
method; and

the lack of ability to view a detailed stack dump, com-
parableto that available from a Smalltalk debugger, par-
ticularly so that the parameter types being passed could
be seen (this cannot be seen from the static code because
Smalltalk isdynamically typed). Theactual valuesbeing
passed were deemed desired in some instances.

Code browser integration is a desired feature that has not
yet been implemented; the tool has been designed to accom-
modate this change. Thetool did allow the participant to nar-
row the search to particular points of interest that could then
be investigated via a debugger or similar means. The desire
for greater, integratedinformationfrom thetool isunderstand-
able, but runs contrary to its design philosophy of comple-
menting existing techniques—it is not intended to supercede
the use of adebugger. This desire also highlightsthe tension
between off-lineand on-lineapproachesto accessing dynamic
information.

4.2.2 The Non-Expert Participant

The non-expert participant made extensive use of both the ob-
ject histograms and the allocation/deall ocation bars in the de-
tailed view to investigate the performance problem. Specif-
ically, the participant would find cels in which object deal-
location was not keeping pace with object allocation (i.e.,
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Figure 6: Case study #2 visualization.

the green bar—shown herein via avertica -line pattern—was
longer than the red ba—shown herein via a diagona-line
pattern—within a box) and would then step forward to see
when objects were being allocated. Queries on the associated
histograms were then used to determine the classes of the al-
located objects. Less frequently, the participant would inves-
tigate the callsinvolved with the allocations.

For the first forty minutes, the participant worked solely
with the visuadization tool. After that, the participant be-
gan to use the Smalltalk code browsers to study the asso-
ciated code. After approximately an hour with the tool,
the participant had identified two methods, including the
renovel nt eract i onsFr ommethod, as a point in the
code at which to continue the investigation. This determina-
tion was based, in part, on noticing a correlation between an
increase in message sends between the Gp and Cg boxes and
the number of objectsalocated by Cg. Similar to the case of
the expert participant then, the non-expert found the correct
area of code to investigate, which was the task that had been
posed.

The non-expert found the deall ocation age histograms and
the ability to determine the correlation between abstract in-
formation to method and object names by clicking on his-
togramsand interactionsin thevisualization particul arly help-
ful. However, the non-expert indicated a desire for different
displays of thisinformation, finding the “screen with all the
methods [was] too cluttered.” Similar to the expert, the non-
expert desired more integration with other Smalltalk tools,
such asthe code browser. For instance, the participant wanted
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to be able to select a call from alist of interactionsand visit
that call sitein the code.

During an interview part of the way through the study pe-
riod, the participant noted that it was difficult to attack thetask
because of alack of knowledge of what could cause perfor-
mance problems. The visualization tool provided some clue
asto how to proceed because of itsemphasis on particular dy-
namic information. The applicability of thedynamicinforma-
tion chosen for other tasks requires further research.

5 DISCUSSION

Key features of our technique include off-line operation, a
navigable visualization of the collected data, cels based on
a running summary, and the use of a declarative mapping to
abstract fine-grained information about a system’s execution.
We discuss each of these features and our use of trace infor-
mation.

5.1 Off-line Operation

Using an on-linevisualization technique can be aslow, unidi-
rectiona procedure. Taking the technique off-line and sepa
rating thevisualization from the system execution can achieve
two benefits.

First, it alows the information to be preprocessed as a
whole prior to visualization, enabling the generation of sum-
mary information about the entire execution. For the perfor-
mance tuning tasks described in the case studies, summary in-
formation was used to provide clues about which parts of the



system to investigate as potentia sources of the problem. Af-
ter accessing summary information, the users returned to in-
vestigate detailed parts of the execution.

Second, it allowsany partial trace of an execution to bere-
viewed without having to re-run the entire execution. Thisre-
view capability permitsthe visualization to be navigablein a
way that is not possible for an on-line technique. Not only
may the trace be replayed from any arbitrary point, but also
it may be played backwards, or at arate that isindependent of
the speed of the origina execution of the system being stud-
ied.

5.2 Navigable Visualization

One advantage of an off-line visudization approach is the
navigation capability provided to the software engineer. The
user can unfold the executionin aforward, “play”, mode, but
then can perform detailed investigationsof particular parts of
the execution by moving the visuaization both forward and
backward. In our current prototype, we do not associate any
information about the actual execution time with the off-line
navigation. Each step forward or backward in our visualiza
tion takes time proportiona to the display time of the next cel,
rather than representing thelength of timerequired by an asso-
ciated method call, allocation or garbage collection. For some
tasks, including performance tuning, it would sometimes be
helpful to have steps between cels represent the system run-
ning time.

5.3 Running Summary

We believe that separately displaying individua events, or
small groups of contiguous events, makes for an insufficient
visualization of a system execution because of alack of con-
nection to the grester context of that execution. Some sort of
summary informationis also needed.

We considered two means of providing such summary in-
formation: asingle summary picture, such asthat in Figure 3,
and a set of pictures showing the change to the state of the
system over individua intervals of its execution (“delta’ in-
formation), which is not provided by our tool. But neither
alone would be sufficient to illustrate the dynamic nature of
the information we are attempting to visualize. The sum-
mary picture clearly does not contain any tempora ordering
of events—it is difficult to look a one and mentally recon-
struct the sequence of events that produced it. Furthermore,
thissummary alone cannot contain enough detail about the ex-
ecution to be useful without becoming so cluttered that it is
rendered unusable. Deltapicturesaddressthe concern of visu-
alization of the tempora nature of the information; however,
it is difficult to understand the relationship between a delta
picture and the execution in toto. To reach a compromise be-
tween these alternatives, we chose to provide a running sum-
mary of the execution within the individua cels. Thisim-
plicitly providesthe temporal component of the summary in-
formation while maintaining context for the deltainformation
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withinacd.

Two other dternativesto maintain context are possible. In
the first, we could begin with a summary view such as that
provided by our tool. But rather than being a single, static
picture, it could also be divided into a sequence of cels each
of which would show the same summary information while
highlightingin adifferent colour, say, theinformationthat was
changed or added over therepresented interval, such asthedi-
rected arcs that were traversed, or the subset of objects that
were dedllocated. The second aternative is similar, but in-
stead of highlighting only theinformation that is different for
that interval, a running summary of al the information that
had changed from the start of execution of the system to the
current interval would be highlighted. Both can suffer from
the fact that a complete summary view can quickly become
too detailed, leading to information overload. However, both
these schemes could be used to complement the delta plus
running-summary combination currently used in our cels; we
have not yet investigated this possibility.

5.4 Mapping Objects

Each cel maps objectsto abstraction units. Associating an ob-
ject with an abstraction unit using our decl arative mapping ap-
proach requires a means of “naming” objects. We chose to
name—more precisely, identify—an object based on whereit
is created in the code: a software engineer identifies objects
mapping to a particular abstraction unit by describing a part
of the call stack that existswhen one of the objectsis created.
This approach has the advantage that an engineer can identify
collectionsof objectsby perusing the source code and describ-
ing the locations where relevant alocations occur. Another
possi bl e choi ce would be to name objects based on their class.
However, thisapproach to naming would not allow objects of
the same class to be mapped to different abstraction units, lim-
iting the ability of the engineer to differentiate distinct uses of
classes.

Currently, the mapping provided by the engineer isapplied
uniformly to all dynamic information collected as the system
executes. A ramification of this decision isthat once an ob-
ject is associated with an abstraction unit, it remains associ-
ated with that unit for the duration of the visualization. Some-
times, though, it may be useful to modify the association of
objects to abstraction units over the course of the execution.
For instance, if an object is created in one subsystem, but is
then immediately passed as an argument to another subsys-
tem, it may be useful to capture the “migration” of the object.
Supporting this migration would require not only a means to
alow the engineer to describe when and how the migration
would occur, but aso would require updates to the use of his-
togramsfor object alocationand deallocation. Further under-
standing of how this capability might help in the performance
of tasksisrequired before support is added.



5.5 Dynamic Information

Our current prototype visualizes trace information collected
about a system’s execution. Trace information has the ben-
efit that it is complete: al object interactions, alocations,
and deallocations are included in the trace. Complete infor-
mation is easy for the engineer to reason about. However,
trace information has the often cited problem of being volu-
minous[9, 2, 8]. Tracing even small pieces of asystem’'s exe-
cutioncan resultin ahugeamountsof data. Althoughwe have
been able to successfully use trace data to investigate some
performance problems, the use of traceinformationlimitsthe
flexibility and usability of our current prototype. We plan to
investigate the use of sampled information as a basis for our
prototypeto overcome some of these limitations.

6 RELATED WORK

De Pauw et al. have devel oped a number of visualizationsto
describe the execution of an object-oriented system, includ-
ing inter-class call cluster diagrams, inter-class call matrices,
a histogram of instances, and an alocation matrix [1]. All
of these visualizations show fine-grained execution informa-
tion about individual classes and objects. The utility of these
visualizations degrades as the size, measured in the number
of classes, of a system grows. Severa other similar object-
and class-level visudization approaches have been devel oped
(e.g., [6, 5]); these techniques share the same scal ability prob-
lem.

Lange and Nakamura in the Program Explorer tool allow
the developer to integrate, off-line, static and dynamic infor-
mation about aprogram to aid comprehension activities[7, 8].
For instance, they show how this combination of information
can help a developer find and investigate instances of design
patternsin asystem. The visualizationsthey produce are also
a afine-grained level. Vlissides et al. use a different notion
of pattern, which they refer to as execution patterns, to help
developers investigate the large amount of fine-grained exe-
cution information available about asystem [3]. Specificaly,
they alow adeveloper to query an on-line animation for pat-
terns appearing in a dynamic execution stream. In both the
Program Explorer and execution pattern approaches, the de-
vel oper must apply detailed knowledge about a system to for-
mul ate appropriate queries.

Jerding et al. have applied the information mural approach
to create a scalable visudization of fine-grained program
events [4]. The result, an execution mural, places classes
vertically on the screen and uses single pixel vertica bars,
with various colouring approaches, to indicate calls between
classes. The interactions occurring in the system are then
shown across the screen. Using this approach, thousands of
interactions occurring between objects can be visuaized on
one screen. The authors extend these ideas to a Pattern Mu-
ral that provides an information mural display of automati-
cally detected common occurring sequences of calls (patterns)
in the execution. Although this approach may help a devel-
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oper find unexpected patterns, or verify existing patternsinthe
code, it still visualizesonly fine-grained information about the
system.

The approach taken by Sefikaet al. differsin alowingade-
veloper to utilize coarse-grained system information to pro-
duce visualizations [14]. Using their technique, a developer
may introduce various abstractionsinto the system instrumen-
tation process, including subsystem, framework and pattern-
level abstractions. The abstractions can then be used as a ba
sisfor severa visualizationsincluding affinity and ternary dia-
grams. The coarser-grained visualizations produced with this
technique make it easier for devel opers to investigate inter-
component interactions in large systems than previous ap-
proaches.

Some of the design decisions Sefika et al. made in devel-
oping their techniquelimit itsflexibility. Choosing an on-line
approach permits a link between the speed shown in the vi-
sualization and the execution speed. However, as we have
discussed, an on-line approach limits the modes of investi-
gation available to an engineer. Choosing an approach that
hard-wiresthe abstractionsof interest intotheinstrumentation
process providesan effective datagathering mechanism; how-
ever, it decreases the usability of the technique by making it
more difficult for an engineer to apply it to anew system. We
have been ableto easily apply our technique to different sys-
tems because of the separation in our process between data
gathering and visualization.

Our visualizationtechnique buildson the softwarereflexion
model technique developed by Murphy et al. [12, 10]. There-
flexion mode technique helps an engineer access both static
and dynamic information about a system by enabling a com-
parison between a posited high-level model and a model rep-
resentinginformationextracted fromeither thestatic sourceor
from a system’s execution. Similar to our visualization tech-
nique, the software reflexion model depends on a declarative
mapping language. Our visualization technique extends the
reflexion model work in three fundamental ways: by applying
the abstraction approach across discrete intervals of the exe-
cution with animation controls, by providing support to map
dynamic entitiesrather than only static entities, and by map-
ping memory aspects of an execution in addition to interac-
tions. Our visualization technique & so uses the running sum-
mary model rather than the complete summary model used in
the reflexion model approach.

7 SUMMARY AND FUTURE WORK

Condensing dynamic information collected during asystem’s
execution in terms of abstractions that represent coarse sys-
tem structure, such as frameworks and subsystems, can help
software engineersinvestigate the behaviour of a system. We
have developed a visualization technique that allows engi-
neers to flexibly define the coarse structure of interest, and to
flexibly navigate through the resulting abstracted views of the
system’s execution. Our approach complements and extends
existing visualization techniques.



Our preliminary investigationsinto the usefulness and us-
ability of the visualization indicate it shows promise for en-
hancing asoftware engineer’ sability to utilize dynamicinfor-
mation when performing tasks on a system. To date, we have
focused on the use of dynamic information to aid one partic-
ular software engineering task—performance tuning. We in-
tend to continue our investigationsinto the utility of the en-
tire technique through more extensive case studies on awider
range of tasks on larger systems. Although thereis evidence
elsewhere [10, 11] that the iterative mapping approach is us-
ablefor static information, our further studieswill investigate
if thisremains true for dynamic information.
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