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ABSTRACT

Dynamic information collected as a software system executes
can help software engineers perform some tasks on a system
more effectively. To interpret the sizable amount of data gen-
erated from a system’s execution, engineers require tool sup-
port. We have developed an off-line, flexible approach for vi-
sualizing the operation of an object-oriented system at the ar-
chitectural level. This approach complements and extends ex-
isting profilingand visualization approaches available to engi-
neers attempting to utilize dynamic information. In this paper,
we describe the technique and discuss preliminary qualitative
studies into its usefulness and usability. These studies were
undertaken in the context of performance tuning tasks.
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1 INTRODUCTION

Effective performance of many software engineering tasks re-
quires knowledge of how the system works. Gaining the de-
sired knowledge by studying or statically analyzing the source
code can be difficult. Static analysis, for instance, can help
a software engineer determine if two classes can interact, but
it does not help the engineer determine how many objects of
a class might exist at run-time, nor how many method calls
might occur between particular objects. Determining answers
to these questions requires an investigation of dynamic in-
formation collected as the software system executes. This
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dynamic information helps bridge “the dichotomy between
the code structure as hierarchies of classes and the execution
structure as networks of objects” [1, p. 326].

Software engineers require tool support to effectively ac-
cess and interpret dynamic system information, because the
quantity, level of detail and complex structure of this infor-
mation would otherwise be overwhelming. In creating a tool
to help an engineer access this information, two goals must
be paramount: the tool must be usable and it must be useful
for the task it is designed to address. Usability is defined in
terms of practicality and simplicity of interface; usefulness is
defined in terms of easing the performance or completion of
a task of importance, especially in comparison to alternative
methods.

Many tools have been developed to provide engineers ac-
cess to dynamic information. Profilers, for instance, provide
numerical summaries of dynamic information, such as the
length of time spent executing a method. This information
can be helpful when trying to tackle some system performance
problems. Other tasks, however, such as verifying that objects
are interacting appropriately according to defined roles [6],
require additional structural information. The usefulness of
profilers for these types of task degrades because the relevant
dynamic information is not evident from a summary numeric
value produced on a per method or per class basis.

When structural dynamic information is needed, an engi-
neer may attempt to use an object-level visualizer (e.g., [1, 6,
7]). These visualizers provide such displays as the interac-
tions between objects (or classes) and the number of objects
created of each class. When the task requires views involving
many classes in a large system, the usability of these tools de-
grades, as they tend to display complex interactions between
multiple objects in a haze of extraneous, overlain information.

In part to overcome this complexity problem, Sefika
et al. introduced an architectural-oriented visualization ap-
proach [14] that allows an engineer to investigate the oper-
ation of the system at both coarse- and fine-grained levels.
Some of the design choices made in their approach limit its
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applicability. Their approach is on-line, limiting its useful-
ness for some kinds of tasks. Their approach requires hard-
wired instrument classes to be attached to the system, limiting
its flexibility and reducing its usability.

We have developed an off-line, flexible approach for visu-
alizing the operation of an object-oriented system at an archi-
tectural level. Our approach abstracts two fundamental pieces
of dynamic information: the number of objects involved in the
execution, and the interactions between the objects. We visu-
alize these two pieces of information in terms of a high-level
view of the system that is selected by the engineer as useful
for the task being performed.

To represent the informationcollected across a system’s ex-
ecution, we use a sequence of cels. Each cel displays ab-
stracted dynamic information representing both a particular
point in the system’s execution, and the history of the execu-
tion to that point. The integration of “current” and “histori-
cal” information is intended to ease the interpretation of the
display by the engineer. Using our prototype, a software en-
gineer can navigate both forwards and backwards through the
cels comprising views on the execution.

Our approach complements and extends existing ap-
proaches to accessing dynamic system information. Our
approach

� allows an unfamiliar system to be studied without alter-
ation of source code,

� permits lightweight changes to the abstraction used for
condensing the dynamic information,

� supplies a visualization independent of the speed of exe-
cution of the system being studied, and

� allows a user to investigate the abstracted information in
a detailed manner by supporting both forwards and back-
wards navigation across the visualizations.

To investigate the usefulness and usability of the approach,
we have performed preliminary, qualitative studies of the use
of the technique to aid performance-tuning tasks on Smalltalk
programs. These studies show that the technique can help
software engineers make better use of dynamic system infor-
mation when performing tasks such as performance enhance-
ment.

We begin in Section 2 by describing our visualization tech-
nique; Section 3 discusses the creation of a visualization. In
Section 4, we discuss our initial evaluation efforts intended to
assess the usability and usefulness of the approach. In Sec-
tion 5, we consider the design choices we made in our vi-
sualization technique. Section 6 describes related work and
Section 7 concludes with a description of directions for future
work.

2 VISUALIZATION TECHNIQUE

Our visualization technique abstracts information that has
been previously collected during a system’s execution and

uses concepts from the field of computer animation to display
that information to a user. We begin the description of our
technique by focusing on the visualization itself, and then de-
scribe how a software engineer can construct such a visualiza-
tion.

Figures 1 through4 show different views withina visualiza-
tion produced during one of our case studies that was inves-
tigating a performance problem in a reverse engineering pro-
gram (Section 4.1). The two windows in Figures 1 and 2 each
provide one view—a cel showing events that occurred within
a particular interval of the system’s execution, defined as a set
of n events wheren is adjustable. The view in Figure 3 shows
a summary view of all events occurring in the trace, and Fig-
ure 4 gives a detailed, textual view of some of the information
within the summary view. Sections 2.1, 2.2, and 2.3 describe
these views in more detail. Full details of the runningexample
we use are provided in Section 4.1.

Our prototype permits a software engineer to easily switch
from a particular cel to the summary view. A user may also
move through the sequence of cels sequentially or via random
access; animation controls, such as play, stop, step forward
and step backward, allow a user to review the execution trace
and pause or return to points of interest. We discuss the navi-
gation capabilities of our visualization in Section 2.3.

2.1 Cels

A cel consists of a canvas upon which are drawn a set of wid-
gets. These widgets consist of:

� boxes, each representing a set of objects abstracted
within the high-level model (Section 3.2) defined by the
engineer,

� a directed hyperarc between and through some of the
boxes,

� a set of directed arcs between pairs of boxes, each of
which indicates that a method on an object in the desti-
nation box has been invoked from a method on an object
in the source box,

� a bar-chart style of histogram associated with each box,
indicating the ages of and garbage collection information
about the objects associated with that box,

� annotations and bars within each box, and

� annotations associated with each directed arc.

Each box drawn identically within each cel represents a
particular abstract entity specified by the engineer, and thus,
does not change through the animation. The grey rectangles
in Figures 1 through 3 labelled Clustering, SimFunc, Module-
sAndSuch, and Rest are boxes corresponding to abstract enti-
ties of the same names. Two of these entities, Clustering and
SimFunc, each correspond to a class in the reverse engineer-
ing tool source; the other two entities represent collections of
classes.

272



ModulesAndSuch

Stop SummaryStep >>Play<< Step Stop

�������� ���
���
���
���

��
��
��
��
��

��
��
��
��
��

����

�������
�������
�������

�������
�������
�������

�����
�����
�����

�����
�����
�����

�
�
�

�
�
�

��
��
��
��

��
��
��
��

����

Options

�
�
�
�

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Data Visualization

1127

1037 3916

4347

636

476

0

0

123

122

Cel#: 13
Stack: Clustering - Rest

SimFuncClustering

Rest

SimFunc

ModulesAndSuch
Rest

Clustering

��
��
��
��

��
��
��
��

Figure 1: A window showing an example cel in the visualization technique.
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Figure 2: A window showing the next cel after that in Figure 1 for the same system and execution trace.
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Figure 3: A window showing the Summary View for the same system and execution trace as shown in Figures 1 and 2.
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Figure 4: A pop-up window produced by clicking on the Al-
location Pattern histogram for the Clustering entity of Fig-
ure 3.

The path of the hyperarc represents the call stack at the end
of the current interval being displayed. In Figure 1, the cur-
rent call stack only travels between the Clustering and Rest
boxes—the hyperarc is marked in red (shown as a dashed
black line herein); in Figure 2, the call stack has extended to
SimFunc as well.

The set of directed arcs represents the total set of calls be-
tween boxes up to the current interval; they are displayed in
blue (shown as solid black herein). Because the total number

of pairs of boxes is manageable, this set does not obscure the
rest of the cel significantly. Multiple instances of interaction
between two boxes are shown as a number annotating the di-
rected arc. The same two arcs are shown in Figures 1 and 2
from Clustering to Rest, with 123 calls, and from Rest to Sim-
Func, with 122 calls.

Object creation, age, and destruction are a particular focus
within the visualization. Each box is annotated with numbers
and bars indicating the total number of objects that map to the
box that have been allocated and deallocated until the current
interval. The length of a bar for a given box is proportional to
the maximum number of objects represented by that box over
the course of the visualization. The Clustering box of Figure 1
shows that a total of 1127 objects associated with it had been
created to this point in the execution, and that 1037 of these
had been garbage collected.

The histogram associated with each box shows this infor-
mation as well, but in a more refined form. An object that
was created in the interval being displayed has survived for
a single interval; stepping ahead one cel, if it still exists, the
object has survived for two intervals, and so on. The kth bin
of the histogram shows the total number of objects mapped to
the box that are of age k; to limit the number of bins in the
histogram, any objects older than some threshold age T are
shown in the rightmost bin of the histogram. The histogram
attached to the Clustering box in Figure 1 indicates that all of
its 1127 objects were created relatively far in the past, more
than 10 intervals before the one being shown here.
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Colour is used to differentiate those objects that still ex-
ist from those that have been garbage collected; each bar of
the histogram is divided into a lower, green part (marked in a
vertical-line pattern herein) for the living objects and an up-
per, red part (marked in a diagonal-line pattern herein) for the
deleted objects. In Figure 1, the upper part of the bar in Clus-
tering’s histogram shows that roughly 80% of the old objects
have been deallocated. Yellow (shown as light grey herein) is
used both within the box annotations and within histograms to
indicate a change that just occurred during the interval. More
specifically, it is used to show objects that have just been cre-
ated or deleted. In Figure 2, which shows the interval immedi-
ately after that of Figure 1, an additional 324 objects had just
been allocated that were related to Clustering. This allocation
is shown both by the yellow (light grey) portion of the upper
bar, and the yellow (light grey) bar in the first bin of the his-
togram.

No complex graph layout algorithms are currently used to
produce the views. The drawing package used in the proto-
type supports interactive rearrangement of the widgets by its
user.

Each cel is intended to represent a combination of informa-
tion not present in its predecessor (in terms of the original ex-
ecution) and a summary-to-date of the information in its pre-
decessors and itself. The new information is difficult to inter-
pret in isolation; the context provided by the summary-to-date
eases this interpretation. See Section 5.3 for further discus-
sion.

2.2 Summary View

In addition to the individual cels, a summary view is provided
to display the overall execution of the system being studied.
This view shows the same boxes, directed arcs, arc annota-
tions, and box annotations as the final cel of the animated
view. In addition, it displays two histograms per box; these
are different from the histograms in the animated view. One,
the allocation pattern, shows the entire execution trace di-
vided into a set of ten equal-length intervals; if the trace con-
sists of 10n events then each interval consists of n contiguous
events. The height of each bar represents the number of ob-
jects allocated in that interval that map to that box. The other
histogram, the deallocation age, shows the age of every ob-
ject associated with the box when the object was garbage col-
lected; if an object had not been garbage collected when trac-
ing ended, it is displayed in the rightmost bar. For example
in Figure 3, Clustering’s deallocation-age histogram shows
that most of its objects were deallocated at a very young age
while the rest still existed when tracing stopped—this is the
case for all of the boxes in this example except ModulesAnd-
Such, whose associated objects were always deallocated at a
young age. Clustering’s allocation pattern is fairly uniform,
showing only a slight increase in allocations halfway through
execution; on the other hand, SimFunc stopped allocating ob-
jects after the halfway point.

2.3 Navigating the Visualization

There are three forms of interaction with the visualization:
view selection, animation control, and detail querying.

View selection simply entails choosing between a sum-
mary view, or the detailed, cel-based view. It would be rea-
sonable to allow multiple, simultaneous views, both summary
and cel-based, but this is not provided by the current imple-
mentation. However, the off-line nature of this technique
(Section 3.1) allows multiple instances of the tool to be run
simultaneously.

Animation control is provided by several buttons, a slider,
and the textual entry of particular values. The buttons are Step
Backwards and Forwards (by step-size number of cels), Play,
and Stop. The slider is used for random access to a cel in a
drag-and-drop fashion.

Textual entry is used to specify step- and interval sizes, and
animation speed; altering the step size allows the engineer
to move through the animation more quickly by not showing
some cels—this allows the animation to proceed more quickly
when the redisplay rate of the graphics software and hardware
is slower than the desired rate of animation.

By default, an interval ends upon an event that caused a
frame to be added or removed from the execution stack; these
events include making or returning from a method call, and
generally, each object allocation or deallocation. This gran-
ularity is generally too fine to be usable—with tens of thou-
sands of method calls occurring and similar numbers of ob-
jects being created and destroyed, not much changes between
two adjacent cels, and histograms tend to have empty bins ex-
cept for the rightmost. Therefore, we allow the engineer to re-
set the interval size; a size of ten, for example, indicates that
each cel should represent the changes to the system produced
by ten events.

Detail querying allows the engineer to connect observa-
tions made via the abstract visualization to the actual classes,
object allocations and deallocations, and method calls that are
being abstracted. This is done by clicking on the appropriate
widget for which details are sought. Arcs, hyperarcs, and his-
tograms can be clicked on in this way; all cause a textual dia-
log window to pop-up (Figure 4).

This pop-up window contains a list of the dynamic entities
that were associated with the widget of interest. For exam-
ple, the pop-up for an arc contains a list of all the calls be-
tween the boxes connected by that arc; the pop-up for the al-
location/deallocation histogram of the animated view gives a
list of the objects that mapped to that box, when they were
created, how old they were when garbage collected, and what
method caused them to be created. Selection of an entry
within these pop-up windows could be used to automatically
position the view in a textual code browser in a future version
of the tool.
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3 CONSTRUCTING THE VISUALIZATION

A software engineer employs a four-stage process when using
our visualization technique (Figure 5).

1. Data is collected from the execution of the system being
studied, and is stored to disk.

2. The software engineer designs a high-level model of the
system as a set of abstract entities that are selected to in-
vestigate the structural aspects of interest. For example,
in Figure 5, “utilities” and “database” are specified as en-
tities.

3. The engineer describes a mapping between the raw dy-
namic information collected and the abstract entities.
Figure 5, for instance, shows that any dynamic informa-
tion whose identifier begins with “foo” (such as objects
whose class name starts with “foo”) is to be mapped to
the “utilities” entity. This mapping is applied to the raw
information collected by the tool, producing an abstract
visualization of the dynamic data.

4. The software engineer interacts with the visualization,
and interprets it to investigate the dynamic behaviour of
the system.

The process is deliberately divided into multiple stages to
increase its usability. Rather than having to complete the en-
tire process every time any change is required for the task
of discovery, iteration can occur over any suffix of the pro-
cess. For example, the software engineer might begin with
any extremely coarse view of the program, knowing very lit-
tle about its performance; after interacting with the resulting
visualization and gaining a partial understanding of the stud-
ied system’s operation, the software engineer need only alter
the high-level model and corresponding mapping to generate
a new visualization—there is no need to re-collect the identi-
cal dynamic information.

This process is based on the work of Murphy et al. [12]. We
compare our visualization technique to this previous work in
Section 6.

3.1 Stage 1: Gathering Dynamic Information

Dynamic system information is collected for every method
call, object creation, and object deletion performed by the sys-
tem being investigated. In other words, trace information is
collected. This information currently consists of an ordered
list of:

� the class of the object calling the method or having the
object created, and

� the class of the object and method being called or return-
ing from, or the class of object being created or deleted.

Since the tool currently uses complete trace information, the
complete call stack for any given moment can be recon-
structed.
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Figure 5: The process.

Because our implementation is in Smalltalk, this informa-
tion is collected by instrumenting the Smalltalk virtual ma-
chine (VM) to log these events as they occur. There is nothing
inherent in the tool in its use of Smalltalk; it could be as eas-
ily implemented in any language in which the execution was
instrumented to collect the required information.

Because a software engineer often needs to understand dy-
namic problems that only occur after significant initialization
of the studied system, the collection of the trace information
needs to be performed only during portions of the execution.
This eliminates extraneous information not of interest, and
speeds up the process of collection. In our implementation,
VM methods are available to dynamically activate and deac-
tivate tracing. We used these methods to collect data for Fig-
ures 1 through 4 that included only the main iteration loop of
the algorithm, excluding execution pertaining to initialization
and the output of results.

3.2 Stage 2: Choosing a High-level View

The software engineer typically begins an investigation with
some idea of the static structure of the system being studied.
Even when this is not the case, the naming conventions and
organization of the source code itself often allow some guess
as to the system’s structure.

The engineer chooses a high-level structural view to use as
the basis for visualization by stating the names of the abstract
entities. These entities may correspond to actual system com-
ponents, be aggregates or subdivisions thereof, or have little
connection to reality. In Figures 1 through 4, for instance, the
investigator chose two entities representing specific classes in
the program (Clustering and SimFunc), and two entities rep-
resenting collections of classes (Rest and ModulesAndSuch).
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3.3 Stage 3: Specifying a Mapping

For the tool to indicate the dynamic interactions between the
abstract entities, it needs to have a map relating dynamic sys-
tem entities to the abstract ones. A map indicates that specific
system entities, such as objects of a given class or methods
matching a particular pattern, are to be represented by a spe-
cific abstract entity (and thus, by a box in the visualization).
An engineer states this mapping using a declarative mapping
language. To be usable, a mapping language must allow an
engineer to easily express the relationships between entities.

The mapping language’s constructs are based on the stan-
dard Smalltalk notion of structural hierarchy: methods are
grouped into classes, classes into categories, categories into
subapplications, and subapplications into applications. A map
consists of an ordered set of entries, each of which has three
parts:

1. a name indicating the level of the Smalltalk structural hi-
erarchy being mapped,

2. a regular expression indicating the set of names to
map for the particular structural hierarchy level being
mapped, and

3. the name of the abstract entity to which these dynamic
system entities are to be mapped.

Methods are provided for mapping a class regular ex-
pression plus method regular expression simultaneously, and
subapplication, class, category, and method simultaneously.
For example, say the engineer has defined an abstract entity
named foo, and every message foo passed to classes named
*bar* within the subapplications dog* should be mapped
there; this would be indicated by a map entry:

matchingSubApplication: ’dog*’
class: ’*bar*’ category: ’*’
method: ’foo’ mapTo: ’foo’.

The example in Figures 1 through 4 used the following map:

matchingClass: ’ArchClusteringAnalysis’
mapTo: ’Clustering’

matchingClass: ’ArchModuleGroup’
mapTo: ’ModulesAndSuch’

matchingClass: ’ArchProcedure’
mapTo: ’ModulesAndSuch’

matchingClass: ’ArchSymbol’
mapTo: ’ModulesAndSuch’

matchingClass: ’ArchSimFunc’
mapTo: ’SimFunc’

matchingSubApplication: ’Schwanke*’
mapTo: ’Rest’

Because we are interested in visualizing the interactions
between system components, the tool takes note both of the
method being called and the method being executed when
it was called. The same set of map entries is used to map
both; the visualization itself will differentiate between incom-
ing and outgoing calls.

Individual objects are also mapped in this way. Because it
is often important where an object was created, we track ob-
jects not simply based on their class, but also in terms of the
call stack that was present when it was created. Such an object
will typically be mapped to a particular abstract entity through
the mechanism described above; the object is treated as be-
longing to that abstract entity and is represented through its
visualization (i.e., through its representation as a box).

The mapping possesses two important properties: it is par-
tial and it is ordered. The ordering means that each system
entity is mapped to a single abstract entity, the first one for
which the map entry is a valid match. The mapping is par-
tial because a software engineer does not need to express the
structure of the entire system before investigating it. If a sys-
tem entity fails to match every entry in the map, it is not rep-
resented in the resulting visualization. This feature both de-
creases the overhead for the tool and removes unwanted in-
formation from the visualization. If the engineer wants every
dynamic entity to appear in the visualization, a final entry in
the map of the form:

matchingAnything: ’*’ mapTo: ’default’

will act as a default abstract entity for all dynamic entities that
“fall through” the other map entries.

4 EVALUATION

Three fundamental questions that must be answered about any
software visualization are:

� Is the technique useful to software engineers trying to
perform a task on a system?

� Is the technique usable by software engineers?

� For what kinds of software engineering tasks is the visu-
alization helpful?

Evaluating a technique against each of these questions re-
quires a number of careful, in-depth studies. These studies
are warranted only after an initial determination of the coarse-
grained utility of a technique. In this paper, we report on re-
sults from our preliminary investigations into the utilityof our
visualization technique.

In our preliminary investigations, we chose to fix the kind
of software engineering task studied to be performance tun-
ing. This task was chosen because it is heavily reliant on dy-
namic system information and because it tends to be dele-
gated to “expert” developers. A visualization technique that
can aid a non-expert developer in tackling performance prob-
lems would thus be beneficial in increasing the use of dynamic
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system information by engineers, which was one of our initial
goals.

We also chose to focus on the usefulness of the technique,
rather than its usability. This decision was reasonable because
the main features of the technique affecting its usability have
been investigated in other related domains. The iterative se-
lection of the high-level entities and designation of the map-
ping by the software, for instance, are also characteristic of
the software reflexion model approach from which this visu-
alization technique is derived. Users of the software reflex-
ion model approach have not had difficulties performing these
steps [10, 11].

Our preliminary studies, then, focus on investigating the
usefulness of the visualization. We report on two case stud-
ies. The first case study (Section 4.1) discusses the use of
the visualization technique by one of the authors to determine
why a Smalltalk implementation of a reverse engineering al-
gorithm [13] was running slower than expected. In this sce-
nario, we focus on the differences in information provided by
the visualization technique compared to a profiler. In the sec-
ond case study (Section 4.2), we had both an expert and a non-
expert Smalltalk developer use the visualization to attempt to
discover the cause of a performance problem with the visu-
alization technique itself. We report on both qualitative and
quantitative data collected about the use of the visualization.

4.1 Case Study #1

A hierarchical agglomerative reverse engineering algorithm
attempts to automatically cluster entities, such as procedures
in a C program, comprising a software system into subsystems
(modules) based on a similarity function. One of the authors
wanted to determine why a Smalltalk implementation of a par-
ticular algorithm [13] executed significantly more slowly than
a C++ implementation.

The algorithm starts by placing each procedure in a separate
module. It then iteratively computes the similarity function
between each possible pair of modules; in each iteration, the
most similar pair of modules is combined. The algorithm ter-
minates when a specified number of modules are left or when
no modules are similar enough to be combined.

The performance investigator had knowledge of the design
of each program, but had not implemented either program.
To examine the performance of the Smalltalk implementation,
the investigator first used the IBM VisualAge for Smalltalk
execution profiler. With this tool, a user can either sample
or trace the execution of an application, and then view col-
lected statistics, such as the amount of execution time spent in
particular methods or the number of garbage collection scav-
enges. After perusing several of these views, the investiga-
tor determined about 16% of the execution time was spent
in methods of the ArchClusteringAnalysis class that
contains the main iteration loop, 5.5% was spent in methods
of theArchCache class that acts as a cache for already com-
puted similarityvalues, and 4.6% was spent in computing new
similarity values. This result was not surprising. The infor-

mation confirmed the investigator’s understanding of how the
program works, but did not provide any hints as to whether
the performance could be enhanced.

The investigator next applied the visualization tech-
nique, choosing a high-level model consisting of
four entities. One entity, Clustering, represented the
ArchClusteringAnalysis class. Another, SimFunc,
represented the class that had methods for computing the sim-
ilarity function. A third, ModulesAndSuch, represented the
functions and modules whose similarity was to be compared,
and a fourth, Rest, represented all other classes comprising
the program. The mapping associated the appropriate classes
(and sub-applications) with these boxes. The investigator
collected trace information for the main iteration loop of the
program and then began interacting with the visualization.

Playing through the abstracted information, the investigator
noted the large number of objects (over 4500) associated with
the SimFunc entity. The investigator viewed the summary
and queried it for the objects associated with SimFunc’s box.
The object list contained many Set and MethodContext
objects (Figure 4). These results confirmed that the cost of
computing the similarity between two modules was high and
should be minimized. Returning to a “play” through the vi-
sualization, the investigator noted that the ratio of calls from
Clustering to Rest and from Rest to SimFunc was lower than
expected. Prior investigation had shown that the majority of
the calls between Clustering and Rest were due to calls on the
ArchCache object; calls from Rest to SimFunc represent
new computations of similarity.1 This insight led the investi-
gator to study the ArchCache class. The investigator found
that the “key” value used to store and access similarity values
in the cache was not causing as many hits as it could. A slight
modification to the formation of keys resulted in an increase
of just over 25% in the speed of the program.

The visualization technique aided this performance-tuning
task by presenting information that caused the investigator to
ask, and answer, the “right” questions about the implementa-
tion. Insight into structural interactions in the system helped
the investigator narrow in on the algorithmic problem. The in-
vestigator made use of the both the interaction and object al-
location and deallocation information, the summary view, and
the ability to play, and re-play, through the traced execution.

4.2 Case Study #2

In the second case study, the tool was used to investigate its
own performance problems; specifically, due to a structural
design flaw, it was faster to step forward than to step back-
ward in the visualization tool. This flaw centered on the fact
that the implementor had chosen to generate cels on the fly and
often used simple linked lists to hold the required information
for the arc annotations; as a result, adding to these lists via the
method

1A better design for the program would have been to hide the cache behind
the ArchSimFunc interface.
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addInteractionsFrom:to:between:

was fast, but removing from the lists via

removeInteractionsFrom:to:between:

required a linear-order search through each list. The imple-
mentor of the tool had discovered this flaw and informed the
experimenters of its existence and its cause.

To prepare for the studies, the experimenters gathered a
trace consisting of stepping forwards and backwards in the
visualization tool.2 An initial high-level model and mapping
were also prepared for the participants as the short study peri-
ods were intended to focus on the visualization itself, rather
than the process of creating a visualization. The high-level
model was very simple, and can be seen in the visualization
shown in Figure 6; the classes used by the tool all had names
that began with a two- or three-letter prefix, and thus were
mapped to abstract entities with these prefixes as names.

In a separate session each, a previously collected trace was
given to two experimental participants: an expert at solv-
ing performance problems in Smalltalk applications, and a
non-expert in solving performance problems in any language.
Each participant was given an introduction to the tool and a
short training session in which each had the opportunity to
use the tool on a toy problem. Then, the symptom of the flaw
in the tool was explained, and the parameters and interaction
that we had traced were described. Each was asked to deter-
mine three or fewer points of interest within the source code
for the tool that they saw as being good candidates for more
detailed analysis; they were also asked to answer a set of ques-
tions periodically in regards to their perceptions of the tool
and progress in their task. We audio-taped these question and
answer sessions. We also captured automatically a log of the
participants’ navigation pattern through the visualization us-
ing instrumentation built into the prototype.

4.2.1 The Expert Participant

The expert participant began with a ten-minute inspection of
the summary view: the Gp box was seen to have the most
objects allocated, and most of these were immediately deal-
located. Querying the attendant Allocation Pattern histogram
showed that many of these objects were of the classes Point,
MethodContext, and BlockContext.

The animated view was then used, both in step forward and
backward mode and in play mode, to examine the range of cels
where many of these objects were being allocated; a repetitive
call pattern was observed between the Gp and Cdf boxes. The
arcs and hyperarcs between these boxes were queried for de-
tails, and the methods involved in this pattern were found by
the participant. A separate code browser was then used to in-
vestigate the details causing this behaviour. After studying the

2The visualization tool had to be run on a different, pre-existing execution
trace. A toy example was used for this purpose, but choice of input was not
a factor in the tool’s symptoms. The second participant actually received a
trace of only a step backwards.

system for an hour, the participant decided that the likeliest
cause was in the methods

� removeInteractionsFrom:to:between:, and

� addInteractionsFrom:to:between:.

The participant noted the similarity of code in these two meth-
ods. This observation made sense because the fundamental
problem was due to the data structure. The participant was
thus able to indicate a useful point to continue the investiga-
tion, as had been requested at the start of the study.

The expert participant liked two features of the tool in par-
ticular:

� the summary view, although the participant stated: “in
this case [the effect] was slightly obvious [in the sum-
mary view]—it may not be so obvious in other cases”;
and

� the animation of the hyperarc resulting from pressing
“play”, because of the way one can watch “how things
go into loops or circles or watch the communication back
and forth between different things, or specific things.”

The expert participant felt the tool lacked two desirable fea-
tures:

� integration between it and a traditional code browser,
so one could, for example, select a method in a pop-up
detail window and have the code browser display that
method; and

� the lack of ability to view a detailed stack dump, com-
parable to that available from a Smalltalk debugger, par-
ticularly so that the parameter types being passed could
be seen (this cannot be seen from the static code because
Smalltalk is dynamically typed). The actual values being
passed were deemed desired in some instances.

Code browser integration is a desired feature that has not
yet been implemented; the tool has been designed to accom-
modate this change. The tool did allow the participant to nar-
row the search to particular points of interest that could then
be investigated via a debugger or similar means. The desire
for greater, integrated information from the tool is understand-
able, but runs contrary to its design philosophy of comple-
menting existing techniques—it is not intended to supercede
the use of a debugger. This desire also highlights the tension
between off-line and on-line approaches to accessing dynamic
information.

4.2.2 The Non-Expert Participant

The non-expert participant made extensive use of both the ob-
ject histograms and the allocation/deallocation bars in the de-
tailed view to investigate the performance problem. Specif-
ically, the participant would find cels in which object deal-
location was not keeping pace with object allocation (i.e.,
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Figure 6: Case study #2 visualization.

the green bar—shown herein via a vertical-line pattern—was
longer than the red bar—shown herein via a diagonal-line
pattern—within a box) and would then step forward to see
when objects were being allocated. Queries on the associated
histograms were then used to determine the classes of the al-
located objects. Less frequently, the participant would inves-
tigate the calls involved with the allocations.

For the first forty minutes, the participant worked solely
with the visualization tool. After that, the participant be-
gan to use the Smalltalk code browsers to study the asso-
ciated code. After approximately an hour with the tool,
the participant had identified two methods, including the
removeInteractionsFrom method, as a point in the
code at which to continue the investigation. This determina-
tion was based, in part, on noticing a correlation between an
increase in message sends between the Gp and Cg boxes and
the number of objects allocated by Cg. Similar to the case of
the expert participant then, the non-expert found the correct
area of code to investigate, which was the task that had been
posed.

The non-expert found the deallocation age histograms and
the ability to determine the correlation between abstract in-
formation to method and object names by clicking on his-
tograms and interactions in the visualizationparticularly help-
ful. However, the non-expert indicated a desire for different
displays of this information, finding the “screen with all the
methods [was] too cluttered.” Similar to the expert, the non-
expert desired more integration with other Smalltalk tools,
such as the code browser. For instance, the participant wanted

to be able to select a call from a list of interactions and visit
that call site in the code.

During an interview part of the way through the study pe-
riod, the participant noted that it was difficult to attack the task
because of a lack of knowledge of what could cause perfor-
mance problems. The visualization tool provided some clue
as to how to proceed because of its emphasis on particular dy-
namic information. The applicabilityof the dynamic informa-
tion chosen for other tasks requires further research.

5 DISCUSSION

Key features of our technique include off-line operation, a
navigable visualization of the collected data, cels based on
a running summary, and the use of a declarative mapping to
abstract fine-grained information about a system’s execution.
We discuss each of these features and our use of trace infor-
mation.

5.1 Off-line Operation

Using an on-line visualization technique can be a slow, unidi-
rectional procedure. Taking the technique off-line and sepa-
rating the visualization from the system execution can achieve
two benefits.

First, it allows the information to be preprocessed as a
whole prior to visualization, enabling the generation of sum-
mary information about the entire execution. For the perfor-
mance tuning tasks described in the case studies, summary in-
formation was used to provide clues about which parts of the
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system to investigate as potential sources of the problem. Af-
ter accessing summary information, the users returned to in-
vestigate detailed parts of the execution.

Second, it allows any partial trace of an execution to be re-
viewed without having to re-run the entire execution. This re-
view capability permits the visualization to be navigable in a
way that is not possible for an on-line technique. Not only
may the trace be replayed from any arbitrary point, but also
it may be played backwards, or at a rate that is independent of
the speed of the original execution of the system being stud-
ied.

5.2 Navigable Visualization

One advantage of an off-line visualization approach is the
navigation capability provided to the software engineer. The
user can unfold the execution in a forward, “play”, mode, but
then can perform detailed investigations of particular parts of
the execution by moving the visualization both forward and
backward. In our current prototype, we do not associate any
information about the actual execution time with the off-line
navigation. Each step forward or backward in our visualiza-
tion takes time proportional to the display time of the next cel,
rather than representing the length of time required by an asso-
ciated method call, allocation or garbage collection. For some
tasks, including performance tuning, it would sometimes be
helpful to have steps between cels represent the system run-
ning time.

5.3 Running Summary

We believe that separately displaying individual events, or
small groups of contiguous events, makes for an insufficient
visualization of a system execution because of a lack of con-
nection to the greater context of that execution. Some sort of
summary information is also needed.

We considered two means of providing such summary in-
formation: a single summary picture, such as that in Figure 3,
and a set of pictures showing the change to the state of the
system over individual intervals of its execution (“delta” in-
formation), which is not provided by our tool. But neither
alone would be sufficient to illustrate the dynamic nature of
the information we are attempting to visualize. The sum-
mary picture clearly does not contain any temporal ordering
of events—it is difficult to look at one and mentally recon-
struct the sequence of events that produced it. Furthermore,
this summary alone cannot contain enough detail about the ex-
ecution to be useful without becoming so cluttered that it is
rendered unusable. Delta pictures address the concern of visu-
alization of the temporal nature of the information; however,
it is difficult to understand the relationship between a delta
picture and the execution in toto. To reach a compromise be-
tween these alternatives, we chose to provide a running sum-
mary of the execution within the individual cels. This im-
plicitly provides the temporal component of the summary in-
formation while maintaining context for the delta information

within a cel.

Two other alternatives to maintain context are possible. In
the first, we could begin with a summary view such as that
provided by our tool. But rather than being a single, static
picture, it could also be divided into a sequence of cels each
of which would show the same summary information while
highlightingin a different colour, say, the information that was
changed or added over the represented interval, such as the di-
rected arcs that were traversed, or the subset of objects that
were deallocated. The second alternative is similar, but in-
stead of highlighting only the information that is different for
that interval, a running summary of all the information that
had changed from the start of execution of the system to the
current interval would be highlighted. Both can suffer from
the fact that a complete summary view can quickly become
too detailed, leading to information overload. However, both
these schemes could be used to complement the delta plus
running-summary combination currently used in our cels; we
have not yet investigated this possibility.

5.4 Mapping Objects

Each cel maps objects to abstraction units. Associating an ob-
ject with an abstraction unit using our declarative mapping ap-
proach requires a means of “naming” objects. We chose to
name—more precisely, identify—an object based on where it
is created in the code: a software engineer identifies objects
mapping to a particular abstraction unit by describing a part
of the call stack that exists when one of the objects is created.
This approach has the advantage that an engineer can identify
collections of objects by perusing the source code and describ-
ing the locations where relevant allocations occur. Another
possible choice would be to name objects based on their class.
However, this approach to naming would not allow objects of
the same class to be mapped to different abstraction units, lim-
iting the ability of the engineer to differentiate distinct uses of
classes.

Currently, the mapping provided by the engineer is applied
uniformly to all dynamic information collected as the system
executes. A ramification of this decision is that once an ob-
ject is associated with an abstraction unit, it remains associ-
ated with that unit for the duration of the visualization. Some-
times, though, it may be useful to modify the association of
objects to abstraction units over the course of the execution.
For instance, if an object is created in one subsystem, but is
then immediately passed as an argument to another subsys-
tem, it may be useful to capture the “migration” of the object.
Supporting this migration would require not only a means to
allow the engineer to describe when and how the migration
would occur, but also would require updates to the use of his-
tograms for object allocation and deallocation. Further under-
standing of how this capability might help in the performance
of tasks is required before support is added.
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5.5 Dynamic Information

Our current prototype visualizes trace information collected
about a system’s execution. Trace information has the ben-
efit that it is complete: all object interactions, allocations,
and deallocations are included in the trace. Complete infor-
mation is easy for the engineer to reason about. However,
trace information has the often cited problem of being volu-
minous [9, 2, 8]. Tracing even small pieces of a system’s exe-
cution can result in a huge amounts of data. Althoughwe have
been able to successfully use trace data to investigate some
performance problems, the use of trace information limits the
flexibility and usability of our current prototype. We plan to
investigate the use of sampled information as a basis for our
prototype to overcome some of these limitations.

6 RELATED WORK

De Pauw et al. have developed a number of visualizations to
describe the execution of an object-oriented system, includ-
ing inter-class call cluster diagrams, inter-class call matrices,
a histogram of instances, and an allocation matrix [1]. All
of these visualizations show fine-grained execution informa-
tion about individual classes and objects. The utility of these
visualizations degrades as the size, measured in the number
of classes, of a system grows. Several other similar object-
and class-level visualization approaches have been developed
(e.g., [6, 5]); these techniques share the same scalability prob-
lem.

Lange and Nakamura in the Program Explorer tool allow
the developer to integrate, off-line, static and dynamic infor-
mation about a program to aid comprehension activities [7, 8].
For instance, they show how this combination of information
can help a developer find and investigate instances of design
patterns in a system. The visualizations they produce are also
at a fine-grained level. Vlissides et al. use a different notion
of pattern, which they refer to as execution patterns, to help
developers investigate the large amount of fine-grained exe-
cution information available about a system [3]. Specifically,
they allow a developer to query an on-line animation for pat-
terns appearing in a dynamic execution stream. In both the
Program Explorer and execution pattern approaches, the de-
veloper must apply detailed knowledge about a system to for-
mulate appropriate queries.

Jerding et al. have applied the information mural approach
to create a scalable visualization of fine-grained program
events [4]. The result, an execution mural, places classes
vertically on the screen and uses single pixel vertical bars,
with various colouring approaches, to indicate calls between
classes. The interactions occurring in the system are then
shown across the screen. Using this approach, thousands of
interactions occurring between objects can be visualized on
one screen. The authors extend these ideas to a Pattern Mu-
ral that provides an information mural display of automati-
cally detected common occurring sequences of calls (patterns)
in the execution. Although this approach may help a devel-

oper find unexpected patterns, or verify existingpatterns in the
code, it still visualizes only fine-grained informationabout the
system.

The approach taken by Sefika et al. differs in allowing a de-
veloper to utilize coarse-grained system information to pro-
duce visualizations [14]. Using their technique, a developer
may introduce various abstractions into the system instrumen-
tation process, including subsystem, framework and pattern-
level abstractions. The abstractions can then be used as a ba-
sis for several visualizations includingaffinity and ternary dia-
grams. The coarser-grained visualizations produced with this
technique make it easier for developers to investigate inter-
component interactions in large systems than previous ap-
proaches.

Some of the design decisions Sefika et al. made in devel-
oping their technique limit its flexibility. Choosing an on-line
approach permits a link between the speed shown in the vi-
sualization and the execution speed. However, as we have
discussed, an on-line approach limits the modes of investi-
gation available to an engineer. Choosing an approach that
hard-wires the abstractions of interest into the instrumentation
process provides an effective data gathering mechanism; how-
ever, it decreases the usability of the technique by making it
more difficult for an engineer to apply it to a new system. We
have been able to easily apply our technique to different sys-
tems because of the separation in our process between data
gathering and visualization.

Our visualization technique buildson the software reflexion
model technique developed by Murphy et al. [12, 10]. The re-
flexion model technique helps an engineer access both static
and dynamic information about a system by enabling a com-
parison between a posited high-level model and a model rep-
resenting informationextracted from either the static source or
from a system’s execution. Similar to our visualization tech-
nique, the software reflexion model depends on a declarative
mapping language. Our visualization technique extends the
reflexion model work in three fundamental ways: by applying
the abstraction approach across discrete intervals of the exe-
cution with animation controls, by providing support to map
dynamic entities rather than only static entities, and by map-
ping memory aspects of an execution in addition to interac-
tions. Our visualization technique also uses the running sum-
mary model rather than the complete summary model used in
the reflexion model approach.

7 SUMMARY AND FUTURE WORK

Condensing dynamic information collected during a system’s
execution in terms of abstractions that represent coarse sys-
tem structure, such as frameworks and subsystems, can help
software engineers investigate the behaviour of a system. We
have developed a visualization technique that allows engi-
neers to flexibly define the coarse structure of interest, and to
flexibly navigate through the resulting abstracted views of the
system’s execution. Our approach complements and extends
existing visualization techniques.
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Our preliminary investigations into the usefulness and us-
ability of the visualization indicate it shows promise for en-
hancing a software engineer’s ability to utilize dynamic infor-
mation when performing tasks on a system. To date, we have
focused on the use of dynamic information to aid one partic-
ular software engineering task—performance tuning. We in-
tend to continue our investigations into the utility of the en-
tire technique through more extensive case studies on a wider
range of tasks on larger systems. Although there is evidence
elsewhere [10, 11] that the iterative mapping approach is us-
able for static information, our further studies will investigate
if this remains true for dynamic information.
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